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’ INTRODUCTION

The energy landscape theory of protein folding1 asserts that
proteins evolved to minimize frustration during the folding
process.2 This suggested that the energy landscape of proteins
is globally funneled toward the native state, so that many routes
are available for the folding polypeptide chain to reach the native
conformation. Thus, the folding process involves the formation
of ensembles of increasingly ordered structures as it proceeds
down the funnel.1,3,4 Characterization of the main conformers of
the protein and the ways taken to move from one to the other is a
fundamental objective of protein folding research.

While experiments provide the primary evidence regarding
protein folding and its determinants, molecular dynamics (MD)
simulations can potentially add up important information thanks
to the atomistic resolution they provide.5 Ideally, if the force field
used were accurate enough and if computational time was
sufficient, MD simulations could directly identify all the protein
conformers and transitions between them. Even in that case,
however, we would be challenged by the enormous amount of
data which constitute the MD trajectory. How can we extract the
relevant information from the trajectory and provide it in a
“human readable” form without losing or overlooking any
important details?

A tractable representation of the dynamics of the protein
corresponds to providing, e.g., populations of conformers and
their rates of exchange. A large variety of methods have been
proposed to address this point. On one hand, there are ap-
proaches based on the projection of the dynamics along a series

of observables (i.e., the end-to-end distance, the radius of
gyration, root mean squared deviation (rmsd) from reference
structure, dihedral angles, etc.). Such methods have the advan-
tage of providing the results with a clear and immediate meaning,
but may lead to missing the relevant degrees of freedom, as we
project an intrinsically multidimensional system onto the few
dimensions represented by the observables.6,7 On the other
hand, another class of approaches is based on a discretization
of the trajectory via clustering, where conformations of the
peptide chain are grouped together when they are similar
according to some metrics defined directly in the multidimen-
sional space of the peptide chain. These approaches reduce the
risk of missing relevant degrees of freedom and allow for the
determination of purely kinetic properties such as commitment
probabilities and mean first passage times.8�12 However, they
usually require further complex steps of analysis likeMarkov state
models13,14 or procedures to recover the free energy basins12,15

to reach an accurate and concise description of the system.
Markov state models (MSM) have received increasing atten-

tion as a powerful tool to analyze and integrate MD trajectories
and obtain a concise and unbiased view of the dynamics of
biopolymers.13,14,16�21 On the basis of the assumption that on a
long enough time scale the biopolymer dynamics can be repre-
sented as a Markov process, these procedures naturally provide a
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ABSTRACT: Atomistic molecular dynamics simulations of the
TZ1 beta-hairpin peptide have been carried out using an
implicit model for the solvent. The trajectories have been
analyzed using a Markov state model defined on the projections
along two significant observables and a kinetic network ap-
proach. The Markov state model allowed for an unbiased
identification of the metastable states of the system, and
provided the basis for commitment probability calculations
performed on the kinetic network. The kinetic network analysis
served to extract the main transition state for folding of the
peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent
and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between
variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured
state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the
exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone
H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate
state, although a more native like side-chain packing is observed.



7460 dx.doi.org/10.1021/jp112158w |J. Phys. Chem. B 2011, 115, 7459–7471

The Journal of Physical Chemistry B ARTICLE

way to identify the relevant macrostates of the system and their
exchange rates. The procedures usually require an initial dis-
cretization of the trajectory into microstates that have to satisfy
certain criteria; e.g., conformations separated by free energy
barriers have to belong to different microstates,13 and the size
of the microstates has to be sufficient to provide a statistically
significant estimate of the transition probabilities into the other
microstates. These requirements cannot always be enforced from
the beginning of the analysis. Although MSMs provide tools to
check a posteriori the Markovianity of the system, other ways to
cross-check the results and identify possible weaknesses in the
model can improve the overall description and understanding of
the biopolymer dynamics.

Here, we analyze extensive MD simulations of a model β-
hairpin, for which hundreds of folding and unfolding events
could be sampled, thanks to the adoption of a continuous model
for the solvent. Using a Bayesian approach,18,19 we optimize a
MSM to fit the trajectories projected onto two relevant observa-
bles, and from the eigenvectors of the rate matrices we extract
information on themacrostates involved in the slowest relaxation
dynamics. Then, we evaluate theMarkovianity of the description.
Beside the Markov state analysis, we carry out a kinetic network
analysis9,22 which consists of building a network (or graph) out of
the clustered trajectories by associating the conformational
clusters with the nodes of the network and the observed
transitions with the links between nodes. We then merge the
results of the Markov state analysis and those of the kinetic
network analysis. This is done by projecting the Markov macro-
states on the network representation and using the Markov
macrostates as target states for folding commitment probability
calculations on the network. We show that this combined
approach allows for the determination of the main conformers
of the peptide, their exchange rates, and also the transition state
ensemble, and helps to provide a concise view of the peptide
dynamics. The methods described are found to be particularly
useful in the present case, as they allow for the identification of
different conformers within the denatured state ensemble. This is
especially important because partially unfolded and denatured
states of proteins have been implicated in several cellular
processes, and the importance in cellular function of natively
unfolded and marginally stable proteins is being increasingly
recognized.23 Similarly, the role played by the residual structure
of the denatured states in determining the folding process needs
to be carefully evaluated.24 We finally provide a structural and
thermodynamic description of the states identified for the hairpin
peptide.

’METHODS

Simulation Protocols. The 12-residue β-hairpin trypto-
phan zipper 1 (TZ1, Figure 1, pdb ID 1LE0)25 with a type II0
turn and a core of four interlocking tryptophan residues was
modeled using implicit-solvent molecular dynamics simulations.
Simulations were run using the program CHARMM,26 with all
heavy atoms and polar hydrogen atoms being modeled explicitly
using a united-atom parametrization (PARAM19). The aqueous
effects of the solvent on the solute are described by a mean-field
approximation based on the solvent-accessible surface area
(SASA) of the peptide.27 To improve sampling, solute�solvent
frictional forces have been neglected; this has no appreciable
effect on the thermodynamic properties of the system. Initial
atomic positions are extracted from the NMR structure.

Ten MD simulation trajectories of 2 μs each and different
initial velocities were run at 300, 330, and 360 K. The tempera-
ture was kept constant during the simulations by weak coupling
to an external bath, as described by Berendsen et al.,28 with no
pressure constraints being imposed on the system. The SHAKE
algorithm29 was used to fix covalent bond lengths, allowing a 2 fs
integration time step.
Structural Analysis. The trajectories were examined by ob-

serving the deviation from the NMR structure in the root-mean-
square distance (rmsd) between backbone CR atoms. The
number of backbone hydrogen bonds (H-bond) was also exam-
ined for the peptide. Instead of using a step function to describe a
H-bond as either formed (1) with an interatomic distance of less
than 2.6 Å or not formed (0) with an interatomic distance in
excess of this cutoff, a sigmoidal function of the distance d was
used fHB(d) = 1/(1þ (x/2.6)6). Using thismethod, a continuous
range of values between 1 and 0 is obtained, with fHB(d = 2.6 Å) =
0.5 representing a conformation with an interatomic distance of
exactly 2.6 Å, fHB(d) values close to 1 representing conformations
with interatomic distances less than 2.6 Å, and values close to 0
representing conformations with interatomic distances greater
than 2.6 Å.
Five nativeH-bond contacts were identified along the backbone

of the native conformation. Since the H-bond nearest to the turn
sequencewas formed for conformations in all states, the remaining
four H-bonds were taken as a reference by which to assess the
degree of nativeness of a given structure, through the variable
HB = ∑ifHB(di), where the sum is extended to the four H-bonds.
Definition of the Microstates for the Markov State Model.

