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DNA methylation profiling in the Carolina Breast
Cancer Study defines cancer subclasses differing
in clinicopathologic characteristics and survival
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Abstract

Introduction: Breast cancer is a heterogeneous disease, with several intrinsic subtypes differing by hormone
receptor (HR) status, molecular profiles, and prognosis. However, the role of DNA methylation in breast cancer
development and progression and its relationship with the intrinsic tumor subtypes are not fully understood.

Methods: A microarray targeting promoters of cancer-related genes was used to evaluate DNA methylation at
935 CpG sites in 517 breast tumors from the Carolina Breast Cancer Study, a population-based study of invasive
breast cancer.

Results: Consensus clustering using methylation () values for the 167 most variant CpG loci defined four

clusters differing most distinctly in HR status, intrinsic subtype (luminal versus basal-like), and p53 mutation status.
Supervised analyses for HR status, subtype, and p53 status identified 266 differentially methylated CpG loci with
considerable overlap. Genes relatively hypermethylated in HR™, luminal A, or p53 wild-type breast cancers included
FABP3, FGF2, FZD9, GAS7, HDACY, HOXA11, MME, PAX6, POMC, PTGS2, RASSF1, RBP1, and SCGB3AT, whereas those
more highly methylated in HR-, basal-like, or p53 mutant tumors included BCR, C4B, DAB2IP, MEST, RARA, SEPT5, TFFI,
THY1, and SERPINA5. Clustering also defined a hypermethylated luminal-enriched tumor cluster 3 that gene ontology
analysis revealed to be enriched for homeobox and other developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXAS,
HOXA9, HOXBI13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17). Although basal-enriched cluster 2 showed worse
short-term survival, the luminal-enriched cluster 3 showed worse long-term survival but was not independently
prognostic in multivariate Cox proportional hazard analysis, likely due to the mostly early stage cases in this dataset.

Conclusions: This study demonstrates that epigenetic patterns are strongly associated with HR status, subtype, and
p53 mutation status and may show heterogeneity within tumor subclass. Among HR™ breast tumors, a subset
exhibiting a gene signature characterized by hypermethylation of developmental genes and poorer clinicopathologic
features may have prognostic value and requires further study. Genes differentially methylated between clinically
important tumor subsets have roles in differentiation, development, and tumor growth and may be critical to
establishing and maintaining tumor phenotypes and clinical outcomes.
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Introduction

Breast cancer is a complex and heterogeneous disease
composed of several major subtypes with different
molecular alterations, clinical behavior, and outcomes
[1-3]. Microarray-based gene expression profiling of
breast tumors has identified at least six major intrin-
sic subtypes—luminal A, luminal B, human epidermal
growth factor receptor 2-positive/estrogen receptor-
negative (HER2'/ER"), basal-like, claudin-low, and
normal-like—that are thought to originate from different
precursor cells and follow different progression path-
ways [4-6]. In addition, the genetic pathways leading to
breast cancer vary by subtype. For example, basal-like
tumors exhibit the highest and the luminal A tumors
exhibit the lowest prevalence of p53 mutations [7].
These intrinsic subtypes differ in incidence by race and
menopausal status [7] and show differences in risk fac-
tors [8], outcomes [7,9], and responsiveness to chemo-
therapy [10].

Although genetic alterations such as mutations, rear-
rangements, and copy number changes are established
contributors to carcinogenesis, epigenetic alterations,
including DNA methylation, also play an integral role.
DNA methylation most commonly occurs when a me-
thyl group is added to a cytosine preceding a guano-
sine (CpG). CpGs are often found at high densities in
‘CpG islands’, particularly within the promoter regions
of genes; hypermethylation of CpG islands can result
in the transcriptional silencing of tumor suppressor
genes in cancer, whereas CpG hypomethylation may
lead to gene activation [11-13]. Because alterations in
DNA methylation often occur early in cancer develop-
ment, candidate methylation markers may be valuable
for early, specific cancer detection or for predicting
clinical response to therapeutic agents or cancer
prognosis.

In this study, we characterized DNA methylation pro-
files by using a microarray approach targeting CpG loci
in the promoters of cancer-related genes in 517 breast
tumors from the Carolina Breast Cancer Study (CBCS),
a large, population-based study of mostly early-stage
breast cancer in North Carolina. We hypothesized that
DNA methylation events might be important determi-
nants of tumor biology, could delineate tumor groups
with distinct survival differences, and may help identify
early etiologic events in breast carcinogenesis. In this re-
port, we describe the results of this DNA methylation
profiling analysis, focusing on the identification of tumor
subclasses and the differentially methylated genes distin-
guishing them, survival differences among these tumor
clusters, and characterization of hypermethylated breast
tumors that may be manifestations of the CpG island
methylator phenotype (CIMP) originally observed in colo-
rectal cancer [14].
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Materials and methods

Carolina Breast Cancer Study population

The CBCS is a population-based, case-control study of
breast cancer. Participants include women, 20 to 74 years
old, residing in 24 contiguous counties of central and
eastern North Carolina [15]. Women with a first diagnosis
of invasive breast cancer between 1993 and 1996 (phase 1
of the CBCS) were identified by the North Carolina
Central Cancer Registry through a rapid case ascer-
tainment system. Women diagnosed prior to age 50 and
African-American women were over-sampled to ensure
that they comprised roughly half the study sample. Race
was self-reported; additional details are included in Table 1.
Additional details of the study design are described
elsewhere [15,16]. This study was approved by the In-
stitutional Review Board at the University of North
Carolina (UNC) School of Medicine. In total, 861 breast
cancer cases were eligible for and consented to participate
in the CBCS during phase 1. All CBCS patients provided
written informed consent. Epidemiologic risk factor
information was obtained from questionnaires that were
administered to participants in their homes by trained
nurse-interviewers. Clinical data and information on
tumor characteristics were obtained from medical records
or direct histopathologic review of tumor tissue. ER and
progesterone receptor (PR) status of breast tumors
was determined primarily through review of medical
records (90% of cases) and by immunohistochemistry
(IHC) staining in the remaining cases in the Tissue
Procurement and Analysis Facility at UNC as described
previously [7].

Tumor tissue preparation and histopathologic evaluation
Formalin-fixed paraffin-embedded (FFPE) tumor blocks
were obtained from pathology departments at partici-
pating hospitals for 798 of the 861 breast cancer cases
eligible for phase 1 of the CBCS. Of these, 684 had suffi-
cient tumor tissue for molecular analyses. Tumors were
sectioned as previously described [17] and underwent
standardized histopathologic review by the study path-
ologist (JG) to confirm diagnosis, determine histologic
subtype, and score standard histopathology features (grade,
mitotic index, and so on). With the hematoxylin-and-
eosin-stained slide used as a guide, the area of invasive
tumor was selectively dissected away from other surroun-
ding non-tumor tissue and then processed for DNA.

