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Simple Summary: Human urine cytological samples were investigated using Fourier transform
infrared spectroscopic imaging in terms of recognition of bladder cancer. The clustering of IR spectra
of whole cytological smears revealed very good spectral correlation with normal urothelial cell
features. Next, the combination of spectral information derived from unsupervised hierarchical
cluster analysis and partial least square discriminant analysis (PLS-DA) classified normal vs. low-
and high-grade bladder urothelial carcinoma with sensitivity and specificity of 90–97%.

Abstract: Bladder urothelial carcinoma (BC) is a common, recurrent, life-threatening, and unpre-
dictable disease which is difficult to diagnose. These features make it one of the costliest malignancies.
Although many possible diagnostic methods are available, molecular heterogeneity and difficulties
in cytological or histological examination induce an urgent need to improve diagnostic techniques.
Herein, we applied Fourier transform infrared spectroscopy in imaging mode (FTIR) to investigate
patients’ cytology samples assigned to normal (N), low-grade (LG) and high-grade (HG) BC. With
unsupervised hierarchical cluster analysis (UHCA) and hematoxylin-eosin (HE) staining, we ob-
served a correlation between N cell types and morphology. High-glycogen superficial (umbrella)
and low-glycogen piriform urothelial cells, both with normal morphology, were observed. Based
on the spectra derived from UHCA, principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) were performed, indicating a variation of protein content between
the patient groups. Moreover, BC spectral cytology identified a low number of high-glycogen cells
for which a shift of the carbohydrate/phosphate bands was also observed. Despite high cellular
heterogeneity, PLS-DA was able to classify the spectra obtained. The voided urine FTIR cytology is
one of the options that might be helpful in BC diagnosis, as high sensitivity and specificity up to 97%
were determined.

Keywords: bladder carcinoma; infrared spectroscopic imaging; diagnostics; cytology

1. Introduction

Bladder urothelial carcinoma (BC) cytological diagnosis awkwardness is broadly
discussed in the literature [1,2]. This commonly used diagnostic method is based on
examination of many subjective morphological features of cells present in urine, which,
according to the diagnostic standard, are usually stained with hematoxylin and eosin (HE).
Cytological sensitivity for LG BC is c.a. 30–50%, whereas for HG BC, it is 80% [1,3]. The
reason for such a difference in sensitivity is the fact that a part of LG BC cells might have
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similar features to normal cells or show no morphological changes. Thus, diagnosis is put
forward after tissue excision and the occurrence of a thickened urothelium with disrupted
stratification. In spite of this diagnostic pitfall, LG BC rarely infiltrates, and often creates
papillary structures which are easily visible in cystoscopy and ultrasound [1,3–5]. If BC
is suspected in cytology, both quantitative (over 5 cancer cells) and qualitative criteria
should be observed. The features of BC include: high nuclear/cytoplasmic ratio and
nuclear diameter, hyperchromasia and irregular shape of nuclei, chromatin coarseness,
and the presence of inclusions, nucleoli and atypical mitoses [6]. Detailed morphological
features and grouping according to the Paris system are presented in Table S1 in Sup-
plementary Materials (SM). BC cytology is cumbersome and subjective, but apart from
this, it is cost-effective and satisfactory in the detection of highly malignant HG BC [6].
Furthermore, the BC subtypes have different biocomponent contents, but according to their
occurrence, molecular pathways and behavior, the dichotomic classification to LG and HG
BC underlines the most important differences in BC [3,7,8]. The whole cytology sample
contains hundreds of cells that need to be laboriously examined by a pathologist, and the
main aim during urine cytology testing is to identify BC cells.

Due to functional differences between cells exfoliated to urine from different urothelial
layers, the morphology and biochemical composition can vary [3,9]. Urothelial cells have
different abilities to change their diameter when fulfilling the bladder or during urination,
in addition to varying proliferation rates. Moreover, urothelial cells are differentially ex-
posed to metabolites, infection factors and distance to vasculature within the subepithelial
tissue, which in turn relates to oxygen and nutrition accessibility [3,10]. New tools for
the detection of bladder cancer cells are offered by Fourier transform infrared (FTIR) and
Raman spectroscopies with imaging modality. Any biological object is identified by a
specific set of bands in the spectra assigned to vibrations of proteins, lipids, nucleic acids,
and carbohydrates. The complex molecular signature in both spectra undergoes changes
upon stress conditions and pathological processes. However, no patients’ cytological
cells have yet been imaged with detection through FTIR and Raman spectra. The only
urothelial cell imaging to date was performed on cell cultures [11,12]. A single-point
microscopic examination of urothelial cells in urine from healthy volunteers showed the
differentiation of three cell types only [10]. Furthermore, classification of urine sediment to
normal or BC groups were based on the attenuated total reflectance (ATR) FTIR spectra
of bulk samples [9,13–15]. Complementary to the FTIR method, Raman spectroscopy
also showed promising outcomes for the spectroscopic scanning of malignant and benign
bladder tissues [16]. These few studies showed diagnostic accuracy of over 80%.