The globally funneled energy landscape theorized for protein
folding allows for a significant reduction in the complexity of the
description provided that simple reaction coordinates are found
to capture the folding process.1 In this study, the simulation
trajectories were projected along the observables HB and rmsd
and binned intoN two-dimensional microstates. Thus, each bin/
microstate is defined by both a range of HB values and a range of
rmsd values. In this way, a discretized trajectory s(t) ∈ [1,2,...
N]"t∈ [0,Tf] was obtained, whereTf is the total simulation time.

Figure 1. The 12-residue β-hairpin TZ1: from the Protein Data Bank
with (a) backbone carbon (cyan), nitrogen (blue), oxygen (red), and
hydrogen (white) atoms and residue labels, and (b) tryptophan side-
chains and secondary structure, with gray for random coil, red for
extended β-sheet, and tan for turn sequence.
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Uniform binning (i.e., all bins having the same width along
each of the two observables) resulted in poor statistics for some
of the transitions between microstates, which compromised the
accuracy of the rate matrix diagonalization (data not shown).
Thus, a variable binning strategy was adopted, which requires a
few iterations of the following algorithm. Starting from a single
two-dimensional bin containing all the data points, bins contain-
ing more than ntb = 12 000 points were evenly split into four
smaller identical bins with halved width along each dimension,
and the data points were redistributed in the four smaller bins.
No splitting was performed for bins whose width was equal or
smaller than (ΔHB = 0.25 � Δrmsd = 0.625), both to limit
the total number of bins and to prevent artificial splitting of very
similar conformations. This procedure favors a more uniform
distribution of the data points into the bins (i.e., the microstates),
and eventually leads to more accurate estimates for transi-
tion probabilities between microstates. The binning procedure
was applied separately for the simulations at 300, 330, and
360 K, resulting in different numbers of bins/microstates at each
temperature. The observed probability Pi of each microstate is
given by

Pi ¼ 1
Tf
∑
Tf

t¼ 0
δsðtÞ, i ð1Þ

where t is the time and δ is the Kronecker delta function. The
number of transitions observed from microstate i to microstate j
Nji after a lag time Δt is thus expressed as

Nji ¼ ∑
Tf � Δt

t¼ 0
δsðtÞ, iδsðt þ ΔtÞ, j ð2Þ

Markov State Model. Below, the MSM is derived following
the formalism proposed by Hummer and co-workers.18 Assum-
ing that, after the initial lag timeΔt, the dynamics observed along
the simulation trajectories is Markovian, the probability Pi
satisfies a master equation:

dPðtÞ
dt

¼ R 3PðtÞ ð3Þ

where the vector P(t) represents the probability for each micro-
state at time t and R is a transition rate matrix with constant
elements Rij g 0 for i 6¼ j, Rii e 0, and ∑iRij = 0.
Equation 3 has the solution

PðtÞ ¼ exp½tR� 3Pð0Þ ð4Þ
If the system converges to an equilibrium distribution, the

equilibrium probability Peq is a right-eigenvector of R with zero
eigenvalue, and the system must satisfy detailed balance so that

RjiP
eq
i ¼ RijP

eq
j ð5Þ

The matrix exponential of eq 4 can be calculated through the
diagonalization of the symmetric matrix ~R:

~R ¼ P�1=2RP1=2 ð6Þ
where P(1/2 is the diagonal matrix with elements (Pi

eq)(1/2.
For the diagonalization, the orthogonal matrix U of eigenvec-

tors of ~R must satisfy the relation ~RU = UΛ, where Λ is the
diagonal matrix with eigenvalues of �λi. Since UUT = UTU,
where UT is the transpose of U, eqs 4 and 6 can be combined:

etR ¼ P1=2UetΛUTP�1=2 ð7Þ

The left and right eigenvectors of R can be obtained from the
eigenvectors of ~R (note that they have the same eigenvalues):

ER ¼ P1=2U
EL ¼ P�1=2U

ð8Þ

In addition to the stationary solution Peq with zero eigenvalue,
the other right-eigenvectors of R have negative eigenvalues
representing decay rates, and the vectors’ elements sum up to
zero. So a system in state i at time t = t0 has a probability p(j, t0þ
Δt|i, t0) of being in state j at time t0 þ Δt given by

pðj, t0 þΔtji, t0Þ ¼ pðj,Δtji, 0Þ

¼ ½P1=2UTeΔtΛUP�1=2�ji ð9Þ
The rate matrix R was estimated using Bayesian

inference18,19,30 by constructing a posterior distribution of the
model parameters from the simulation data. If a uniform prior
distribution of the model parameters is assumed, the posterior
distribution is proportional to a likelihood function L, which
gives the probability of observing the same motions on the HB-
rmsd reaction coordinates in the Markov model as those seen in
the simulations:

L ¼
YTf

t

pðsðt þΔtÞ,ΔtjsðtÞ, 0Þ ð10Þ

This may be rewritten in the form

L ¼
Y
ij

pðj,Δtji, 0ÞNji ð11Þ

AMonte Carlo sampling of the values ofR and Peq compatible
with the simulation data was obtained using�ln(L) as the energy
function and by constructing the initial rate matrix R from the
equilibrium probabilities Pi (eq 1) and the observed transitions
Nij (eq 2) after symmetrization and normalization. A simulated
annealing strategy was used where theMonte Carlo temperature,
initialized at 10, was gradually lowered to 1 following an
exponential decay as a function of Monte Carlo steps. Only the
data obtained with Monte Carlo temperatures below 1.005 were
retained for the sampling. The Monte Carlo step size was
dynamically adapted in order to obtain an acceptance ratio
between 10 and 30%. A total of 107 Monte Carlo steps were
performed, and samples of R and Peq values were saved every
1000 steps. Each sampled R and Peq pair was individually used to
compute the eigenvalues and eigenvectors of the associated
Markov model. Eigenvalues and eigenvectors of Rwere averaged
over the sampled data.
On the basis of Perron clustering theory,31 the microstates

were then partitioned into macrostates using information from
the slowest non-null left eigenvectors of R. Because of the gap
between the third and fourth non-null eigenvalues, we consid-
ered the three slowest eigenvectors for partitioning. Each macro-
state is defined as the set of microstates having the same signs of
the components of the three slowest left eigenvectors used for
partitioning. We note that numerically more robust versions of
this algorithm have also been presented.14,32

Cluster Analysis. The Leader algorithm33 was used to group
structures whose distance root-mean-square deviation between
CR and Cβ atoms was less than 0.8 Å. This value for the clustering
cutoff was chosen as a compromise between smaller values,
yielding many small clusters and poor intercluster statistics, and
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larger values, resulting in heterogeneous structures being
grouped in the same cluster. The clustering and other structural
analyses were performed using the program WORDOM.34

Commitment Probability. The commitment probability
pcommit
R,β for a protein conformation is the probability that it will
fold into a given stateR before reaching state β. There are several
methods to measure the pcommit of a conformation.35 One
method is to start a large number of short MD simulations from
the given conformation, and record the number of trajectories
that commit to a given state of the molecule.36 The number of
trial simulations required for a reliable evaluation of pcommit for
the many conformations saved along a trajectory makes this
method unfeasible. An alternative method estimates commit-
ment probabilities for all structures in an equilibrium folding/
unfolding trajectory without the need for any additional
simulations.10,11 This method is outlined in more detail below.
The probability pcommit

