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Biologie Moléculaire et Cellulaire

(IGBMC) (INSERM), France
Daniel Ortuño-Sahagún,

University of Guadalajara, Mexico

*Correspondence:
Brandt D. Pence

bdpence@memphis.edu

Specialty section:
This article was submitted to

Cytokines and Soluble
Mediators in Immunity,
a section of the journal

Frontiers in Immunology

Received: 30 June 2021
Accepted: 26 October 2021

Published: 11 November 2021

Citation:
Cory TJ, Emmons RS, Yarbro JR,

Davis KL and Pence BD (2021)
Metformin Suppresses Monocyte
Immunometabolic Activation by

SARS-CoV-2 Spike Protein Subunit 1.
Front. Immunol. 12:733921.

doi: 10.3389/fimmu.2021.733921

ORIGINAL RESEARCH
published: 11 November 2021

doi: 10.3389/fimmu.2021.733921
Metformin Suppresses Monocyte
Immunometabolic Activation by
SARS-CoV-2 Spike Protein Subunit 1
Theodore J. Cory1, Russell S. Emmons2, Johnathan R. Yarbro2,3, Kierstin L. Davis2

and Brandt D. Pence2,4*

1 Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science
Center, Memphis, TN, United States, 2 College of Health Sciences, University of Memphis, Memphis, TN, United States,
3 Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States, 4 Center for
Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN, United States

A hallmark of COVID-19 is a hyperinflammatory state associated with severity. Monocytes
undergo metabolic reprogramming and produce inflammatory cytokines when stimulated
with SARS-CoV-2. We hypothesized that binding by the viral spike protein mediates this
effect, and that drugs which regulate immunometabolism could inhibit the inflammatory
response. Monocytes stimulated with recombinant SARS-CoV-2 spike protein subunit 1
showed a dose-dependent increase in glycolytic metabolism associated with production
of pro-inflammatory cytokines. This response was dependent on hypoxia-inducible factor-
1a, as chetomin inhibited glycolysis and cytokine production. Inhibition of glycolytic
metabolism by 2-deoxyglucose (2-DG) or glucose deprivation also inhibited the
glycolytic response, and 2-DG strongly suppressed cytokine production. Glucose-
deprived monocytes rescued cytokine production by upregulating oxidative
phosphorylation, an effect which was not present in 2-DG-treated monocytes due to
the known effect of 2-DG on suppressing mitochondrial metabolism. Finally, pre-
treatment of monocytes with metformin strongly suppressed spike protein-mediated
cytokine production and metabolic reprogramming. Likewise, metformin pre-treatment
blocked cytokine induction by SARS-CoV-2 strain WA1/2020 in direct infection
experiments. In summary, the SARS-CoV-2 spike protein induces a pro-inflammatory
immunometabolic response in monocytes that can be suppressed by metformin, and
metformin likewise suppresses inflammatory responses to live SARS-CoV-2. This has
potential implications for the treatment of hyperinflammation during COVID-19.
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INTRODUCTION

The ongoing coronavirus disease 2019 (COVID-19) pandemic has
presently claimed more than 3 million lives worldwide as of mid-
April 2021 (1). COVID-19 is caused by a novel highly pathogenic
coronavirus classified as severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) (2). A hallmark of severe COVID-
19 is hyperinflammation (3), although cytokine expressionpatterns
in individuals are diverse, leading to controversy over classification
ofCOVID-19 related inflammation as cytokine storm,macrophage
activation syndrome, multisystem inflammatory syndrome, etc.
Regardless, inflammatory cytokines appear to play a principal
role in mediating COVID-19 symptoms, therefore therapies
which target these responses are paramount to treating severe
COVID-19. As such, a fuller understanding of the cellular and
molecularmechanismsmediating hypercytokinemia during SARS-
CoV-2 infection is necessary.

Mononuclear phagocytes such as monocytes and macrophages
are keyconstituentsof the innate immune system, andproducepro-
inflammatory cytokines during viral infection (4–7). We have
previously suggested a key role for these cells in mediating
severity of COVID-19 (7–9). Monocyte and monocyte-derived
macrophage infiltration into the lungs has been linked to severe
COVID-19 in single cell RNA sequencing studies (10–13) and
postmortem analyses (14–17) in human patients, as well as during
experimental infections in animal models including mice (18, 19),
hamsters (20), and various non-human primates (21–25).
Monocytes in individuals infected with SARS-CoV-2 display
phenotypic changes associated with hyperinflammation,
including reduced HLA-DR expression (26–28), increased CD16
expression (27, 29–31), and increased cytokine production (32–35).
Both monocytes (36–38) and monocyte-derived macrophages (39,
40) alsoproducepro-inflammatory cytokinesunderdirect infection
with SARS-CoV-2, although infection at least in macrophages
appears to be abortive (39, 40).