This study was performed with the aim of assessing whether label-free infrared
spectroscopic imaging of urine cytology can help to classify normal, LG and HG BC
samples. We proposed here a novel approach for data collection and analysis to extract
relevant information for patient classification despite the heterogeneity of urothelial cells
and their transformation due to malignancy. Our spectral approach was verified by
clinically used cytology.

2. Materials and Methods

The study was reviewed and accepted by the First Local Ethical Committee at the
Jagiellonian University Medical College in Krakow (No. 1072.6120.100.2018). Urine samples
from 45 patients with clinical suspicion of BC were collected. The inclusion criteria included
clinical suspicion of tumor and age over 18 years. We excluded pregnant women, patients
with infection and after radiotherapy, and samples of very low cellularity. Firstly, each fresh
(up to 30 min after urination) whole voided urine sample was centrifuged at 2000 RPM for
5 min and divided to perform standard cytology and FTIR spectroscopic imaging. For the
first method, urine samples were spread with cytospin (Thermo Scientific Cytospin 4) and
fixed with 95% ethanol. The urine standard diagnostic cytology cytospin slide is a 7 mm
diameter circle (ca. 38 µm2) filled with unevenly distributed cells. Next, the samples were
HE stained and assessed according to the Paris System for Reporting Urinary Cytology [6].
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Based on this examination, samples were assigned to three groups with normal, low- and
high-grade bladder cancer cells (N, LG, and HG BC, respectively). Each group consisted
of 15 patients. Examination and photographic documentation were performed using an
Olympus BX53 white-light microscope equipped with an Olympus DP27 digital camera
(Department of Pathomorphology, University Hospital, Krakow).

The remaining fresh urine sediment was spread with the cytospin on a CaF2 window,
and afterwards fixed with 2% glutaraldehyde (30 min), washed with distilled water and
dried (min. 48 h in a desiccator). A sample of 7 µm diameter was imaged with standard
definition FTIR spectroscopy in transmission mode. To scan the entire area of the sample,
3 mosaics with an area of 2100 × 2100 µm were acquired. For this purpose, a FTIR Agilent
670 spectrometer was employed which was equipped with a 128 × 128 FPA camera with
a pixel size of 5.5 × 5.5 µm and Cassegrain objectives (NA = 0.62). FTIR spectra were
acquired in the region of 900–3700 cm−1. A total of 64 scans were co-added with a spectral
resolution of 8 cm−1. Afterwards, the samples were stained with HE for direct comparison
of the IR images with cell morphology.

Pre-processing and chemometric analyses were performed using CytoSpec (ver. 2.00.01),
MatLab (R2020a, MathWorks, Natick, MA, USA), Unscrambler X (v. 10.5.1, Camo, Mont-
clair, NJ, USA), OPUS (ver. 7.2.139.1294, Bruker, Billerica, MA, USA) and Origin 9.1 (ver.
2020b, OriginLab program, OriginLab Corporation, Northampton, MA, USA) software.
Water vapor correction, Q-tests and PCA denoising were performed (Cytospec and Matlab)
as in Kujdowicz et al. [12]. The Q test excluded IR pixel spectra with low signal-to-noise ra-
tio (SNR) which could lead to false analysis. As reference of a high SNR spectrum we used
maximum value of absorbance gathered in the 1700–1600 cm−1 region while noise was
calculated as the standard deviation of spectra in the 1900–1800 cm−1 region. These steps
allowed us to reduce a number of spectra to ca. 0.5 million per sample and next to apply
a 6-class unsupervised hierarchical cluster analysis in the 3000–2820 and 1780–980 cm−1