R,β of a single structure i reaching either of
the states R or β is given by

pR, βcommitðiÞ ¼ nRðiÞ
ntotðiÞ ð12Þ

where nR is the number of MD simulations starting from
structure i which reach state R and ntot is the total number of
committed MD simulations starting from i.
Since structurally similar conformations have similar kinetic

behavior, they also have similar pcommit
R,β .11 Structures along a

trajectory were grouped in structurally similar clusters, as de-
scribed above, and the segment of MD trajectory following each
structure was checked for reaching either the states R or β. The
pcommit
R,β of a cluster C is defined as the ratio between structures
folding into stateR and the total number of committed structures
in the cluster. Each structure in the cluster is then assigned the
pcommit
R,β of the cluster. Although the MSM identified several slow
relaxation processes in TZ1, we are mostly interested in the one
between the folded and the denatured region of the peptide, i.e.,
the main folding transition, which, in the present case, is
represented by the slowest non-null eigenmode of the rate
matrix. Thus, we considered only the sign structure of the slowest
non-null eigenvector and we selected the three most populated
microstates with a positive eigenvector component (i.e., belong-
ing to the folded region) and the most populated microstate with
a negative eigenvector component (i.e., belonging to the dena-
tured region, the denatured region has a much larger population
than the native region so a single microstate is sufficient) and
used them as targets R and β for measuring pcommit. The R and β
subsets are meant to represent the bottom of the free energy well
of the native and denatured region, respectively.
The ability of the approximate commitment probability as a

reaction coordinate to locate the dominant transition between
the folded and denatured states can be evaluated by examining
the conformations on a transition pathway. Following
Hummer,37 a transition pathway (TP) is defined as any section
of a trajectory leaving a state A and proceeding directly to state B
(i.e., without crossing back into A), and vice versa. In our
calculations, A and B are the conformations with pcommit e 0.2
and pcommit g 0.8, respectively. A minimum path length of 0.08
ns was imposed to rule out rapid fluctuations at the boundaries of
the TPs. The conditional probability that a conformation with a
given value of the pcommit coordinate will be on a TP, p(TPATB|
pcommit), is then measured directly from the trajectory, and its
distribution is compared with the limiting case of the pure

unidimensional diffusion to ascertain the quality of our approx-
imate pcommit as a reaction variable for the folding transition.
Kinetic Network Analysis. The conformation space of the

peptide, as sampled by molecular dynamics, can be mapped to
a network describing the significant free energy minima and
their dynamic connectivity, without requiring arbitrarily cho-
sen reaction coordinates. Some studies6 have found poorly
chosen reaction coordinates can mask important details, such
as heterogeneity of denatured or transition states, especially in
the case of potentials based on physiochemical principles, like
CHARMM.
In this case, the “nodes” of the network are the clusters defined

previously by the cluster analysis, with direct transitions between
clusters along the trajectory representing the “edges” of the
network.9 Two clusters are connected by an undirected link if
either they include a pair of structures that are visited within 20 ps
or they include structures that are separated by one or more
conformations belonging to clusters with less than 20 struc-
tures each.
The nodes of the network were ordered on the graph so that

close nodes correspond to clusters with a similar link pattern, and
colored according to the Markov macrostates defined above.

’RESULTS

Identification of Stable States. The stable states of the
peptide were identified by optimizing a MSM using Bayesian
analysis, as described in “Methods”. Initial calculations carried
out using only the backbone H-bonds for the definition of the
microstates did not show Markovianity, as reported by the
eigenvalue spectrum which did not converge at any lag time
(data not shown). Simulations were then projected along both
HB and rmsd, and the data were binned into a discrete number of
two-dimensional microstates defined by both a range of HB and
rmsd values (Figure 2a). Thus, 55, 53, and 41 microstates were
obtained at 300, 330, and 360 K, respectively. The variable width
of the microstates/bins, obtained using the adaptive binning
procedure described in the “Methods” section, reduces the
presence of scarcely populated bins which would introduce large
uncertainties on the elements of the transition matrix. The
MSM was then built using those microstates. The ensemble of
rate matrices compatible with the simulation data was ob-
tained using the Bayesian analysis and the likelihood function
L (eq 11). The rate matrices were then diagonalized. At all
three temperatures (300, 330, 360 K), the slowest non-null
eigenvalue converged for lag times not less than 2.56 ns, and a
well-defined gap was observed between the slowest and
second-slowest non-null eigenvalues (the eigenvector corre-
sponding to the null eigenvalue is the equilibrium state) and
between the third and fourth non-null eigenvalues (Figure 2b). The
relaxation times for the three slowest processes at the three
temperatures are reported in Table 1. Although the slowest
relaxation process at 360 K is on average slightly faster than
the lag time, the subsequent analysis of the corresponding
macrostates provided results in line with those obtained at the
lower temperatures, so we decided to present the 360 K data
as well.
The sign of the components of an eigenvector of the rate

matrix (note that components of left and right eigenvectors of R
have the same sign) tells us which microstates exchange popula-
tion during the corresponding relaxation process (e.g., the
microstates with positive components of the eigenvector lose
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population in favor of those with negative components, or vice
versa, depending on the initial conditions). On the basis of this

idea, which has been rigorously formalized in Perron clustering
theory,31 the signs of the components of the first three non-null
left eigenvectors of the rate matrices, which give information on
the slowest, second-slowest, and third-slowest relaxation pro-
cesses, respectively, were used to identify four significantly
populated stable macrostates, as detailed in “Methods”. Non-
significantly populated macrostates were lumped into the other
macrostates according to structural similarity.
Inspection of the elements of the first eigenvector reveals that

it describes the relaxation process between the folded and
denatured regions of the peptide’s conformational space. At
300 K (Figure 2c, left), the folded region is roughly defined by
a maximum rmsd of 6 Å and between 0.5 and 4 formed HB
contacts, and the denatured region is defined by a maximum of
0.25 formed HB contacts for 2.25 Å < rmsd < 6.25 Å and a
maximum of 1 formed HB contact for rmsd's above 6.25 Å. The
second eigenvector yields more detailed information about the
denatured region, which at 300 K (Figure 2c, center) is com-
prised of two distinct macrostates occupying separate regions on
the HB-rmsd projection: the first macrostate is roughly defined
by HB < 0.25 and 2.25 Å < rmsd < 3.75 Å and will be referred to
as state D1. The second macrostate is roughly defined by HB < 1
and rmsd > 3.75 Å and will be referred to as state D2 (at 360 K, in
Figure 2e, middle, there is some scatter with a microstate from
D1(dark) in the D2 region; however, this microstate has an
extremely low population as reported by Figure 2a, right, and its
presence does not affect the validity of our statement). The third
eigenvector identifies two subsets of the folded region. The most
native-like subset will be referred to as the native state N and will
comprise roughly conformations withHB>0.5 and rmsd< 2.25Å.
The intermediate region (at 300Kwith roughly 0.25 <HB< 2 and
2.25 Å < rmsd < 6.25 Å, Figure 2c, right) will be referred to as
state I. The eigenvectors at 330 and 360 K show a very similar
picture, as illustrated in Figure 2d and e.
In Figure 3, information from all three eigenvectors is merged

to yield a picture comprising four stable macrostates at all three
temperatures: N (magenta), I (yellow), D1 (blue), and D2
(green).
Kinetic Networks. As described in “Methods”, a kinetic

network is produced based on the clustering of the MD
trajectory. Conformational clusters correspond to the nodes of
the network, and the observed transitions correspond to the links
between nodes. This mapping allows for the definition of a vector
for each cluster whose components are the network distances (i.
e., the minimal number of separating links) between the cluster
and a set of reference clusters (e.g., the most populated ones).
The network can be projected onto a two-dimensional graph, using
the first two principal components of the covariancematrix of the
cluster vectors.38 This representation has the advantage of
preserving the kinetic similarities between clusters. Thus, the
network could be represented in a plot where the clusters were