Breast tumor intrinsic subtypes

Subtypes were previously identified [7] by using a panel
of THC protein markers to assess expression of ER, PR,
HER?2, cytokeratins 5 and 6 (CK5 and CK6), and epidermal
growth factor receptor (EGFR). Subtypes included luminal
A (HR" (ER" or PR* or both) and HER2"), luminal B
(HR*/HER2"), basal-like (HR"/HER2 /CK5* or CK6*
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Table 1 Characteristics of Carolina Breast Cancer Study breast cancer cases or tumors evaluated or not evaluated for

DNA methylation profile

Characteristic Cases evaluated Cases not P value
for methylation evaluated
(n =517) (n =163)
N (%) N (%)
Age Mean + SD, 49.7+119 522+119
years
<50 years 318 (62) 84 (52) 0.02
50+ years 199 (38) 78 (48)
Race
White/Other 301 (58) 106 (65) 0.12
African- 216 (42) 57 (35)
American
Menopausal status
Premenopausal 275 (53) 76 47) 0.14
Postmenopausal 242 47) 87 (53)
Stageb
I 178 (37) 68 (45) 037
Il 245 (51) 67 (44)
Il 45 ©) 12 (8
v 13 ©) 4 3)
Primary tumor size
<2.cm 250 (50) 87 (57) 0.28
>2-5cm 205 (41 52 (34)
>5cm 42 ©) 13 ©)
Lymph node status
Negative 291 (58) 101 (66) 0.11
Positive 207 (42) 53 (34)
Hormone receptor expression
ER*/PR* 250 (50) 62 (42) 038
ER*/PR™ 48 (10) 17 (12)
ER7/PR* 39 8) 15 (10)
ER"/PR™ 163 (33) 53 (36)
Combined tumor grade®
I 126 (25) 47 (29) 048
I 156 (30) 49 (30)
Il 228 (45) 65 (40)
Histologic type
Ductal® 388 (75) 122 (75) 023
Ductal variants® 13 (3) 9 (5)
Poorly differentiated’ 22 @) 3 Q)
Lobular? 46 9) 13 (8)
Mixed lobular/Ductal 48 9 16 (10)
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Table 1 Characteristics of Carolina Breast Cancer Study breast cancer cases or tumors evaluated or not evaluated for

DNA methylation profile (Continued)

IHC intrinsic subtype”

Luminal A 212
Luminal B 65
Basal-like 86
HER2"/HR™ 26
Unclassified 24
p53 mutation status
Positive 218
Negative 297

(51) 42 (51) 0.76
(16) 12 (15)

1 14 (17)

©®) 7 ®)

©) 7 (®)

42) 47 (34) 0.08
(58) 91 (66)

*The white/other cases evaluated included 291 Caucasians, 3 American Indians, 6 Asians, and 1 other. bAccording to the American Joint Committee on Cancer
breast tumor staging guidelines. “Nottingham grade based on mitotic index, histologic grade, and nuclear grade. “Ductal not otherwise specified

(n = 372), medullary (n = 3), neuroendocrine (n =2), apocrine (n = 2), and other mixed (n = 9). ®Ductal variants include mucinous (n =8), papillary (n = 1), and
cribriform (n = 4). fPoorly differentiated include metaplastic carcinoma (n = 6), anaplastic carcinoma (n =3), and undifferentiated high grade carcinoma (n = 13).
9ILobular, classic, and/or variant (n = 46). "Intrinsic subtype was determined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) status determined by medical records or immunohistochemistry (IHC), and IHC staining for CK5, CK6, and epidermal growth factor receptor.

HR, hormone receptor; SD, standard deviation.

or both), HER2"/HR", and unclassified (all markers nega-
tive). This IHC marker panel was previously validated
against gene expression profiles [18] and was found to
provide superior classification of basal-like tumors and
outcome prediction over the triple-negative markers [19].

Normal breast tissues

Nine FFPE histologically normal breast tissues from
women without cancer or other premalignant breast
conditions were obtained from the Tissue Procurement
Facility at UNC and processed for DNA. Patient consent
was provided to the facility and tissues were dispersed to
this study in anonymized form.

DNA extraction
FFPE tissues were processed for DNA lysates by using a
Proteinase K extraction method as previously described [20].

p53 mutation screening

P53 mutation screening of 656 FFPE breast tumors in the
CBCS was previously accomplished by using a combination
of the Roche p53 AmpliChip (Roche Molecular Systems,
Pleasanton, CA, USA), single-strand conformational
polymorphism analysis, and direct radio-labeled DNA
sequencing. Details of the p53 methods are provided in
Additional file 1.

Bisulfite treatment of DNA

Sodium bisulfite modification of DNA obtained from
FFPE tissue was performed by using the EZ DNA Me-
thylation Gold kit (Zymo Research, Orange, CA, USA) as
previously described [21].

lllumina GoldenGate Cancer Panel | methylation array
analysis

Array-based DNA methylation profiling was accom-
plished by using the Illumina GoldenGate Cancer
Panel I methylation bead array to simultaneously inter-
rogate 1505 CpG loci associated with 807 cancer-
related genes. We previously determined that this
array showed high reproducibility; results obtained in
FEPE tissues were highly correlated with those from
matched non-FFPE samples (r =0.97), and published
tumor-specific methylation profiles were detectable
when DNA specimens contained at least 70% tumor
cells [21].

Bead arrays were run in the Mammalian Genotyping
Core laboratory at UNC at Chapel Hill. The Illumina
GoldenGate methylation assay was performed as described
previously [22] and imaged by using the BeadArray
Scanner. Methylation status of the interrogated CpG
sites was determined by comparing the ratio of the
fluorescent signal from the methylated allele with the
sum from the fluorescent signals of both methylated
and unmethylated alleles. Controls for methylation status
used on each bead array included the Zymo Universal
Methylated DNA Standard as the positive, fully-methyl-
ated control, and a GenomePlex (Sigma-Aldrich, St. Louis,
MO, USA) whole genome amplified DNA used as the
negative, unmethylated control. Array data have been de-
posited in Gene Expression Omnibus under accession
number GSE51557.

Array data filtering and quality control

Data were assembled by using GenomeStudio Methyla-
tion software from Illumina (San Diego, CA, USA). All
array data points were represented by fluorescent signals
from both methylated (Cy5) and unmethylated (Cy3)
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alleles. The methylation level of individual interrogated
CpG sites was represented by the B value, defined as the
ratio of fluorescent signal from the methylated allele to
the sum of the fluorescent signals of both the methyl-
ated and unmethylated alleles and calculated as = max
(Cy5,0)/(|Cy5] + |Cy3| +100) [22]. B values ranged from
0 in the case of completely unmethylated to 1 in the case
of fully methylated DNA.