regions (UHCA). The FTIR spectra derived from the UHCA were preprocessed similarly as
in Gajjar et al. [17]. The UHCA mean spectra were cut below 950 cm−1, and Rubberband
baseline and vector normalization (1780–1000 cm−1) were performed (OPUS). PCA was
performed on 810 derivative spectra derived from UHCA (270 spectra per patient group) in
the regions of 3000–2820 and 1780–975 cm−1 with a NIPALS algorithm, and mean-centered
data, identifying outliers and maximum 7 components. To create the PLS-DA model,
firstly a Ward distance cluster analysis (CA) was performed on 18 UHCA-derived mean
spectra to extract nine spectra for each patient. The remaining nine spectra were left for
prediction (Unscrambler). CA and PLS-DA were performed in the same spectral region
as the PCA. In the PLS-DA models, four factors were used with mean centered data. The
integration intensities of the amide I (1690–1630 cm−1) and glycogen (1180–1120 cm−1)
bands were calculated from second derivative spectra (OPUS). All graphs were depicted
using Origin software.

3. Results
3.1. Clinic-Pathological Profile of Patients

According to standard HE cytological examination of voided urine, 45 patients were
grouped into three groups with normal cytology (N), low-grade BC (LG BC) and high-
grade BC (HG BC). Each group included 15 patients. Table 1 summarizes the clinical data
of patients, including gender, age, hematuria and urine pH.

Table 1. Clinical profile of the investigated patients.

N LG BC HG BC

Gender [M/F] 3/12 8/7 14/1
Age [ys ± SD] 64.9 (13.7) 70.8 (5.6) 70.9 (6.0)

Hematuria 1 3 0
Urine pH [±SD] 5.57 (0.56) 5.57 (0.65) 5.57 (0.56)
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3.2. Cluster and Principal Component Analysis of Spectral Database

The first step of image preprocessing was water vapor removal and the Q-test, which
allowed us to reveal pixels with high signal-to-noise FTIR spectra from the area covered by
large urothelial and squamous cells (>10 µm in diameter). Small cells, like lymphocytes
and erythrocytes, were too thin. Their spectra showed a substantial scattering effect,
and they were rejected from further analysis. Cytospin deposition of cells on an IR-
transparent substrate caused an accumulation of the large cells on the periphery of the
deposit. Cellularity varied across patients and it did not depend on the group. According
to the literature, urine sample cellularity strongly depends on desquamation, urine volume,
time between urinations and the physical activity of patients [3,6,10]. A clear morphological-
spectral assignment was achieved only for four cell classes from healthy patients (N group),
i.e., glycogen-rich cells, including urothelial superficial (umbrella) and squamous cells (a
clear morphological distinction between the two is impossible); umbrella glycogen-poor
cells, and piriform and basal cells from the deep layers of the bladder (Figure S1 in SM).
Classes of unsupervised hierarchical clustering (UHCA) were assigned to these cells based
on their HE morphology. This example could suggest a straightforward classification of the
urothelial and cancer cells, but we abandoned that approach because it was impossible to
select a proper number of UHCA classes with a high agreement with cell types, in particular
LG BC cells. Therefore, our approach for further image analysis involved obtaining the
six UHCA blind spectral classes. This number of classes was a compromise between the
expected cell types and the observed spectral variability in the IR spectra. This idea of
urothelial FTIR-based cytology is presented in Figure 1.

We analyzed IR spectra in two regions: the high-wavenumber region (3000–2800 cm−1)
assigned predominantly to lipids and proteins (vibrations of the CH3 and CH2 groups),
and the fingerprint region (1800–1000 cm−1). Usually, the most intensive bands in the
fingerprint region belong to proteins (1700–1500 cm−1) and carbohydrates and moieties
with the phosphate group (1200–1000 cm−1) [18,19]. Detailed assignments of IR bands to
biomolecules are shown in Table S2 in SM [20–25].