Table 1. Relaxation Times of the Markov State Model from
the Average Eigenvalues of the Rate Matrices

relaxation time (ns)

temperature (K) 1/λ1 1/λ2 1/λ3

300 20.0( 0.6 4.6( 0.4 4.2( 0.1

330 6.7( 0.5 2.6( 0.2 1.8 ( 0.1

360 2.0( 0.1 1.4( 0.1 0.8( 0.1

Figure 2. (a) Equilibrium distribution of the microstates of the Markov
state model fitting simulation data at 300 K (left), 330 K (middle), and
360 K (right). The simulation data binned into the microstates provide
very similar (undistinguishable) distributions. The variable width of the
microstates in the HB/rmsd space is obtained via an adaptive binning
algorithm (see “Methods”) to limit the presence of poorly populated
microstates. (b) Relaxation times (inverse eigenvalues) of the Markov state
model as a function of lag time for the simulations at 330 K (error bars at
99% confidence interval). Convergence is reached for lag times equal or
larger than 2.5 ns. Similar plots are obtained at 300 and 360 K (not shown).
First (left), second (middle), and third (right) average non-null left
eigenvectors of the rate matrices at (c) 300 K, (d) 330 K, and (e) 360 K.
The color scale ranges from black for the smallest (most negative)
components to white for the largest (most positive) components, with
the midpoint of the scale fixed at 50% gray for the zero components.
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colored according to their most populated state, identified by the
MSM analysis, with the same color scheme as in Figure 3. The
network analysis performed on the simulations of TZ1 at each
temperature (see Figure 4) show the N and I states occupying a
small, localized region of the network while the denatured states
D1 and D2 occupy the majority of the network. At all three
temperatures, the mapping of the macrostates from the MSM
analysis onto the kinetic network shows that the Markov states
are kinetically partitioned, i.e., different states occupy different
regions of the network, with limited overlap.
The localization of the N state is particularly prominent at 300

K, where the relative depth of the free energy minima is larger
with respect to temperature, as reported by the low link density
region separating the native clusters from the rest of the network
in Figure 4a. This confirms the presence of free energy barriers
between the Markov macrostates, and that the observed dena-
tured states are in a different free energy basin than the folded
states. In agreement with the kinetic measurements, the presence
of the gap is less well-defined at 330 and 360 K, corresponding to
a smaller free energy barrier relative to kBT, separating N from I.

We note that the increase in link density between separate free
energy basins as the temperature increases is equivalent to an
increase in the available pathways used by the system to connect
the basins, in analogy to the findings for the Trp-cage mini
protein.39 At all three temperatures, there is also evidence of a
free energy barrier between the D1 state and the most populated
region of the D2 state (green), although regions where the two
states are mixed are also present on the network.
Commitment Probability. The MSM identified a series of

relaxation processes. Each relaxation process can be associated
with the crossing of a free energy barrier defined on the free
energy landscape of the peptide. The highest barrier, correspond-
ing to the slowest relaxation process, separates variably folded

Figure 4. Kinetic networks describing the conformation space of the
TZ1 peptide at (a) 300 K, (b) 330 K, and (c) 360 K. The nodes of the
network are colored according to their most populated macrostate, with
the N state being magenta, the I state being yellow, the D2 state being
green, and the D1 state being blue. The dominant conformation
belonging to each state is also shown. The network pictures are obtained
using the program VISONE.38

Figure 3. Markov macrostates at (a) 300 K, (b) 330 K, and (c) 360 K
obtained by grouping together microstates with the same signs of the
components of the three slowest eigenvectors of the MSM. The native
state N is shown in magenta, the intermediate state I in yellow, the
denatured state D1 in dark blue, and the denatured state D2 in green.
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microstates from denatured microstates. The folded microstates,
which share the same sign of the first eigenvector components
(light-colored microstates in Figure 2c�e, left), comprise both
microstates in N and I. The denatured microstates (sharing the
opposite sign to the folded microstates for the elements of the
first eigenvector, dark microstates in Figure 2c�e, left) comprise
both D1 and D2. Smaller free energy barriers split the folded
microstates in I and N and the denatured microstates in D1 and
D2. Disregarding the smaller free energy barriers, we specifically
looked for the main folding transition state associated with the
highest free energy barrier. Approximate commitment probabil-
ities for the main folding transition were measured for all the
structures collected along the trajectories at each temperature,
using the most populated microstates Pi in the folded and
denatured regions (as determined by the sign of the first non-
null eigenvector) as target states (see “Methods”).
The distribution of commitment probabilities (Figure 5a)

shows two distinct peaks at pcommit ≈ 0.0 and pcommit ≈ 1.0,
which correspond to the denatured and folded states, respec-
tively (the distribution of pcommit for intermediate values is noisy
due to the relatively low number of conformations populating
this region). The approximate procedure used to measure the
commitment probability, which depends on the clustering algo-
rithm and sampling, may in principle compromise its reliability as
a reaction coordinate. Hummer and collaborators37,40,41 pro-
posed a method to evaluate the quality of a reaction variable r by
measuring the conditional probability, p(TP|r), that a conforma-
tion will be on a transition pathway (TP) for a given value of r. He
showed37 that, in the limit of diffusive dynamics along r, the
transition path probability p(TP|r) is related to the exact
commitment probability φ(r) by p(TP|r) = 2φ(r)(1 � φ(r)).
Thus, p(TP|r) in the limiting case of a pure diffusive system has a
maximum of 0.5 at the transition state, i.e., for φ(r) = 0.5. This
finding has been used to assess the quality of reaction variables
for describing the dynamics of a generic system. In those
studies,40,41 the authors compared the p(TP|r) obtained using
several reaction variables. Those variables which provided

p(TP|r) distributions close to the diffusive limit (i.e., peak close
to 0.5, bell shaped distribution around the peak) are considered
good, as they can separate stable and reactive species. Vice versa,
those variables giving rise to broad p(TP|r) distributions with a
small peak (<0.3) cannot be used to tell unequivocally if a
structure is reactive (i.e., if it belongs to the transition state); thus,
they do not act as good reaction coordinates. In the present case,
the distribution of p(TP|pcommit), shown in Figure 5b, is bell-
shaped with a maximum of 0.48 at 300 K, 0.49 at 330 K, and 0.48
at 360 K centered on the region 0.4 e pcommit e 0.55, almost
reaching the ideal limit of 0.5 observed in the case of pure
unidimensional diffusion. This demonstrates that the approxi-
mate pcommit reported in the present work represents a good
reaction coordinate.
Structural and Thermodynamic Analyses of Macrostates.

Once the metastable macrostates and transition state were
identified by the Bayesian and commitment probability analyses
of the Markov model, respectively, their structural and thermo-
dynamic properties could be examined.
The populations of states D1, D2, I, N, and T were used to

calculate their relative stabilities (Table 2):

ΔGA � B ¼ �NAkBT ln
PðAÞ
PðBÞ

� �
ð13Þ

where P(A) and P(B) are the populations of the two states,NA is
the Avogadro constant, and kB is the Boltzmann constant.
The average internal potential energy of each macrostate

ÆEpotæ was calculated from the internal potential energies re-
corded for each structure along a trajectory (Table 3). The
relative enthalpies of the denatured and native state were also
compared:

ΔHðTÞU � N ¼ ÆEpotðUÞæ� ÆEpotðNÞæ ð14Þ
where ΔH(T)U�N is the enthalpy change at temperature T and
ÆEpot(U)æ and ÆEpot(N)æ are the average internal potential
energies of the denatured (D1 þ D2) and native (N) state,
respectively. The average number of backbone H-bonds and
average rmsd's for each state are shown in Tables 4 and 5.
As shown in Table 3, the N state has the lowest average

potential energy and the denatured states D1 and D2 have the

Figure 5. (a) Distribution of approximate commitment probabilities
shown at 300 K (solid line), 330 K (dashed line), and 360 K (dash-dotted
line). (b) The conditional probability of being on a transition pathway for
a given value of the approximate commitment probability is shown at 300
K (solid line), 330 K (dashed line), and 360 K (dash-dotted line).