Methylation array profiling was initially performed on
625 primary breast tumors by using the Illumina Cancer
Panel I array that contained a total of 1,505 CpG probes.
A series of filtering steps were then carried out as follows:
(1) tumors with more than 25% unreliable detection P
values of more than 107> were removed (n =14) [23]; (2)
411 CpG probes that were previously reported to overlap
a single-nucleotide polymorphism (SNP) or repeat [24]
were removed since these probes were potentially unre-
liable in some samples, especially in a racially diverse
dataset such as CBCS; (3) CpG probes were removed
with detection P value of more than 10~ (n =19); (4) CpG
probes with standard deviation of less than 0.06 (n =140)
were removed according to [llumina’s quality control algo-
rithm [25]. Three tumors were removed because they
became ineligible for the study. Finally, data from 90
tumors with replicate samples (89 with duplicates and 1
tumor with triplicates) were averaged. 3 values of replicate
samples were highly correlated, having Pearson correla-
tions of more than 0.900 for all but five tumors, with the
remaining five tumor sets having correlations ranging
from 0.899 to 0.720. The final data set consisted of 935
CpG loci (within 609 genes) in 517 breast tumors. All
subsequent statistical analyses were carried out by using
the R statistical programming language [26], with specific
R functions noted below.

Consensus clustering and differential methylation analysis
Consensus clustering [27] was performed by using Con-
censusClusterPlus [28] and CalclCL functions in R to
determine subgroups of tumors on the basis of the most
variable CpG sites; sites with standard deviation less
than 0.2 were excluded, leaving 167 sites. This algorithm
determines “consensus” clusters by measuring the stability
of clustering results from the application of a given clus-
tering method to random subsets of the data. In each iter-
ation, 80% of the tumors were sampled, and the k-means
algorithm, with the Euclidean squared distance metric,
was used with k =2 to k =10 groups; these results were
compiled over 100 iterations, and the stability of each
clustering was determined. We chose the greatest number
of clusters that had at least 90% cluster consensus. The
consensus cluster heatmap was constructed by using the
gplots and heatmap.2 functions in R.

Non-parametric Wilcoxon rank sum (for two class) and
Kruskal-Wallis (for multiclass) tests were used to identify
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CpG sites that were significantly differentially methylated
between tumor subgroups identified by consensus cluster-
ing. Multivariate analyses were conducted by using general
linear regression models fitted to the logit transformed
p methylation values to assess the association between
methylation at each CpG locus and clinical or tumor
covariates, adjusting for age, race, menopausal status,
and stage as appropriate. P values were adjusted by using
the Benjamini-Hochberg false discovery rate (FDR) [29] to
adjust for multiple comparisons, and probes were selected
at FDR of 0.05. Volcano plots were used to display global
association patterns of differential methylation in which
the estimated coefficients from multivariate analysis for
grade, tumor size, or clinical stage were plotted against
the negative logarithm of the P values obtained from the
hypothesis test if the estimated coefficients are non-zero.
The volcano plots were plotted by using raw P values (that
is, not adjusted for multiple comparisons).

Survival analyses

Kaplan-Meier plots were used to illustrate disease-specific
or overall survival among breast tumor clusters defined by
methylation profiles. Survival analyses were carried out by
using the survival package in R [30]. To identify methyla-
tion profiles associated with survival, multivariate Cox
proportional hazard models [31] were fit with methylation
cluster indicator by using R functions coxph [32] and cox.
zph [33], with demographic and clinical attributes (age,
race, menopausal status, stage, and other prognostic
factors) as covariates. The P values for the Cox regression
coefficients were adjusted by using Benjamini-Hochberg
FDR for multiple comparisons [29].

Gene ontology term enrichment analysis for groups of
differentially methylated genes

The DAVID (Database for Annotation, Visualization and
Integrated Discovery) Bioinformatics Resources 6.7 Func-
tional Annotation Tool [34] was used to perform gene-
gene ontology (GO) term enrichment analysis to identify
the most relevant GO terms associated with the genes
found to be differentially methylated between breast
tumor subsets defined by intrinsic subtype, hormone re-
ceptor (HR) status, p53 mutation status, or methylation
cluster (for example, the hypermethylation cluster 3 versus
other clusters). DAVID calculates an enrichment score
and enrichment P value for each GO term to highlight the
most relevant GO terms associated with the selected gene
list. We used the Entrez gene IDs from each list and com-
pared these with the background list of 609 genes evalu-
ated from the Illumina Cancer Panel I array after filtering.
Genes with more than one CpG site were listed only once
in the analysis. We performed functional annotation clus-
tering with default settings. Terms that were significantly
enriched (FDR P <0.05) are listed.
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Validation using The Cancer Genome Atlas data

Breast tumor methylation and gene expression data from
581 breast cancer patients in The Cancer Genome Atlas
(TCGA) [35] were used to validate and test for relation-
ships with gene expression at CpG probes that were
among the top differentially methylated markers in the
CBCS. TCGA breast cancer patients were older than CBCS
patients (69% >50 years compared with 36% in CBCS),
included few blacks (9% compared with 42% in CBCS),
and had more later-stage 3 or 4 disease (26% compared
with 12% in CBCS). Only 371 CpG probes from the
GoldenGate array exactly matched probes on the Illumina
450 K array used in TCGA. Of the 935 CpG probes inter-
rogated on the Illumina GoldenGate platform in CBCS,
21 were among our top differentially methylated probes
and had exact matches for probes on the 450 K array.
Based on these 21 matched 450 K CpG probes, corre-
lations were determined with gene expression by using
RNAseq expression data for all tumors (n =581) and
separately for basal-like (n =102) and luminal A (n =321)
tumors classified by PAMS50. Pearson correlation coeffi-
cients were calculated on the basis of RNAseq (Illumina)
log2 RSEM gene-normalized expression values with me-
thylation { values for 450 K CpG probes, with significance
set at P value of less than 0.05.

Results

Characteristics of breast cancer cases evaluated for
promoter methylation

Demographic and clinical characteristics of the 517
breast cancer cases whose tumors were evaluated for
[lumina promoter methylation are detailed in Table 1.
The mean age of cases was 49.7 years, with 62% age 50
or younger, and 53% premenopausal. Breast cancer cases
were mostly early-stage (88% stages 1 or 2), node-negative
(58%), and HR* (ER* or PR* or both) (68%). Intrinsic
tumor subtypes, defined by a panel of IHC markers (ER,
PR, HER2, CK5, CK6, EGFR), identified 51% luminal A,
16% luminal B, 21% basal-like, 6% HER2'/HR", and 6%
unclassified. Histologic subtypes included approximately
75% ductal and 18% lobular or mixed lobular histologic
types. Nearly all tumors were rigorously screened for p53
gene mutations, and 42% were mutation-positive. Com-
pared with cases not evaluated (n =163), cases who were
methylation profiled were younger (p =0.02) and were
marginally more likely to have p53 mutation-positive
tumors (P =0.08).