The past decade has seen an explosion in scientific interest in
the regulation of immune cell activation and function bymetabolic
reprogramming. Under pro-inflammatory conditions, immune
cells – including myeloid cells – generally undergo a switch to
aerobic glycolysis which provides ATP sufficient to support
cellular functions which propagate pro-inflammatory and anti-
pathogen host responses (41). Recently, Codo et al. demonstrated
pro-inflammatory glycolytic reprogramming in monocytes
infected with SARS-CoV-2 (36), and SARS-CoV-2 also appears
to alter monocyte lipid metabolism to promote lipid droplet
formation which is associated with pro-inflammatory cytokine
production (37).

SARS-CoV-2 therefore appears to reprogram metabolism in
monocytes, but the viral factors which mediate these responses are
unclear. Research in the 2003 epidemic SARS-CoV-1 suggested that
the viral spike protein could mediate pro-inflammatory activation
in macrophages (42, 43), and recent evidence suggests the spike
protein of SARS-CoV-2 also activates inflammatory responses in
macrophages and monocytes both in vitro and in vivo (44, 45).
Given this, we hypothesized that spike protein binding to
monocytes mediates glycolytic reprogramming to promote pro-
inflammatory responses of these cells to SARS-CoV-2. Our results
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herein support this hypothesis, and we additionally report
outcomes from experiments aimed at evaluating the responsible
cellular signaling mechanisms, as well as potential pharmaceutical
strategies for inhibiting these responses.
MATERIALS AND METHODS

Subjects
Healthy 18–35-year-old subjects (N=14) were recruited without
respect to sex or race. Participants reported to the laboratory
approximately every two weeks for blood collection, and 8-24 ml
blood was collected into EDTA-treated vacutainer tubes by
venipuncture. Blood was immediately used for cell isolations as
described below.

Cell Isolations
Assays were performed on purified human classical monocytes
isolated using immunomagnetic negative sorting (EasySep Direct
Human Monocyte Isolation Kit, StemCell Technologies,
Cambridge, MA). As we have previously described (46), this
procedure results in a highly pure (> 85%) population of classical
monocytes, with depletion of intermediate and non-classical
monocytes due to the presence of an anti-CD16 antibody in
the cocktail. Isolation purity was verified at several points
throughout the current study and averaged approximately 90%
(not shown). Cells were counted at 10× dilution using a Scepter
cell counter (Millipore Sigma, St. Louis, MO). Isolated
monocytes were immediately utilized in downstream assays,
and no cells were frozen for later use.

Media and Reagents
Unless otherwise specified, all assays were performed using
Seahorse XF base DMEM medium (Agilent, Santa Clara, CA)
supplemented with 10 mM glucose and 2 mM L-glutamine
(Millipore Sigma, St. Louis, MO). Assays utilizing glucose
deprivation omitted glucose from the media preparation.
Media was not supplemented with fetal bovine serum or other
additives. Recombinant spike protein subunit 1 (S1) was
purchased from RayBiotech (Peachtree Corners, GA). 2-
deoxyglucose, chetomin, compound C, and metformin were
purchased from Millipore Sigma (St. Louis, MO). SARS-CoV-2
WA1/2020 strain was provided by Dr. Colleen Jonsson, Regional
Biocontainment Laboratory, University of Tennessee Health
Science Center.

Seahorse Extracellular Flux
Glycolysis and oxidative phosphorylation were respectively
quantified via kinetic monitoring of extracellular acidification
rate (ECAR) and oxygen consumption rate (OCR) on a
Seahorse XFp analyzer (Agilent, Santa Clara, CA). For all assays,
monocytes were plated at 1.5×105 cells per well, and wells A and H
of the XFp plate were background wells with no cells. All
analyses were run in duplicate. Plated cells were incubated at
37°C in a non-CO2 incubator for 1 hour prior to assays to stabilize
pH. All wells were imaged at 10× magnification for cell counting
in order to adjust raw measurements for cell number.
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For quantification of dose response to S1, 5 basal
measurements were made, followed by injection of media
(wells B-C), 100 nM spike protein (wells D-E), or 300 nM
spike protein (wells F-G). After injection into existing media in
the well, spike protein concentrations were 10-fold lower than
injection concentrations, thereby giving final spike protein
concentrations of 0 nM, 10 nM, or 30 nM. Following injection,
ECAR and OCR were monitored serially for 60 measurements.
Following the assay, cell culture supernatants were removed,
pooled by duplicate, and stored at -80°C. Cells were then lysed
with 100 ml Trizol (Thermo Fisher Scientific, Waltham, MA),
pooled by duplicate, and stored at -80°C as we have previously
described (47).