Table 2. Relative Stabilities of the D1, D2, I, and N States at
the Three Simulation Temperatures

relative stability ΔGstate1�state2 (kcal/mol)

temperature (K) D1�D2 D1�N D2�N D1�I D2�I I�N

300 0.163 1.146 0.982 0.937 0.774 0.208

330 0.382 1.482 1.100 1.143 0.761 0.339

360 0.454 1.750 1.296 1.343 0.890 0.406

Table 3. Average Internal Potential Energies of the D1, D2, I,
N, and T States Given at 300, 330, and 360 K

ÆEpotæ (kcal/mol)

temperature (K) N I T D1 D2

300 29.1( 3.5 32.6( 3.6 32.9( 3.5 33.2( 3.5 33.3 ( 3.8

330 44.3( 3.8 48.3( 3.9 49.3( 4.0 48.6( 3.9 49.5( 4.1

360 60.6( 4.2 63.8( 4.1 65.4( 4.2 64.0( 4.2 65.6( 4.3
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highest average potential energies at 300, 330, and 360 K, as
expected. At all three temperatures, the enthalpy increases in the
denatured state relative to the native state (ΔH(T)U�N = 4.1 (
4.9, 4.7 ( 5.5, and 4.2 ( 5.9 kcal/mol at 300, 330, and 360 K,
respectively), although the error on the difference is quite large.
A structural comparison of the various states of the peptide is

provided in Figure 6. The secondary structure of the peptide
according to STRIDE42 was computed along the trajectories
using VMD43 for the macrostates D1, D2, I, N, and T. For the
compact denatured state D1 (Figure 6, column 1), the hairpin is
quite “open”, and with the H-bonds between residues E5 and K8
only loosely formed (HB < 0.01), the shape of the backbone
fluctuates significantly within this state. The turn sequence
extends from residues W4 to N7 at the three simulation
temperatures, while the rest of the residues are in the coil region.
The four tryptophan side-chains appear to stabilize this state. In
this case, the tryptophan residues appear to minimize their
exposed surface area by packing between the backbones of the
two strands. The second denatured state D2 (Figure 6, column
2) has, on average, a greatly extended turn sequence from
residuesW2 to T10 at 300, 330, and 360 K, though the secondary
structure is less homogeneous than for the other macrostates.
The hairpin is more open with much higher fluctuation in both
backbone shape and the positions of the tryptophan side-chains.
The I state (Figure 6, column 3), in which the native G6�N7
turn sequence is preserved, featuresβ-bridge structure at residues
E5 and K8 and additional turn structure for residue W4 at 300,
330, and 360 K. The rest of the peptide is random coil. The
hairpin remains relatively “closed”, and the tryptophan residues
form a disordered hydrophobic core on one side of the hairpin.
The shape of the backbone shows slightly less variation within
this macrostate, primarily toward the terminal residues, since the
turn sequence is stabilized by a strong H-bond between residues
E5 and K8. The N state conformations (Figure 6, column 4) at all
three temperatures are characterized by the preservation of the
G6�N7 turn sequence and the presence of extended β-sheet
structure in the four residues on either side of the turn, residues
W2�E5 and K8�W11. Stabilized by the presence of five
strongly formed backbone H-bonds, the ensemble of conforma-
tions shows very little variation in the shape of the backbone
within the N state, and the tryptophan residues are regularly
packed in the center of the hairpin.

At 300 and 330 K, the transition state T (Figure 6, column 5)
identified from the commitment probability in Figure 5 is
structurally very similar to the intermediate state, though the
variation in structures is greater for this less energetically stable
state. At 360 K, while the G6�N7 turn sequence is unchanged,
the β-bridge structure of residues E5 and K8 dominant at the two
lower temperatures is replaced by two residues of the extended β-
sheet (W4�E5 and K8�W9). The fluctuation in the backbone
shape is also similar to that of the intermediate state. At 300 K,
there are two formed H-bonds between residues E5 and K8,
while at the two higher temperatures only the H-bond closest to
the turn is formed.
The changes in the secondary structure content between the

states along the peptide sequence were also examined. Within
each of the D1, D2, I, N, and T states, the numbers of
conformations with random coil, turn, extended β-sheet, or β-
bridge structures were calculated as a fraction of the total number
of conformations for each of the 12 residues at the three
simulation temperatures. Since the changes in secondary struc-
ture between the states at each temperature are nearly identical
(see Figure 6), only the 330 K data are shown in Figure 7.
These data highlight the homogeneity of the N state, with all

the conformations having a similar secondary structure, as
expected. While the D1 state is also structurally homogeneous
(with the exception of residues K8�W9), the outer tryptophan
pair (W2 and W11) and the two threonine residues (T3 and
T10) in the D2 state can variably be in either a turn conformation
or a random coil. Similarly, the intermediate and transition states
are less structurally homogeneous, particularly for the residues
on either side of the G6�N7 turn sequence (W4�E5 and
K8�W9), for which no secondary structural feature is present
in more than half of the conformations within the state. It is also
noteworthy that in D1 not only G6 and N7 show recurrent turn
secondary structure, but alsoW4 and E5 (Figure 7a). In addition,
β-sheet formation in D1, although relatively rare, involves
residues W2�W4 and residues E7�W9 (Figure 7b). These
two pieces of data suggest the presence of out-of-register hairpins
in D1 with the turn shifted one residue to the N terminus.
The relevance of all formed contacts was determined by

calculating structural Φ-values10,44 for each residue in the inter-
mediate and transition states at the three simulation tempera-
tures. In each individual structure, a van der Waals contact was

Table 4. Average Numbers of Backbone H-Bonds Given for States D1, D2, I, N, and T at 300, 330, and 360 K

HB

temperature (K) N I T D1 D2

300 2.80( 0.20 0.90( 0.25 0.88( 0.20 0.006 ( 0.009 0.007( 0.013

330 2.58( 0.26 0.78( 0.22 0.61( 0.22 0.007( 0.011 0.005( 0.007

360 1.94 ( 0.40 0.62( 0.19 0.44( 0.22 0.008( 0.012 0.005( 0.009

Table 5. Average rmsd's Given for States D1, D2, I, N, and T at 300, 330, and 360 K

rmsd (Å)

temperature (K) N I T D1 D2

300 1.16( 0.19 3.05( 0.36 2.46( 0.23 4.07( 0.15 5.15 ( 0.29

330 1.32( 0.22 3.17( 0.41 3.28( 0.31 4.25( 0.20 5.50( 0.28

360 1.79( 0.31 3.43 ( 0.39 3.57( 0.44 4.27( 0.21 5.66( 0.30
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defined when the distance between two atoms was less than
6.0 Å, and was defined as “formed” if it occurred for at least 2/3 of
the structures within a state. Nearest-neighbor contacts (both
interatomic and between residues) and backbone atoms were
excluded from the calculation. If the fraction of N-state structures
in which the contact i is formed is FN(i) and the fraction of
structures in a state X in which the contact i is formed is FX(i), the
structural Φ-value for state X is

SnatΦðrÞ ¼
∑

i ∈ NCðrÞ
FXðiÞ

∑
i ∈ NCðrÞ

FNðiÞ
ð15Þ

where NC(r) is the group of contacts occurring in conformations
of the native state for each residue r. SnatΦ(r) usually takes values
ranging from 0 to 1 (although values out of this range are also
possible), 0 indicating that the structure around residue r is
conformationally far from the N state and 1 indicating that the
structure is conformationally similar to the N state.
As can be seen in Figure 8, the central residues of the peptide

are most native-like, with a general decrease in nativeness toward
the terminal residues. The number of contacts formed in the
intermediate state is largely independent of temperature, while
the transition state becomes less native-like as the temperature is
increased. At the lower temperatures, the T state SnatΦ values are
larger than those in the I state, indicating a more native-like
packing of the side-chains. Figure 8 confirms that the G6�N7

turn sequence is strongly native-like for both the intermediate
and transition states at all three temperatures.