Consensus clustering of methylation B values of the most
variant CpG loci in breast tumors identifies distinct
molecular and subtype-related signatures

In total, 935 CpG probes (listed in Additional file 2:
Table S1) were successfully screened for methylation in
517 primary breast tumors; because initial clustering
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indicated that many of these exhibited negligible vari-
ation in methylation level across tumors in the dataset,
we performed consensus clustering by using the most vari-
ant 167 CpG probes (with standard deviation >0.2) (listed
in Additional file 3: Table S2) in order to focus on CpG
sites that were more likely to be useful for the subclassifica-
tion of tumors. As illustrated in Figure 1A, four distinct
clusters of breast tumors (numbered 1 to 4) were deter-
mined by consensus clustering when using 90% cluster
consensus across all clusters as the criterion. Methylation
profiles for nine normal breast tissues obtained from
healthy/non-cancer patients from the UNC Tissue Pro-
curement core are shown as a separate panel in Figure 1B,
with probes similarly ordered. For the most variant probes,
mean  values for each consensus cluster, together with
those for normal breast tissues, are provided in Additional
file 4: Table S3.

The four methylation-defined tumor clusters differed
in their demographic, clinical, and molecular characteris-
tics (Figure 1A and C and Table 2). In particular, cluster 2
was highly enriched for HR™ tumors (80%) and contained
the highest proportion of basal-like tumors (61%). Fewer
basal-like tumors were found in clusters 1 (25%), 3 (4%),
and 4 (3%). As expected, basal-enriched cluster 2 con-
tained tumors that were of higher grade, larger size
(>2 cm), stage 2 or higher, and more frequently p53
mutant. In contrast, clusters 3 and 4 were highly enriched
for HR" luminal breast tumors, containing mainly mix-
tures of luminal A (HER2") and luminal B (HER2") sub-
types. Cluster 4 contained the largest proportion of
luminal tumors (91%), followed by clusters 3 (85%), 1
(61%), and 2 (20%). Luminal-enriched clusters 3 and 4
exhibited fewer p53 mutations compared with the basal-
enriched cluster 2. Moreover, although cluster 3 consisted
of mostly luminal breast cancers, these cases exhibited the
highest lymph node positivity (50%) of the four tumor
clusters and larger tumor size and higher stage (>stage 2)
similar to tumors in basal-enriched cluster 2. Differences
in age (P =0.006) and race (P =0.02) were noted among
the four clusters, with the cases in basal-enriched cluster 2
being somewhat younger (<50 years) and more frequently
African-American compared with the other clusters.

The average methylation content of each cluster, esti-
mated by using the mean methylation () values across
the 167 most variant CpG sites, differed significantly
between consensus clusters (P <0.0001), with the luminal-
enriched cluster 3 exhibiting the highest mean B overall,
cluster 1 containing the lowest level of methylation, and
basal-enriched cluster 2 and the highly luminal-enriched
cluster 4 exhibiting intermediate levels (Figure 1D).

Cluster 3 hypermethylation gene signature
To identify the hypermethylated CpG loci that defined
luminal-enriched cluster 3, the Wilcoxon rank sum test
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(See figure on previous page.)

estrogen receptor; HER2, human epidermal growth factor receptor 2.

Figure 1 Consensus clustering of methylation B values in breast tumors using the GoldenGate Cancer Panel | array. DNA methylation
profiles in 517 breast tumors and 9 normal breast tissues are shown. Columns represent tissue samples; rows represent CpG (cytosine preceding a
guanosine) loci. Beta (B) value, indicating the fraction of DNA methylated, varies from 0 (blue, unmethylated) to 1 (red, highly methylated), with
intermediate values shown in yellow. (A) Unsupervised clustering of the 167 most variable CpG sites having standard deviation of methylation 3
values of more than 0.2 from among the 935 CpG sites evaluated after filtering (see Materials and methods). The four tumor clusters are
numbered 1 (n =123), 2 (n =108), 3 (n =99), and 4 (n =187). Primary tumor characteristics are indicated at the top of the heatmap as intrinsic
subtype (defined by immunohistochemistry, or IHC): luminal A (red), luminal B (green), basal-like (black), HER2*/ER™ (blue), unclassified (gray),
missing values (white); p53 mutation status: mutant (red), wild-type (black); and hormone receptor (HR) status: HR* (red), HR™ (black). (B) Methylation in
the same 167 CpG sites in 9 normal breast tissues, with probes ordered as in the consensus clustered heatmap. (C) Relationship between
methylation cluster and intrinsic tumor subtype, shown according to intrinsic subtype (top panel) or according to methylation cluster
(bottom panel). (D) Box-and-whisker plot showing differences (P <0.0001) in methylation () of the four consensus clusters, with numbers of tumors
within each cluster shown along the top of the boxplot. Luminal-enriched tumor cluster 3 exhibits distinctly higher methylation than other clusters. ER,

was used to compare mean [ at each of the 167 CpG
sites in cluster 3 versus all other breast tumors. Clus-
ter 3 showed significant differential methylation at 149
CpGs in 116 genes compared with all other breast tumors
after accounting for multiple comparisons (Additional
file 5: Table S4 and Additional file 6: Figure S1); the
great majority of loci, though not all, were relatively
hypermethylated in cluster 3 to varying degrees, with such
genes as ASCL2, GFIl, IPF1 (or PDXI), IRAK3, ISL1,
JAK3, KIT, MME, PENK, RARA, RASSF1, SEPT9, VIM,
and WT1 showing the largest differential methylation. Of
the 149 cluster 3-defining CpGs, 92 were unmethylated or
poorly methylated (mean f <0.2) in normal breast tissues.
The cluster 3-defining gene set was enriched in homeobox
genes and other developmental transcription factors:
HOXB13, HOXAS, HOXA9, ISL1, EYA4, ASCL2, IHH,
IPF1, ONECUT?2, PAX6, SOX1, SOX17, TBX1, and GAS7.
To assess the functions of the 116 genes in the cluster 3
signature, a GO search performed via DAVID Bioinfor-
matics Resources 6.7 identified 49 significant terms (FDR
P <0.05) related to various aspects of cellular, tissue, and
organ development; cell differentiation; hormonal res-
ponse; cell communication; and cell motility (Additional
file 7: Table S5). Additionally, the CBCS cluster 3 hyper-
methylation signature showed substantial overlap with the
‘methyl-deviator’ signature at the CpG probe (n =64) or
gene (n =60) level described in the study of Killian et al.
[36] that also used the Illumina Cancer Panel I array
(Additional file 5: Table S4 and Additional file 8: Figure
S2A). Comparing the significant hypermethylated probes
from CBCS cluster 3 with those from the ‘methyl devi-
ator’ signature, each identified from the 1505 CpG-probe
GoldenGate background, we observed a highly signifi-
cant correlation (P <0.0001, Fisher’s exact test), even
though different algorithms were employed to derive
each of these signatures. Moreover, despite the enormous
difference in the numbers of CpGs interrogated between
the Illumina GoldenGate and 450 K array platforms
used in the CBCS versus TCGA, respectively, genes
in our hypermethylated cluster 3 were also found within

the hypermethylated tumor cluster reported in TCGA
(Additional file 5: Table S4) [35].