For chetomin and metformin Seahorse assays, cells were
incubated in media as above (wells B-E), or either 10 nM
chetomin or 50 mM metformin during the 1-hour pre-
incubation period (wells F-G). 5 basal ECAR/OCR
measurements were performed, followed by injection of media
(wells B-C) or 300 nM spike protein (wells D-G) for a final
concentration of 0 nM (wells B-C) or 30 nM spike protein (wells
D-G) as above. Following injection, ECAR and OCR were
monitored serially for 30 measurements. Cell culture
supernatants and Trizol lysates were processed as described
above following the end of the assay.

For glycolysis inhibition assays, cells were incubated in media,
10 mM 2-deoxyglucose, or media without glucose (glucose
deprivation) during the 1-hour pre-incubation period. 5 basal
ECAR/OCR measurements were performed, followed by
injection of 300 nM spike protein to all wells for a final
concentration of 30 nM spike protein per well as above. Spike
protein was prepared in non-glucose media for the glucose
deprivation condition. Following injection, ECAR and OCR
were monitored serially for 30 measurements. Cell culture
supernatants and Trizol lysates were processed as described
above following the end of the assay.

SARS-CoV-2 Infections
Isolated monocytes were incubated in RPMI-1640 media (Gibco,
Thermo Fisher Scientific, Waltham, MA) supplemented with
10% fetal bovine serum (Gibco), with or without 50 mM
metformin, for 1-hour. Cells were then treated with media or
infected with SARS-CoV-2 virus (WA1/2020 isolate) at 0.5 MOI
and incubated for 24 hours. Cell culture supernatants were
collected from untreated and infected cells and stored at -80°C
until analysis. SARS-CoV-2 experiments were conducted under
biosafety level 3 at the Regional Biocontainment Laboratory at
the University of Tennessee Health Science Center.

Gene and Protein Expression Analysis
RNA isolation was performed using the Trizol procedure based
on manufacturer’s instructions from cells lysed directly in the
microplate or Seahorse plate wells as applicable. Isolated RNA
(300-400 ng depending on experiment) was reverse-transcribed
to cDNA using a High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific, Waltham, MA). Gene expression
was analyzed using commercial pre-validated gene expression
assays and Taqman reagents (Thermo Fisher Scientific,
Frontiers in Immunology | www.frontiersin.org 3
Waltham, MA). Relative gene expression was quantified using
the 2-DDCt method (48) against B2M or ACTB as housekeeping
genes. Primer/probe IDs were: B2M Hs00187842_m1; ACTB
Hs03023943_g1; IL1B Hs01555410_m1; IL6 Hs00174131_m1;
CXCL8 Hs00174103_m1; TNF Hs00174128_m1; CPT1A
Hs00912671_m1; G6PD Hs00166169_m1; HLA-DRA
Hs00219575_m1; CDKN2A Hs00923894_m1; TLR4
H s 0 0 1 5 2 9 3 9 _ m 1 ; I L 1 0 H s 0 0 9 6 1 6 2 2 _ m 1 ;
TGFB1 Hs00998133_m1.

For protein quantification, cell culture supernatants harvested
from microplates or Seahorse XFp plates were analyzed via
ELISA. Commercial DuoSet matched-antibody reagent sets
were purchased from R&D Systems (Minneapolis, MN) for
quantifying human IL-6, human IL-1b, human IL-8, and
human TNFa and were used according to manufacturer’s
instructions. All samples were run in duplicate at 5× dilution
(SARS-CoV-2 assays), or 50× dilution (Seahorse S1 dose
response assays), or 10× dilution (all others) and assessed
against a standard curve.

Protein concentration of angiotensin converting enzyme 2
(ACE2) and C-reactive protein (CRP) was performed by ELISA
on plasma samples collected by venipuncture from subjects at the
beginning of the study. Peripheral blood was collected by
venipuncture into EDTA-coated vacutainer tubes, centrifuged
at 1,500×g for 15 min, aliquoted, and stored at -80°C until
analysis. Plasma samples were analyzed in duplicate at 10×
(ACE2) or 10,000× (CRP) using commercial DuoSet matched-
antibody reagent kits (R&D Systems) according to
manufacturer’s instructions and assessed against a standard
curve. ACE2 and CRP data are included in the FigShare
repository (49), along with other clinical and anthropomorphic
data for experimental subjects.