’DISCUSSION

Markov State Model and Markovianity of the TZ1 Repre-
sentations. The optimized Markov state approach employed
here is based on several assumptions whose validity must be
considered. The first of these is that the dynamics of the system
is Markovian, or memory-less. This implies that the future
dynamical evolution of the conformation of a molecule depends
only on its current state and not on the previous history of the
molecule. In practice, the dynamics of a system is unlikely to be
completelyMarkovian at short time scales,19 so the mean lifetime
of the stable states of a system must be long compared to the
length of the memory, allowing fast initial non-Markovian
dynamics to be neglected. A preliminary test of the Markovian
assumption is based on the convergence of the spectrum of the
eigenvalues of the rate matrix, as the lag time is varied. This test
showed us that a representation of the system obtained by
binning the trajectory along a single observable (the number of
native backboneHBs) did not provideMarkovian dynamics (as it
did in other instances30,45). This means that the information
conveyed by the HB is not sufficient to describe the kinetics of
folding of the peptide.
The method was therefore extended to use both HB and rmsd

(see Methods), and in this case, the slowest eigenvalues at the

Figure 6. Conformations of the four stable macrostates identified by the Markov state model analysis (D1, D2, I, and N) and the transition state
identified by the commitment probability (T) at (a) 300 K, (b) 330 K, and (c) 360 K. The unstructured random coil is shown in gray, turn sequence in
tan, extended β-sheet structure in red, and β-bridge structure in blue. Several backbone conformations for each state are superimposed to illustrate the
conformational variability within the state, and representative positions of the four tryptophan side chains are shown. TheCR atoms of the conformations
were aligned using the first NMR conformation as a reference.
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three simulation temperatures studied were found to converge
for lag times larger than 2.5 ns (Figure 2b). As a further and more
stringent test of the Markovian assumption, the decay times of
the autocorrelation functions of the first three eigenvectors of R
projected along the simulations were examined. Figure 9 shows
that these decay times are in good agreement with the decay
times expected from the corresponding eigenvalues (Table 1),
confirming that this representation is Markovian. The Marko-
vianity of the representation provides a validation, a posteriori, for
both the choice of observables (HB and rmsd) and the fine

graining of the binning procedure. Indeed, if either of the two
was not good enough, then the representation would not be
Markovian. We note also that other choices of observables
should provide similar slow eigenmodes, as long as the obser-
vables report the same amount of information about the slow
dynamics of the system.17

The Markov States of TZ1. The eigenvector analysis identi-
fied three significant relaxation processes, the slowest being the
one between the folded and denatured states of the peptide,
with relaxation times ranging from 2 to 20 ns, according to
the temperature (Table 1). The relaxation times measured in
this study cannot be directly compared with experimental data,
as the simulations were deliberately run in the absence of solvent
viscosity to maximize the number of sampled transition events.
However, the 2 orders of magnitude reduction in the transition
times measured at 300 K (20.0( 0.6 ns, Table 1) with respect to
the experimental data (kobs

�1 = [kf þ ku]
�1 = 4.7 ( 0.3 μs at 296

K36) is in line with the reduction observed in a variety of other
systems ranging from helices to three-stranded β-hairpin pep-
tides simulated in the same way,46�48 indicating that the force
field yields a separation of time scales consistent with experi-
mental data.
Interestingly, the second slowest relaxation, with relaxation

times ranging from 1.4 to 4.6 ns (Table 1), occurs between a
highly populated, compact state (D1) and a less densely popu-
lated state encompassing a broader range of HB and rmsd values
(D2). Evidence of this separation of the D1 and D2 states was
also indicated in the kinetic network analyses by regions of low
link density separating the two (Figure 4). The distance from a
pure exponential relaxation for the autocorrelation function of
the associated eigenvector (Figure 9) and the presence of a
limited overlap (Figure 4) in the kinetic network projection
between D1 and D2 states, as reported by the presence of
network regions containing clusters from both states, indicates,
however, that even the rmsd and HB may be flanked by some
other observable to improve the separation between the D1 and
D2 states. We also note that, because D1 and D2 may not have
been perfectly separated by the HB-rmsd-based MSM, the
relaxation times between the two states may be underestimated.
These relaxation times are already close to those measured for
the main folding transition; thus, we cannot completely exclude
the possibility that the D1/D2 exchange occurs via the native
state, or, in other words, that the native state represents a kinetic
hub connecting the two heterogeneous denatured states as
recently proposed for β3s12 and for villin and NTL9.49 On the
other hand, here the native state is not very stable at any of the

Figure 7. Residue-specific secondary structure distribution for the
states D1 (blue), D2 (green), I (yellow), N (red), and T (black) at
330 K for (a) the turn sequence, (b) extended β-sheet, (c) β-bridge
structures, and (d) random coil.

Figure 8. Structural Φ-values per residue in the I and T states at 300,
330, and 360 K.
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simulated temperatures; thus, our system is in a regime where the
kinetic hub picture may not necessarily hold. It is plausible that
the lack of Markovianity of the representation based only on HB
is due to the complexity of the denatured state and the presence
of two distinct free energy basins D1 and D2, which cannot be
separated by HB alone.
The third significant free energy barrier at 330 and 360 K was

found between the N and I states (Figure 2d,e, right), with
relaxation times ranging from 0.8 to 1.8 ns (Table 1). This
barrier, which is visually more evident from the HB-rmsd
projections than the one between D1 and D2, is actually smaller
than the latter, as it allows for a faster relaxation (i.e., larger
eigenvalue). This is a clear demonstration of the need for a
careful kinetic analysis to correctly discriminate the populated
macrostates of a biomolecular system, especially when the nature
of the stable states is unknown a priori, as in the present case, or in
any attempt to characterize the structures of the denatured state.
At 300 K, the third relaxation process primarily involves a
population exchange between I and D2, with only a weak
participation of N (Figure 2c, right), in contrast to what happens
at higher temperatures. We note, however, that this result is still
sufficient to separate N from I.
The Kinetic Network Analysis Is Necessary to Identify