Identification of genes differentially methylated according
to clinicopathologic characteristics

In addition to unsupervised analysis, we looked for pat-
terns that varied as a function of specific clinical charac-
teristics across all 935 CpG loci. Multivariate linear
regression analysis controlling for age, race, menopausal
status, stage, and multiple comparisons using FDR iden-
tified 467 CpG sites in 350 genes that were significantly
(P <0.05) differentially methylated according to HR status
(ER" or PR" or both versus ER"/PR7), 341 CpG sites in
264 genes that were significantly differentially methylated
between basal-like and luminal A breast tumor subtypes,
and 402 CpG sites in 296 genes that were significantly dif-
ferentially methylated between p53 mutant and wild-type
breast tumors. Complete lists of differentially methylated
CpG loci are provided in Additional files 9, 10, and 11:
Tables S6-S8. After controlling for intrinsic subtype in the
regression model for p53 mutation, 164 significantly
differentially methylated CpGs persisted, suggesting that
some p53-related methylation events are independent of
subtype. There was considerable overlap in the CpG loci
(n =266) differentially methylated by HR status, intrinsic
subtype, and p53 status (Figure 2A), with only 68 CpGs, 9
CpGs, and 61 CpGs being uniquely differentially meth-
ylated, respectively. Similar numbers of differentially
methylated CpG loci were relatively hypermethylated or
hypomethylated in association with HR status, subtype,
or p53 mutation status (Figure 2B). Genes more highly
methylated in HR", luminal, or p53 wild-type breast
cancers included FABP3, FGF2, FZD9, GAS7, HDACY,
HOXAI1l, MME, PAX6, POMC, PTGS2, RASSFI, RBPI,
and SCGB3A1; among the genes more highly methylated
in HR", basal-like, or p53 mutant tumors were BCR, C4B,
CDH17, DAB2IP, MEST, RARA, SEPTS, SERPINAS, TFF1,
and THYI. Among the p53-related genes, 34 were
also associated with p53 mutation status in the study of
Ronneberg et al. [37] (Additional file 8: Figure S2B).
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Table 2 Characteristics of the four methylation-based consensus clusters

Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value
(n =123) (n =108) (n =99) (n =187)
N (%) N (%) N (%) N (%)
Age, years
<50 73 (59) 82 (76) 54 (55) 109 (58) 0.006
50+ 50 41) 26 (24) 45 (45) 78 (42)
Race
White/Other 66 (54) 53 (49) 58 (59) 124 (66) 0.02
African-American 57 (46) 55 (51) 41 41) 63 (34)
Menopausal status
Postmenopausal 61 (50) 39 (36) 51 (52) 91 (49) 0.09
Premenopausal 62 (50) 69 (64) 48 (48) 96 (51)
Stage
I 58 (49) 26 (27) 24 (25) 70 (41) 0.02
Il 48 (40) 58 (60) 56 (60) 83 (48)
Il 12 (10) 9 9) 1 (12) 13 (8)
% 1 (M 4 4 3 ©) 5 ©)
Missing 4 1 5 16
Primary tumor size
<2cm 72 (60) 35 (35 36 39) 107 (59 0.0003
>2-5cm 39 (33) 53 (54) 49 (51) 64 (35)
>5cm 9 (7) " (11) 1 an 1 (6)
Missing 3 9 3 5
Lymph node status
Positive 44 (37) 40 (39) 48 (50) 75 (42) 0.24
Negative 76 (63) 62 61) 48 (50) 105 (58)
Missing 3 6 3 7
Tumor grade
| 29 (24) 3 (3) 17 (17) 77 (42) <0.0001
Il 34 (28) 16 (15) 40 (40) 66 (36)
Il 58 (48) 87 (82) 42 (43) 41 (22)
Missing 2 2 3
Estrogen receptor status
Positive 56 (47) " (11) 79 (81) 153 (83) <0.0001
Negative 64 (53) 90 (89) 18 (19) 31 (17)
Missing 3 7 2 3
Hormone receptor status
Positive 69 (58) 20 (20) 83 (86) 166 (90) <0.0001
Negative 51 (42) 81 (80) 13 (14) 18 (10)
Missing 3 7 3 3
Histologic type
Ductal NOS 98 (80) 89 (82) 78 (79) 123 (66) <0.0001
Ductal variants 3 @) 0 () 4 (@) 6 ©)]
Poorly differentiated 7 6) 1 (10) 2 2) 2 Q)



Conway et al. Breast Cancer Research 2014, 16:450
http://breast-cancer-research.com/content/16/5/450

Page 10 of 18

Table 2 Characteristics of the four methylation-based consensus clusters (Continued)

Lobular 8 6) 1
Mixed lobular 7 6) 7
Intrinsic subtype (IHC)

Luminal A 48 (49) 12
Luminal B 12 (12) 5
Basal-like 25 (25) 54
HER2"/ER™ 6 6) 7
Unclassified 8 8) 10
Missing 24 20
p53 mutation status
Mutant 59 (48) 90
Wild-type 64 (52) 18
Missing
EGFR status
Positive 34 (32) 75
Negative 71 (68) 25
Missing 18 8
HER2 status
Positive 25 (20) 16
Negative 97 (80) 92
Missing 1

@) 7 @) 30 (16)
) 8 ®) 26 (14)
14) 52 (64) 100 (69) <0.0001
) 17 1) 31 22)
1) 3 ) 4 (©)
) 8 (10) 5 ©)
11) 1 @) 5 3)
18 42
(83) 25 (25) 44 (24) <0.0001
(17) 74 75) 141 (76)
2
(75) 9 (10) " @) <0.0001
(25) 78 (90) 149 (93)
12 27
(15) 31 @31 50 27) 0.02
(85) 68 (69) 135 (73)
2

Hormone receptor (HR) status: positive: estrogen receptor-positive (ER") or progesterone receptor-positive (PR") or both; negative: ER™ and PR™. Consensus methylation
clusters 1 to 4 based on the most variant 167 CpG (cytosine preceding a guanosine) sites. Intrinsic subtypes: luminal A (ER* and/or PR*, HER2"), luminal B (ER* and/or
PR*, HER2"), basal-like (ER™, PR™, HER2™, CK5* and/or CK6* or EGFR*), HER2*/HR™ (ER"/PR™/HER2"), and unclassified (all markers negative). EGFR, epidermal growth
factor receptor; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; NOS, not otherwise specified.