The largest spectral differences between the six UHCA classes from one image in
all samples were found in the bands assigned to proteins (amide I—1652 and amide
II—1548 cm−1) and in the carbohydrate-phosphate region (1200–1000 cm−1), particularly in
the bands at 1153, 1070 and 1024 cm−1 assigned to glycogen and/or glycolipids constituting
urothelial cerebrosides [20–22]. The comparison of HE microphotographs and UHCA maps
indicated that the high-glycogen classes present in all patient groups (light blue and blue
traces in Figure 1) originated from large and superficial normal cells with a low nuclear-
cytoplasmic ratio (umbrella and squamous cells). The low-glycogen classes (pink, red
and green traces in Figure 1) presented thick eosinophilic-type umbrella, piriform, basal
and cancer cells. And all of these low-glycogen cells exhibited high nuclear-cytoplasmic
ratios. These observations were congruent with our previous spectroscopic studies on
urine sediments and the reference cell cultures of urothelial and BC cells [11,14]. Spectral
differences between the N and BC groups were seen the shapes of the glycogen bands, e.g.,
a sharp 1024 cm−1 band was present in N while an additional 1054 cm−1 band was found
in both BC groups. A visual inspection of the mean FTIR spectra also suggested a higher
content of carbohydrates in LG BC cells than in HG BC (Figure 1).
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ilarly to PC-1, indicated the contribution of the glycogen bands and the red-shift of amide 
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Figure 1. Comparison of the HE microphotographs of normal, LG BC and HG BC cytology (magnification: 100× for normal
and LG BC samples and 50× for HG BC) with false-color UHCA maps from IR images and their mean absorbance spectra.
The colors of the spectra correspond to the colors of UHCA classes.

Spectral intragroup variability and intergroup differences between the N, LG and HG
BC groups were presented in averaged FTIR spectra (Figure 2A and Figure S2 in SM) as
well as in the PCA loadings and score plots (Figure 2 and Figure S3 in SM). The normalized
averaged spectrum should be interpreted as the relative amount of major biocomponents
and the vibrational activity of the chemical groups, crystal structure and environment near
atoms [23–26]. The carbohydrate-phosphate region showed high intragroup variability,
especially in spectra derived from urine of healthy patients. Undoubtedly, this was a
reason for the recognition of specific urine cells, see Figure S1 in SM. In neoplasm cases, the
clonality of cells and the appearance of neoplastic changes in the whole bladder urothelium
(not only in tumors) explain the low intragroup variability in the investigated BC groups.

A total of 810 derivative FTIR spectra obtained from UHCA analysis of IR images
were used to perform the principal component analysis (PCA), which is an unsupervised
method for grouping spectral data; here N, LG BC, and HG BC. All of the groups were
segregated along the main principal components (PC-1—PC-3) with a total variance of 62%
(Figure 2A). The score plots of these PCAs are summarized in Figure 2B and Figure S3 in
SM. The PC-1 axis grouped FTIR spectra of the N (positive scores) and BC groups (negative
scores) accorded to discriminators attributed to a glycogen level (1153, 1080 and 1024 cm−1)
and the height and shape of the amide I band at 1652 cm−1. The PC-2 axis, similarly to
PC-1, indicated the contribution of the glycogen bands and the red-shift of amide I band
to the observed grouping. Here, we also found positive vectors at 2850 and 2923 cm−1
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assigned to stretches of the CH2 group in the long-chain fatty acids. The majority of the LG
BC spectra were clustered along the negative PC-2 axis, contrary to HG BC. Furthermore,
the PC-3 loadings and scores plots which indicated alternations in protein conformations
(discriminators at 1652 and 1623 cm−1) showed both groupings in the BC patients.
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Since the glycogen and protein bands contributed to PCA discrimination, the integral
intensities of these bands were calculated next. The integral intensity of the 1153 cm−1

band assigned predominantly to glycogen was higher in the N group than it was in both
BC groups, reverse to protein integral intensity and similarly to the carbohydrate/protein
ratio (Figure 3A–C, respectively). The opposite trend was determined for the protein
level (Figure 2A). The distribution of intensity values showed that the content of glycogen
significantly varied across healthy patients, in contrast to both BC groups. Here, there was
a population of cells exhibiting high intensity in the 1153 cm−1 band, and this fact likely
resulted from the presence of healthy urothelial cells among the malignant ones. Such a
situation was not found for the content of proteins.
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3.3. PLS Discrimination Analysis of Patients’ Groups