Reactive Species. The disadvantage of using a MSM based on
projections of the trajectory upon simple observables (i.e., HB
and rmsd) is that the kinetic information contained in the
simulation data may be partly lost, an issue that becomes
particularly serious when kinetically unstable transition states
are considered.6 The decomposition in macrostates provided by

the MSM does not allow for the direct identification of reactive
species. Indeed, the distribution of the probability of folding for
conformations belonging to the I state shows that I is enriched in
reactive conformations with respect to the overall trajectory.
However, it also shows that the largest majority of the conforma-
tions in I are not reactive (Figure 10). Then, the use of the kinetic
network analysis, which allows for the definition of a reliable
reaction coordinate, pcommit, becomes necessary for the correct
identification of the reactive species.
The Denatured State. The denatured state of TZ1 in the

present simulations appears heterogeneous, because the two
substates D1 and D2 have a relatively slow interconversion rate.
The state D1 is a compact state where the turn at residues G6 and
N7 is formed, while the two strands of the hairpin are not paired
by backbone HB and interlocking Trp side chains like the native
state but by a disordered arrangement of the Trp side chains in a
conformation that possibly minimizes the nonpolar exposure to
the solvent. The state D2, on the other hand, is more diffuse and
heterogeneous with a lower amount of residual structure,
although it retains a certain tendency to form a turn close to
residues G6 and N7 (Figure 7). It is worth pointing out that the
compact structures with buried tryptophan side chains observed
here for the states D1, and to a lesser extent D2, may be the result
of an overstabilization of hydrophobic interactions due to the
approximate model for the solvent. This may also explain the low
population of the native state observed here even at 300 K, in
contrast with the experimental midpoint transition temperature
of 323 K.25 Although the comparison with explicit water simula-
tions of the same peptide22 is made difficult by the different
temperatures used in that study, no strong propensity to sample
compact conformations in the denatured state was observed in
those simulations. Nor were they able to distinguish the two
components D1 and D2 of the denatured state, although a
further investigation (G.S. unpublished data) revealed that the
tendency to form a turn in position 6 and 7 in the denatured state
was also present in the explicit water simulations. High tempera-
ture explicit water simulations of TZ2,50 a peptide similar to TZ1
but with a different turn sequence, and an analysis using an
automatic Markov state decomposition13 revealed considerable
structure in the denatured state in analogy with what has been
found here, although in those studies structure in the denatured
state appeared to be stabilized by non-native backbone H-bonds
while here it is predominantly stabilized by hydrophobic inter-
action between tryptophan side chains. Those studies also
pointed out the presence of out-of-register hairpin states, some
of which are compatible with the N-terminal shift of the turn
observed here in some of the conformations of D1.
The Intermediate State. The presence of the significantly

populated intermediate state (I) in the current simulations was
also observed in explicit-solvent high temperature molecular
dynamics simulations of the same peptide,22 although the
detailed structures differ. Indeed, in the present simulations,
state I is stabilized by a hydrogen bond betweenK8 and E5, while,
in the explicit water simulations, a hydrogen bond between T3
and T10 was also formed. Previous simulations performed on the
related TZ2 peptide led to contrasting results. While large
numbers of short implicit-solvent MD simulations suggested a
two-state system,36 other simulations of TZ2 using implicit
solvent models51 favored a noncooperative folding hypothesis,
even if the projection of the free energy landscape showed a
minimum with characteristics similar to the I state identified in
this study. Explicit solvent simulations of TZ252�54 also revealed

Figure 9. Autocorrelation functions for the first three eigenvectors
(continuous lines) of the rate matrix R at 330 K and the corresponding
exponential decay associated with the eigenvector (dashed lines). Only
data for times larger than lag time are shown.

Figure 10. Probability density of the commitment probability distribution
for state I (continuous line) and for the overall trajectory (dotted line).
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the presence of an intermediate state similar to the I state.
Experimental characterization of TZ2 by isotope-edited 2D IR
spectroscopy55 revealed the presence of partially folded states
with only the midrange native H-bonds formed along the hairpin,
a bulged turn, and variably frayed termini. These conformations
resemble the I state identified for TZ1 here and, to a larger extent,
that observed in the explicit water simulations.22 Explicit water
simulations of the hairpin B1 from protein G,56 which has a
similar sequence to the trpzip peptides, reported the presence of
at least one kinetic intermediate with characteristics similar to the
one observed here. The presence of an intermediate state fits the
available experimental data on the folding of TZ2 and related
peptides, where the unfolding rates are mainly determined by the
robustness of the hydrophobic core packing and the folding rates
are determined by the turn propensity of the sequence.57

The Folding Transition State of TZ1. The transition state T
of TZ1 is characterized by a well formed turn region and the
proximal part of the strands in extended β-sheet conformation
(Figures 6 and 7).With respect to secondary structure content, T
is similar to the I state although slightly less native-like. In terms
of side chain packing, the T state presents a compact and
disordered arrangement of the tryptophan side chains similar
to I, although the number of native side-chain contacts in T is
larger than in I (Figure 8), indicating the importance of correct side-
chain packing for the folding transition to complete. This picture
of the transition state is similar to the one obtained from explicit
solvent simulations22 where the rate limiting step for folding was
identified in the correct packing of the tryptophan side-chains,
while proximal H-bonds and the turn region were already formed
at transition.
The structure of the folding transition state was found to be

relatively insensitive to changes in temperature in proteins like
CI258,59 and Protein A.60 However, smaller structural units such
as those represented by small peptides may be more sensitive to
environmental changes. While explicit water simulations of the
unfolding of the TZ1 peptide22 showed subtle structural changes
in the transition state structures as a function of temperature, the
high temperature and lack of proper thermodynamic equilibrium
in the simulations prevented a deeper exploration of these
phenomena. Here, we observe that the similarity of the T state
to the native state N, as reported by the structuralΦ values and
by the superposition of conformations of T in Figure 6, decreases
with temperature. This, however, should not be interpreted as
anti-Hammond behavior because this comparison does not take
into account the corresponding changes in the denatured state.
Indeed, the conformational distribution of N and D1/D2 is also
temperature dependent. Experimentally, movements of transi-
tion states relative to the ground states are measured in terms of
the Tanford beta value,61 which is thought to approximate
the ratio between the solvent accessible surface area buried in
T and in N, upon folding from D. Accessible surface area

calculations on the conformations identified here as belonging
to T, N, and D2 (Table 6) show small differences between the
states, relative to the spread of the distributions. This leads to
large errors on the determination of the Tanford beta value,
which rules out drawing a definitive conclusion about tempera-
ture dependent transition state movements. A possible reason for
the large error lies in the fact that D2 in our simulations, although
less compact than D1, is still a relatively compact state; thus, the
change in solvent accessible surface area upon folding is limited.

’CONCLUSIONS

Here, we showed how the combined use of MSM analysis and
kinetic network analysis allows for a detailed, concise, and
consistent characterization of both the metastable and the
transition states for folding of peptides. Besides states identified
in earlier simulations, the Markov state analysis of trajectories
projected on standard observables allowed for the identification
of different subspecies in the denatured state of the TZ1 peptide,
which could otherwise be easily missed by standard inspection of
the projected trajectory. The metastable states as identified by
the Markov state analysis provided a solid base to perform
approximate commitment probability calculations using the
kinetic network representation of the peptide dynamics and
correctly identify the reactive species. The approximate commit-
ment probabilities were proven to represent a good reaction
variable. The Markov state analysis and the kinetic network
analysis also provided a consistent reciprocal validation of the
results, showing that the Markov macrostates are kinetically
localized and well partitioned along the network. The picture
of the folding process of TZ1 emerging from the analysis is the
following. The slowest conformational change observed in TZ1
is the conversion between folded and denatured species. The
other slow processes involve exchange between a compact and a
less compact subspecies of the denatured state and exchange
between the fully native and partially folded intermediate state
with an H-bond formed close to the turn. The transition state for
the slowest relaxation process (i.e., folding) is characterized by
the formation of H-bonds proximal to the turn and a well
structured turn region, while packing of the tryptophan side-
chains is not complete, although it encompasses more native
contacts than in the intermediate state.

’AUTHOR INFORMATION

Corresponding Author
*Phone:þ49 6131 3920492. Fax:þ49 6131 3925441. E-mail:
settanni@uni-mainz.de, gs@mrc-lmb.cam.ac.uk.

Present Addresses
†Institute of Physics, University of Mainz, Germany.

’ACKNOWLEDGMENT

We thank Michele Seeber for the useful exchanges in the
development of the analysis program WORDOM.

’REFERENCES

(1) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G.
Proteins 1995, 21, 167.