Volcano plots were used to visualize patterns of differ-
ential methylation across all CpGs according to grade,
tumor size, or clinical stage, showing the coefficients
from multivariate analyses and associated log™'° P values
(Figure 2C). Higher tumor grade (II/III versus I), larger
tumor size (<2 cm versus >2 c¢m), and increasing clinical
stage (comparing across stages 1 to 4) were associated pri-
marily with CpG hypermethylation; however, compared
with HR status, subtype, or p53 status, fewer differentially
methylated CpG loci were detected in association with
these characteristics (177 CpGs for tumor grade, 24 CpGs
for tumor size, and 14 for stage) (Figure 2B). Higher
methylation at one or more CpG sites in the upstream
regulatory region of GSTM2 was correlated with increas-
ing stage, larger tumor size, and higher grade. Similarly,
higher methylation in the MT1A gene was correlated with
larger tumor size. No CpG probes were found to be dif-
ferentially methylated in relation to lymph node status.
Boxplots showing the distribution of [ values for the top
differentially methylated CpG loci (at FDR P <0.05 level)
in breast tumors according to clinicopathologic factors are
given in Figure 2D. We also tested for differences in
tumor methylation with age among premenopausal or

postmenopausal cases, but no significant differences were
detected after adjustment for multiple comparisons.

GO analysis of 350 genes that were differentially meth-
ylated between HR" and HR™ breast tumors identified
71 GO terms that remained highly significant after adjust-
ing for multiple comparisons (FDR adjusted P <0.05);
similarly, GO analysis for 264 genes differentially methyl-
ated between luminal A and basal tumor subtypes iden-
tified 36 terms, and analysis of 296 genes differentially
methylated between p53 mutant and wild-type tumors
identified 44 GO terms. As expected, there was consider-
able overlap in the terms identified in these three analyses
(Additional file 12: Table S9), which were related to sig-
nal transduction, anatomic development, cell differenti-
ation and cell proliferation, and response to steroid
hormone stimulus. Additional GO terms related to HR
status included regulation of cell death, apoptosis, and
programmed cell death.

Survival differences among methylation-based consensus
clusters

Kaplan-Meier curves showing breast cancer-specific sur-
vival of CBCS cases revealed some differences between the
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

Figure 2 Differential CpG methylation in breast tumors according to clinical or tumor factors. Generalized linear regression models were
used to compare methylation at each of 935 CpG sites in breast tumors according to clinical or prognostic factors while controlling for age, race,
menopausal status, and stage (except in analyses of tumor size or nodal status; tumor size was adjusted for in the analysis of nodal status, and
vice versa). (A) Venn diagram showing overlap of significantly differentially methylated sites (false discovery rate (FDR) P <0.05) according to
hormone receptor (HR) status, intrinsic subtype (basal-like versus luminal A), and p53 status. Full lists of differentially methylated CpG loci are
given in Additional files 9, 10, and 11: Tables S6-S8. (B) Bar graph summarizing the numbers of differentially methylated CpG loci that were rela-
tively hypermethylated or hypomethylated in association with clinical or tumor characteristics. For analysis of stage, methylation varied between
stages 1 to 4. (C) Volcano plots showing global patterns of differential methylation across all 935 CpGs. All multivariate models were adjusted for
age, race, menopausal status, stage, except for stage (adjusted for age, race, and menopausal status only), and tumor size (adjusted for age, race,
menopausal status, and lymph node status). Probes significantly differentially methylated at the P <0.05 level in multivariate analysis fall above the
solid line and at P <0.1 above the broken line. (D) Box-and-whisker plots showing the top five CpGs exhibiting significant differential methylation
according to clinical staging or tumor characteristics. Each box plot shows the median B-value (dark bar within box) and the interquartile range
(IOR=0Q3-Q1) (outer boundaries of box). The whiskers (broken line) cover (Q1 — 1.5IQR, Q3 + 1.5IQR). Multivariate and FDR-adjusted P values are

shown for each boxplot. No CpGs were differentially methylated according to lymph node status.

four tumor subgroups defined by methylation signature
(log-rank P =0.02) (Figure 3A). The luminal-enriched hy-
permethylated cluster 3 and the basal-enriched cluster 2
showed poorer survival compared with clusters 1 and 4.
Although basal-enriched cluster 2 showed worse early
survival, cluster 3 showed similar survival to the basal-
enriched cluster by the end of the follow-up period.
Overall survival was worse than breast cancer-specific
survival for all clusters but generally reflected the relative
differences noted between methylation-based clusters, with
hypermethylated cluster 3 showing somewhat worse long-
term survival than the other three clusters (Figure 3B).
Figures 3C and D show survival plots for disease-specific
and overall survival based among breast tumors distin-
guished by intrinsic subtype. Compared with the intrinsic
subtypes, methylation-based clustering provided some-
what better distinction of patients differing in outcome
based on log-rank P values.

To determine whether methylation profile would provide
superior prognostic value for breast cancer compared with
the known clinical or prognostic factors, each clinical attri-
bute as well as methylation-based tumor cluster was tested
in univariate Cox proportional hazard analysis; factors
identified as significant in univariate analysis were then
included in multivariate models to determine whether
methylation signature was an independent predictor of
survival (Table 3). In univariate analyses for patient or
clinical variables, age, race, menopausal status, stage,
HR status, tumor size, lymph node status, and tumor
grade all showed significant hazard ratios (at P <0.05).
Relative to luminal-enriched cluster 4 reference group,
basal-enriched cluster 2 and hypermethylated cluster 3
showed significantly worse outcome in univariate analyses
(hazard ratio =1.91, 95% confidence interval (CI) = 1.19 to
3.08 and hazard ratio = 1.71, 95% CI = 1.04 to 2.79, re-
spectively) but were not independently associated with
survival in multivariate Cox proportional hazard models
fully adjusted for all significant covariates (age, race, stage,
HR status, grade, tumor size, and lymph node status).

Univariate Cox proportional hazards analysis of intrinsic
subtypes identified only the HER2"/HR™ subtype as differ-
ing in breast cancer-specific survival compared with the
luminal A subtype (hazard ratio =2.41, 95% CI = 1.24 to
4.70), but there were no significant differences among sub-
types in multivariate analyses after controlling for other
clinical or tumor characteristics.

Correlations between methylation and gene expression
for GoldenGate-matched 450 K lllumina probes in TCGA
Because no gene expression data were available for
our CBCS tumors, we sought to infer locus-specific CpG
methylation correlations with gene expression in publi-
cally available TCGA breast tumor data. In total, only 371
probes from the 1,505 probes in GoldenGate array exactly
match those on the 450K. Of the 935 Illumina Golden-
Gate probes interrogated in our study after filtering, 21
were both direct matches to the CpG probes on the 450K
array and were found to be differentially methylated and
of interest in our study. For these 21 matched 450K
probes, Pearson correlation coefficients were calculated in
all breast tumors (n = 581) and for basal-like (n = 102)
and luminal A (n = 321) tumors comparing RNAseq
(Ilumina) log2 RSEM gene-normalized expression
values with methylation [ values for 450K CpG
probes (Additional file 13: Table S10). For the TCGA
breast samples, approximately half the probes with
exact matches to the GoldenGate platform and showing
differential methylation in our study exhibited significant
inverse correlations with gene expression; among these
are CCND2, DBC1, FGF2, JAK3, KIT, and SERPINAS.