A four-factor PLS-DA classification based on second-derivative FTIR spectra was
performed in pairs of N vs. LG and N vs. HG. We also examined the LG and HG BC
groups; however, seven factors were needed to obtain satisfactory classification, and we
excluded this method for its low-robustness. In the first step of the PLS DA analysis, we
divided the spectra into two groups to build the model, and then to test its prediction
ability. The model groups were selected according to a strategy proposed by Lee and co-
workers [26]. A nine-class hierarchical cluster analysis (HCA) was performed to select the
data set for modelling and prediction, as seen in the exemplary HCA diagrams in Figure S4
in SM. This was performed on 18 UHCA spectra derived from IR images separately for
each of 45 patients. The nine IR spectra with the largest spectral variability were taken to
construct the PLS-DA model. These results are summarized in Figures 4 and 5.
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TP—true positive, FN—false negative, FP—false positive, TN—true negative, NegPredVal—negative predictive value.
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The PLS loading plots showed similar molecular differences between the groups as the
PCA loadings (Figures 2A and 4A). Detailed PLS-DA parameters are presented in Table S3
in SM. The sensitivity and specificity of LG BC discrimination from healthy patients were
90 and 96%, respectively. The corresponding values of 96 and 97%, respectively, were
determined for HG BC vs. N (Figure 5).

In each PLS-DA model, 135 spectra were taken from each group to build the model
and 135 spectra were used for prediction. The prediction results and the HE assignment
of patients to N, LG and HG BC were used to construct the confusion matrices (Figure 5).
Six and four IR spectra from the normal group were false-positively (FP) assigned to LG
and HG BC, respectively. In turn, thirteen LG BC and six HG BC spectra were classified
as normal cytology (false negative, FN). The accuracy was much better for HG than LG
BC (97% vs. 93%). The precision values were 95% and 96%, while the negative predictive
values were 91 and 96% for LG and HG BC, respectively.

4. Discussion

The main differences between the N and BC groups were found in protein and
carbohydrate regions. A part of normal cells with the low-glycogen bands had similar
scores in the PCA as those in LG and HG BC groups. These similarities resulted from
the biological nature of proliferating cells, i.e., cells that proliferate quickly, have a low
cytoplasm to nuclear ratio and have cytoplasm can contain spare substances. These
differences between nuclei and cytoplasm were discussed in a report showing the IR
features of urinary cell cultures detected by high-definition FTIR imaging [11]. Here,
scanning of cytological samples with a focal plane array of a 5.5 × 5.5 µm pixel size did not
allow for the observation of carbohydrates in the cell compartments. Our current approach
to discriminate cells spectrally according to their morphological type was fully successful
in the N group only, similarly to Bird et al. [9] Therefore, we assumed that the increased
intensity of the glycogen/glycolipid bands could have been related to the function of some
urothelial or squamous cells. The distribution of intensity of the 1153 cm−1 band in the N
group suggested three spectroscopic cell types, whereas the mean and median values of
this spectral parameter were similar for both BC groups (Figure 3A). The 1200–1000 cm−1

region of the normal morphology cells in the BC sample was not only less intense but
also its shape changed. The IR spectrum showed the presence of an additional band at
1052 cm−1 assigned to DNA, cholesterol or glycolipids, and flattened bands at 1080 and
1024 cm−1 assigned to glycogen (Figure 1).

The PLS-DA models were similarly efficient in classifying healthy patients from those
with diagnosed low- and high-grade bladder cancer (Figures 4 and 5). A high spectral
variability in HG BC did not allow the building of a model discriminating both BC groups,
as indicated by the PC-2 and PC-3 scores shown in Figure 2A. Single FTIR spectra from
different N patients were false-positively subjected to LG and HG BC (six and four spectra,
respectively). These spectra resembled the IR signatures of BC urothelial cells, but other
spectra for a given patient were classified correctly. This suggests that large-area FTIR
scanning of the 30 µm2 smear of cells isolated from urine was efficient to recognize healthy
patients. In the case of false negative results, only one LG BC patient was misclassified
based on majority of the IR spectra, whereas two LG BC and three HG BC cases were
assigned to the healthy group according to single spectra only. Such doubtful assignments
can be further verified by classic cytology and histology. Our HCA-PLS-DA models of the
imaged cells showed better sensitivity and specificity (both above 90%) than other FTIR-
based classifications performed on bulk samples of patients’ urine sediment (sensitivity:
100%, specificity: 59%) and urine (sensitivity: 90%, specificity: 81%) [14]. The high PLS-
DA values of accuracy and other classification indicators determined in this work are
more optimistic, and some factor of the proposed approach played an important role for
achieving these results (Figure 5).