(2) Bryngelson, J. D.; Wolynes, P. G. Proc. Natl. Acad. Sci. U.S.A.
1987, 84, 7524.

Table 6. Average Solvent Accessible Surface Area for States
D2, N, and T at 300, 330, and 360 K

solvent accessible surface area (Å2)

temperature (K) N T D2

300 1410( 40 1460( 50 1470 ( 80

330 1430( 50 1500( 70 1490( 80

360 1460( 60 1500( 70 1530( 80



7471 dx.doi.org/10.1021/jp112158w |J. Phys. Chem. B 2011, 115, 7459–7471

The Journal of Physical Chemistry B ARTICLE

(3) Onuchic, J. N.; Wolynes, P. G.; Luthey-Schulten, Z.; Socci, N. D.
Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3626.
(4) Wang, J.; Onuchic, J.; Wolynes, P. Phys. Rev. Lett. 1996, 76, 4861.
(5) Daggett, V.; Li, A. J.; Itzhaki, L. S.; Otzen, D. E.; Fersht, A. R.

J. Mol. Biol. 1996, 257, 430.
(6) Rao, F.; Settanni, G.; Caflisch, A. Methods Mol. Biol. 2007,

350, 225.
(7) Das, P.; Moll, M.; Stamati, H.; Kavraki, L. E.; Clementi, C. Proc.

Natl. Acad. Sci. U.S.A. 2006, 103, 9885.
(8) Singhal, N.; Snow, C. D.; Pande, V. S. J. Chem. Phys. 2004,

121, 415.
(9) Rao, F.; Caflisch, A. J. Mol. Biol. 2004, 342, 299.
(10) Settanni, G.; Rao, F.; Caflisch, A. Proc. Natl. Acad. Sci. U.S.A.

2005, 102, 628.
(11) Rao, F.; Settanni, G.; Guarnera, E.; Caflisch, A. J. Chem. Phys.

2005, 122, 184901.
(12) Krivov, S. V.; Muff, S.; Caflisch, A.; Karplus, M. J. Phys. Chem. B

2008, 112, 8701.
(13) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K. A.; Swope,

W. C. J. Chem. Phys. 2007, 126, 155101.
(14) Noe, F.; Horenko, I.; Schutte, C.; Smith, J. C. J. Chem. Phys.

2007, 126, 155102.
(15) Gfeller, D.; De Los Rios, P.; Caflisch, A.; Rao, F. Proc. Natl.

Acad. Sci. U.S.A. 2007, 104, 1817.
(16) Ozkan, S. B.; Dill, K. A.; Bahar, I. Biopolymers 2003, 68, 35.
(17) Swope, W. C.; Pitera, J. W.; Suits, F. J. Phys. Chem. B 2004,

108, 6571.
(18) Sriraman, S.; Kevrekidis, I. G.; Hummer, G. J. Phys. Chem. B

2005, 109, 6479.
(19) Buchete, N. V.; Hummer, G. J. Phys. Chem. B 2008, 112, 6057.
(20) Noe, F.; Schutte, C.; Vanden-Eijnden, E.; Reich, L.;Weikl, T. R.

Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19011.
(21) Bowman, G. R.; Huang, X.; Pande, V. S.Methods 2009, 49, 197.
(22) Settanni, G.; Fersht, A. R. Biophys. J. 2008, 94, 4444.
(23) Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35.
(24) Sanchez, I. E.; Kiefhaber, T. J. Mol. Biol. 2003, 327, 867.
(25) Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc. Natl.

Acad. Sci. U.S.A. 2001, 98, 5578.
(26) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.
(27) Ferrara, P.; Apostolakis, J.; Caflisch, A. Proteins 2002, 46, 24.
(28) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.;

Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.
(29) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J Comput. Phys.

1977, 23, 327.
(30) Hummer, G. New J. Phys. 2005, 7.
(31) Deuflhard, P.; Huisinga, W.; Fischer, A.; Sch€utte, C. Linear

Algebra Appl. 2000, 315, 39.
(32) Deuflhard, P.; Weber, M. Linear Algebra Appl. 2005, 398, 161.
(33) Hartigan, J. A. Clustering Algorithms; John Wiley & Sons, Inc.:

New York, 1975.
(34) Seeber, M.; Cecchini, M.; Rao, F.; Settanni, G.; Caflisch, A.

Bioinformatics 2007, 23, 2625.
(35) Du, R.; Pande, V. S.; Grosberg, A. Y.; Tanaka, T.; Shakhnovich,

E. S. J. Chem. Phys. 1998, 108, 334.
(36) Snow, C. D.; Qiu, L.; Du, D.; Gai, F.; Hagen, S. J.; Pande, V. S.

Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4077.
(37) Hummer, G. J. Chem. Phys. 2004, 120, 516.
(38) Brandes, U.; Wagner, D. Visone - Analysis and visualization of

social networks. InGraph Drawing Software; J€unger, M., Mutzel, P., Eds.;
Springer: Berlin, 2003; p 321.
(39) Zheng, W.; Gallicchio, E.; Deng, N.; Andrec, M.; Levy, R. M.

J. Phys. Chem. B 2011, 115, 1512.
(40) Best, R. B.; Hummer, G. Proc. Natl. Acad. Sci. U.S.A. 2005,

102, 6732.
(41) Best, R. B.; Hummer, G. Proc. Natl. Acad. Sci. U.S.A. 2010,

107, 1088.
(42) Frishman, D.; Argos, P. Proteins 1995, 23, 566.

(43) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,
14, 33.

(44) Li, A. J.; Daggett, V. J. Mol. Biol. 1996, 257, 412.
(45) Best, R. B.; Hummer, G. Phys. Rev. Lett. 2006, 96, 228104.
(46) Ferrara, P.; Apostolakis, J.; Caflisch, A. J. Phys. Chem. B 2000,

104, 5000.
(47) Cavalli, A.; Ferrara, P.; Caflisch, A. Proteins 2002, 47, 305.
(48) Cavalli, A.; Haberthur, U.; Paci, E.; Caflisch, A. Protein Sci.

2003, 12, 1801.
(49) Bowman, G. R.; Pande, V. S. Proc. Natl. Acad. Sci. U.S.A. 2010,

107, 10890.
(50) Pitera, J. W.; Haque, I.; Swope, W. C. J. Chem. Phys. 2006, 124.
(51) Yang, W. Y.; Pitera, J. W.; Swope, W. C.; Gruebele, M. J. Mol.

Biol. 2004, 336, 241.
(52) Zhang, J.; Qin, M.; Wang, W. Proteins 2006, 62, 672.
(53) Nymeyer, H. J. Phys. Chem. B 2009, 113, 8288.
(54) Kim, J.; Keiderling, T. A. J. Phys. Chem. B 2010, 114, 8494.
(55) Smith, A.W.; Lessing, J.; Ganim, Z.; Peng, C. S.; Tokmakoff, A.;

Roy, S.; Jansen, T. L.; Knoester, J. J. Phys. Chem. B 2010, 114, 10913.
(56) Bolhuis, P. G. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 12129.
(57) Du, D.; Zhu, Y.; Huang, C. Y.; Gai, F. Proc. Natl. Acad. Sci. U.S.A.

2004, 101, 15915.
(58) Tan, Y. J.; Oliveberg, M.; Fersht, A. R. J. Mol. Biol. 1996,

264, 377.
(59) Day, R.; Daggett, V. Protein Sci. 2005, 14, 1242.
(60) Sato, S.; Fersht, A. R. J. Mol. Biol. 2007, 372, 254.
(61) Fersht, A. R. Structure and Mechanism in Protein Science; W. H.

Freeman: New York, 1999.