Discussion

In this study, we describe the results of an array-based
promoter methylation analysis of 935 CpG sites in
cancer-related genes in a large, population-based study
of mostly early-stage breast cancer. Consensus clustering
of methylation levels for the 167 most variant CpG loci
in 517 tumors identified four methylation-based tumor
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(HER2*/HR™), and unclassified. Kaplan-Meier plots for the five intrinsic subtypes show (C) breast cancer-specific survival and (D) overall survival.
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subgroups that were associated with HR status or specific
intrinsic subtypes (basal-like versus luminal A), thus
confirming that intrinsic subtype may be an important
determinant of some epigenetic markers. However,
there are also important methylation phenotypes that
are heterogeneously expressed within tumor subclass.
For example, although clusters 3 and 4 were both composed
of mostly luminal tumors (85% and 91%, respectively),
methylation profiling distinguished cluster 3 as a hy-
permethylated subclass with poorer clinicopathologic
characteristics (larger tumor size, higher grade, and more
frequently lymph node-positive) and possibly worse
outcomes.

Most HR" or luminal-enriched tumor clusters exhibited
higher methylation across the most variant CpGs com-
pared with HR™ or basal-like tumors. Genes previously

observed to differ in methylation between luminal and
basal-like subtypes and also noted in this study included
RASSFI, FZD9, PTGS2, MME, HOXA9, PAX6, and
SCGB3A1, which were more highly methylated in HR"
and luminal tumors [37-39], and CDHI17, EPHXI, TFFI,
RARA, and MEST, which showed higher methylation in
basal-like tumors. These methylation-based clusters also
differed in the prevalence of p53 mutation, which is
strongly correlated with intrinsic subtype, occurring with
high prevalence among basal-like tumors in the CBCS [7].
However, even after intrinsic subtype differences were
controlled for, 164 significant p53-related CpG methy-
lation differences persisted, suggesting that at least some
of these methylation events are independent of tumor
subtype. Methylation also varied according to clinico-
pathologic characteristics, with higher tumor grade being
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Table 3 Cox multivariate regression analysis for breast cancer survival according to CpG methylation profile, clinical

factors, or intrinsic subtypes

Univariate Multivariate®
Prognostic variable Hazard ratio 95% ClI P value Hazard ratio 95% Cl P value
Methylation cluster (n =517)
4 (luminal-enriched) (n =187) (reference) 1.00 - 1.00 -
1 (mixed) (n =123) 1.11 0.66-1.86 0.70 1.09 0.61-1.95 0.78
2 (basal-enriched) (n =108) 1.91 1.19-3.08 0.0075 141 0.76-2.64 0.28
3 (luminal-enriched) (n =99) 1.71 1.04-2.79 0.033 1.27 0.75-2.17 037
Clinical factor (n =517)
Age at diagnosis (continuous) 0.97 0.96-0.99 0.004 0.99 0.96-1.01 038
Premenopausal (versus post) 176 1.20-2.57 0.004 127 0.72-2.22 041
African-American (versus white/other) 1.65 1.15-2.35 0.006 1.60 1.08-2.39 0.02
HR™ (versus HR") 1.58 1.09-2.30 0.02 1.07 0.65-1.76 0.80
HER2" (versus HER2") 132 0.89-1.96 0.16 - - -
Stage (1, 2, 3,4) 2.76 222-343 <0.0001 1.74 122-249 0.002
Grade 2/3 (versus 1) 251 146-431 0.0009 121 0.66-2.22 0.54
Lymph node-positive (versus negative) 525 3.44-8.00 <0.0001 340 2.03-5.71 <0.0001
Tumor size 2-5 cm (versus <2 cm) 232 1.52-3.55 0.0001 1.24 0.77-1.99 0.38
Tumor size >5 cm (versus <2 cm) 501 291-863 <0.0001 144 0.73-2.83 0.28
Intrinsic subtype (n =393)°
Luminal A (n =212) (reference) 1.00 - 1.00 -
Luminal B (n =65) 1.14 0.62-2.09 068 0.97 051-1.84 093
Basal-like (n =86) 149 0.88-2.50 0.13 1.10 0.63-191 0.74
HER2'/HR™ (n =26) 241 1.24-4.70 0.01 1.06 048-2.34 0.88
Unclassified (n =24) 1.34 0.57-3.17 0.50 1.19 0.49-2.87 0.70

®Multivariate Cox proportional hazards regression models for methylation-based clusters were adjusted for age (continuous), menopausal status (pre/post), race,
stage (1, 2, 3, 4), hormone receptor (HR) status, grade (1 versus 2 + 3), lymph node status, and tumor size. Multivariate Cox proportional hazards regression models
for intrinsic subtypes were adjusted for age (continuous), menopausal status (pre/post), race, stage (1, 2, 3, 4), grade (1 versus 2 + 3), lymph node status, and tumor
size. PThe reduced number of tumors included in models for intrinsic subtypes reflects missing data for subtype or other covariates. Cl, confidence interval; HER2,

human epidermal growth factor receptor 2.

strongly correlated with hypermethylation of such genes
as GSTM?2, EPHXI, and BCR, and larger primary
tumor size correlated with hypermethylation of GSTM2,
PYCARD, MYCL2, and MTIA. Methylation of several of
these genes has been noted previously in breast cancer
[37,40-43]. Moreover, methylation was significantly inver-
sely correlated with gene expression for several of these
genes in TCGA. Importantly, our findings are consistent
with prior reports of heavier methylation among HR"
breast tumors, less methylation in basal-like tumors
[35,38,39,44], and significant correlation of breast tumor
DNA methylation patterns with HR subtype [36,45],
gene expression-based subtype [35,37,39,44,46,47], or p53
mutational status [37].

Recent evidence suggests that the distinct differences
in methylation observed according to intrinsic breast
tumor subtype may reflect the methylation patterns of
different cells of origin. Lineage-specific differentiation
changes might lock tumors into certain growth programs

that subsequently help to drive the tumor phenotype and
clinical outcome. Kamalkaran et al. [46] found that me-
thylation patterns in basal tumors are similar to breast
progenitor cells but that the patterns in luminal A tumors
are similar to those identified in the more differenti-
ated CD24" luminal epithelial cells. Similarly, in vitro
work by Bloushtain-Qimron et al. [48] reported that
CD44" progenitor-like cells of normal mammary epi-
thelium were hypomethylated compared with luminal
epithelial (CD24" and MUC1") and myoepithelial (CD10")
cells and that cell type-specific methylation patterns were
conserved in breast cancer subtypes. Additionally, we
observed differences in methylation of several genes that
mediate or are markers for epithelial-to-mesenchymal
transition (EMT) (for example, NOTCH or VIM) or sig-
naling pathways (TGEB, WNT/B-catenin, and FGF) linked
to EMT [49]. Although differential methylation of some
cadherins (CDH17 and PCDHI) varied by subtype, HR
status, and p53 mutational state, the EMT marker, CDH1,
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was not among them. Recently, Cohen et al. [50] mapped
patterns of epigenetic pathway activation in breast and
other tumor types and identified a gene expression pattern
of EZH2 activation in luminal breast tumors, and HDAC4
pathway activation was seen in basal breast tumors. These
two distinct activated pathways were mutually exclusive,
supporting the idea that fundamentally different epigen-
etic programs characterize these tumor subtypes.