It is worth highlighting the great potential of the large-area scanning by FTIR spectro-
scopic imaging of all cells in the sample, the removal of numerous small cells (lymphocytes,
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erythrocytes, basal and cytolytic cells as well as debris) from the analyzed IR images and
the segregation of spectra with different glycogen and protein contents. FTIR imaging of
cells is much faster than Raman mapping due to detection by the focal plane array incorpo-
rated in the IR microscopes that covers a large area of the sample in single measurement.
This technique was employed to investigate biopsy samples as well [7], but FTIR-based
cytology offers non-invasive sample collection from patients. We showed in the previous
work that simple ATR FTIR spectra of the whole urine sediment can be also used for the
recognition of BC. However, this method showed lower sensitivity and specificity than the
approach proposed here due to averaged IR signatures and the hidden spectral features of
single cancer and abnormal cells in such a bulb sample [14]. Here, we detected a spectral
variation among urine cells that was particularly important in the case of the samples with
low fractions of BC cells typical of the early stages of the disease and small tumors [27,28].

We also concluded that the differences in sensitivity and specificity between the patient
groups resulted from different biochemical features of N and BC urothelial cells located in
their compartments. LG BC cells predominantly grow, slowly and are often exfoliated from
papillary hyperplasia in the early, non-invasive stages, whereas HG BC cells infiltrate very
quickly from the beginning of the malignant process and cause degradation of bladder
wall matrix and detritus in urine [8]. Therefore, classification based on the spectra of single
cells is more accurate than classification based on urine and urine sediment containing
various cell types and matrix mixtures. A similar observation was found for the FTIR-
based classification of cervical cancer and the spectral Raman cytology of cancer [16,27–31].
This is also an important conclusion in terms of the verification of ambiguous cytological
results by biopsy and histopathological examination. The bladder tissue is composed of a
plethora of cell types (e.g., epithelial cells, fibroblasts, myocytes, and lymphocytes) and a
tissue matrix, and thus pathological changes are mainly affected by local changes of the
epithelium as well as general patient conditions. All of these features made the histological
classification difficult.

To sum up our discussion, the results showed the reliability of FTIR spectroscopic
imaging for the recognition of both grades of bladder cancer. Further development of the
automized analysis could serve as a first screening diagnostic tool in clinics, especially for
the identification of the LG BC cases difficult to diagnose by cytology. This approach has
great potential to support histopathological examination since this method is label-free and
a typical experiment with this analysis can be completed in a few hours. This method could
be further used for the fast tracking of the disease progression and personalized treatment.

5. Conclusions

In this work, we performed FTIR spectroscopic imaging of whole cytology samples
prepared from voided urine cytology to recognize their biochemical diversity across hun-
dreds of cells. The highest intragroup variability with the presence of three spectral cell
types was demonstrated for the N group. The most significant changes between the N and
BC groups were found in the carbohydrate and protein region, whereas the lipid vibrational
modes indicated differences between HG and LG BC. After the CA-based selection of IR
spectra to build the PLS-DA model, we achieved high sensitivity and specificity for the
discrimination of both BC groups from healthy patients (90–96% and 96–97% for LG and
HG BC, respectively). Spectral urine cell cytology could potentially be implemented as a
screening test with non-invasive collection of diagnostic samples, simple preparation, and
label-free and automatic sample classification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225734/s1, Figure S1: The comparison of HE staining and UHCA-discriminated
cells of normal urothelial cells showing their assignment; on right, mean FTIR spectra of UHCA
classes (the colors of the spectra correspond to the colors of classes in the UHCA map), Figure S2:
A. Averaged absorbance FTIR spectra (with SD marked as dashed lines). B. Median, 1st and 3rd
quantile and min and max plots. All spectra were preprocessed after baseline correction and vector
normalization, Figure S3: 3D PCA scores plots from Figure 2B showed in different projections,

https://www.mdpi.com/article/10.3390/cancers13225734/s1
https://www.mdpi.com/article/10.3390/cancers13225734/s1
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Figure S4: Example of cluster analysis from one of N, LG and HG BC patients. Spectra from the
most different branches of Cluster Analysis were chosen to build the model, were marked with
arrows and they represent 9 out of 18 spectra from the patient, Table S1: Normal, LG and HG BC
cell features according to the Paris system, Table S2: Positions of IR bands observed in FTIR spectra
of urine sediment with their assignment to vibrational modes and biomolecules, Table S3: PLS-DA
parameters for discrimination of LG and HG BC cytology from normal urothelial cells.
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