A growing number of studies have investigated the
existence and possible clinical relevance of a CIMP in
breast tumors, which has been described in other tumor
types, most notably colorectal cancers [14,51-57]. Putative
CIMP or gene hypermethylation signatures have been
identified in subsets of HR" breast tumors that were inde-
pendently associated with poorer clinical outcomes in
multivariate Cox models [36,45,46] or with gene expres-
sion signatures indicative of poor prognosis [58]. Con-
versely, Fang et al. [59] found CIMP to be associated with
HR" status, reduced metastatic potential, and better sur-
vival, suggesting the possibility that the hypermethylated
CIMP signature primarily distinguished intrinsic subtypes
which are known to differ in survival. The CIMP hyper-
methylation profile described among HR" tumors appears
to manifest as a coordinated hypermethylation of a set of
genes highly enriched for developmental transcription fac-
tors, polycomb repressor complex 2 gene targets, as well
as genes involved in EMT and Wnt signaling [36,46,59]. A
recent report from TCGA identified a hypermethy-
lated, HR" breast tumor subset with lower Wnt-pathway
gene expression and fewer PIK3CA and MAP3K1 muta-
tions [35].

It is unclear whether CIMP-associated gene hyperme-
thylation in breast tumors reflects the degree of lineage-
specific differentiation or is a biologically distinct entity
occurring through another mechanism. It has been
proposed that CIMP may signify an underlying global
derangement in epigenetic regulation [59], possibly me-
diated by overexpression of DNA methyltransferase 3b
[58,60,61]. Moreover, it is important to note that gene
hypermethylation independent of CIMP may also have
prognostic value in breast tumors [45,62-65]. Notably,
hypermethylation signatures predicted poorer outcomes
in ER™ breast cancers [45,62], with one study identify-
ing a prognostic signature highly enriched in homeobox
genes [45].

In the CBCS, consensus clustering of the 167 most
variant CpG loci revealed a CIMP-like hypermethylated
cluster 3. Although this cluster was composed of predom-
inantly HR*/luminal tumors, it was associated with poorer
clinicopathologic features and possibly worse prognosis,
similar to basal-like breast cancers. In fact, methylation-
based clustering provided similar discrimination of prog-
nostically different subgroups as intrinsic subtyping based
on IHC. The finding that DNA methylation profiling may
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identify breast cancer cases with worse outcomes irre-
spective of subtype, together with its particular suitability
for FEPE tissues, suggests that methylation analysis could
be useful for breast cancer prognosis. Cluster 3 tumors
exhibited hypermethylated gene signatures enriched in
homeobox domain and transcription factors important in
development and differentiation, consistent with prior
studies [36,37,45,46,59]. In particular, the cluster 3 CpG
signature was similar to the ‘methyl deviator’ signature
identified by Killian et al [36] that independently pre-
dicted poor prognosis among HR" tumors. Moreover, the
hypermethylated breast tumor gene signature identified in
TCGA [35] overlapped with our cluster 3, showing both
hypermethylation and reduced expression of genes such
as ASCL2, CCND2, COLIA2, EPHBI, FABP3, GAS7,
IFNGR?2, IRAK3, KLK10, POMC, SCGB3A1, SFRP1, SMO,
and VCAN (CSPG2).

Our findings from CBCS suggest that methylation pat-
terns defined by the most variant CpG loci largely reflect
cell lineage, as evidenced by the distinct differences in
methylation patterns between HR* and HR™ or basal-
like and luminal A breast tumors, and the extreme
hypermethylation of genes important in development
and differentiation in a subset of mostly HR* tumors.
This is consistent with the idea that aberrant methylation
occurs early in cancer development [66], suggesting that
these methylation events may be important in carcinogen-
esis and could be linked with exposures that modulate risk
of tumor subtypes. Our results also suggest that certain
methylation events are associated with more aggressive
tumor phenotypes irrespective of subtype and have the
potential to provide prognostic information, consistent
with other studies [36,37,45,46]. Owing to high repre-
sentation of incident, early-stage breast cancer cases in the
CBCS dataset (with relatively few deaths), our power to
detect significant and independent survival differences
may have been limited, particularly among the better-
prognostic HR" cases. However, our results are derived
from a population-based sample and therefore represent
the distribution of incident breast cancer cases. Over time,
extended follow-up of CBCS cases may allow more defini-
tive ascertainment of the relationship between CpG
methylation and breast cancer survival.

Major strengths of this study include the large size
and population-based nature of the CBCS, inclusion of
breast tumors with relatively complete histopathologic,
subtyping, and outcome data. The sample size was large,
allowing well-powered analysis of methylation signatures
across a diverse spectrum of breast tumors. We used a
stringent approach in methylation profiling by filtering
out CpG probes that overlapped repeats or known SNPs,
which might have produced unreliable results. A few limi-
tations are also noted. The CBCS collected only FFPE
tumor tissues that have been stored as cut sections for
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nearly 20 years. The difficulty in obtaining RNA of suffi-
cient quality for gene expression array analysis from such
tissues has precluded the direct comparison of promoter
methylation and gene expression. Intrinsic tumor subtypes
were defined by a panel of IHC protein expression mar-
kers, which may be less accurate than subtyping based on
expression of 50 or more genes [67], and therefore likely
resulted in some misclassification. This misclassification is
most likely to occur among luminal breast cancers; how-
ever, given that the most prominent methylation differ-
ences were between luminal and basal-like breast cancers,
this misclassification is unlikely to substantially alter the
conclusions of the study. The data were collected on a
first-generation methylation array which oversampled
genes in cancer-related pathways; however, many genes on
the platform had strong coverage for the best-studied
methylation sites in breast cancer research. Additionally,
information on treatment and breast cancer recurrence
was not available in CBCS, and thus their impact on
the relationship between methylation profile and survival
could not be addressed.

Conclusions

In summary, we found evidence for a strong association of
DNA methylation with HR status and breast tumor sub-
type as well as with p53 mutation status, which is inextric-
ably linked to subtype. Moreover, epigenetic heterogeneity
within tumor subclass is supported by identification of a
hypermethylated tumor cluster enriched in developmental
genes among primarily HR" luminal tumors. This hyper-
methylated signature may be related to more aggressive
tumor growth features and, potentially, outcome. These
findings provide proof-of-principle that epigenetic profiles
may offer important information beyond expression-based
subtyping for clinically or epidemiologically meaningful
breast tumor classification.
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