Data Processing and Statistical Analysis
All data processing and statistical analyses were performed using
R v. 3.6.2 (50). Isolated monocytes from each subject were given
all treatments for each experiment, so data were paired and
analyzed using within-subjects designs. Data were checked for
normality by Shapiro-Wilk test and analyzed by one-way
repeated measures ANOVA (RM-ANOVA, for data which met
the normality assumption) or Friedman’s test (for data which did
not meet the normality assumption). For analyses with
significant main effects, post hoc mean separation was
performed using pairwise paired T tests (for RM-ANOVA) or
pairwise Wilcoxon signed-rank tests (for Friedman’s tests) with
p-value adjustment using the Holm-Bonferroni method (51).
Significance cutoff was p<0.05.

All raw data and analytical scripts (as R markdown files) are
available in a dedicated FigShare repository (49). This
manuscript was posted to the preprint server bioRxiv prior to
submission for publication (52).

Study Approval
All human subjects activities were approved by the Institutional
Review Board at the University of Memphis under protocol 4316,
and subjects provided written informed consent prior
to enrollment.
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RESULTS

Spike Protein Subunit 1 Reprograms
Metabolism and Promotes
Inflammatory Responses
Recently it was demonstrated that SARS-CoV-2 promotes
metabolic reprogramming in monocytes during infection (36,
37). Research in SARS-CoV-1 suggested that the viral spike
protein induces inflammatory responses in macrophages (42,
43), and this has recently been replicated using spike protein
from SARS-CoV-2 (44, 45). Likewise, spike protein binding to
C-type lectins has recently been shown to mediate pro-
inflammatory processes in myeloid cells (53, 54). Therefore,
we hypothesized that the SARS-CoV-2 spike protein mediates a
pro-inflammatory metabolic reprogramming in monocytes
which could be a basis for hypercytokinemia. Stimulation of
isolated human classical monocytes with recombinant spike
protein subunit 1 (S1) from SARS-CoV-2 induced glycolytic
ac t iva t ion (Figure 1A ) and suppressed ox ida t ive
phosphorylation (OXPHOS, Figure 1C) in a dose-dependent
manner. The effect of S1 dose was significant for both
extracellular acidification rate (F2,14 = 72.44, p<0.0001,
Figure 1B) and oxygen consumption rate (F2,14 = 5.785,
p=0.0147, Figure 1D) as measured by quantification of area
under the response curve.

Additionally, recombinant S1 treatment caused a dose-
dependent increase transcription of pro-inflammatory
cytokines (Figure 1E) including IL1B (F2,14 = 50.98, p<0.001),
IL6 (Friedman c2 (df=2)=16, p<0.001), CXCL8 (F2,14 = 38.19,
p<0.001), and TNF (F2,14 = 28.41, p<0.001) as measured by
qPCR. These cytokines have been implicated in the pathogenesis
of SARS-CoV-2 and in COVID-19-related hypercytokinemia in
several studies (27, 55–60). To confirm that increased
transcription resulted in increased protein expression, we
evaluated protein concentrations of key cytokines in the
supernatant of S1-stimulated monocytes by enzyme-linked
immunosorbent assay (ELISA) (Figure 1F). S1 increased protein
expression of interleukin (IL)-6 (Friedman c2 (df=2)=16, p<0.001)
and tumor necrosis factor (TNF)-a (F2,14 = 37.73, p<0.001) in a
dose-dependent manner.

Recombinant S1 treatment also increased gene expression of
the anti-inflammatory cytokine IL-10 (Wilcoxon Z=0, p=0.016,
Figure 2A) and decreased gene expression of the anti-
inflammatory cytokine TGF-b (Wilcoxon Z=28, p=0.016,
Figure 2B). We additionally analyzed gene expression for a
variety of polarization and reprogramming markers
(Figure 2C), and found that rS1 treatment increased expression
of the senescence-associated gene for p16 (CDKN2A, t(df=5)=-2.985,
p=0.031) as well as HLA-DRA (t(df=5)=-2.887, p=0.034). Treatment
with 30 nM rS1 also reduced expression of metabolism-related
genes G6PD (Wilcoxon Z=21, p=0.031) and CPT1A (t(df=5)=15.373,
p<0.001) and the LPS receptor TLR4 (t(df=5)=4.833, p=0.005).
Therefore, monocytes appear to be activated by S1 and upregulate
expression of both pro- and anti-inflammatory cytokines, and
additionally show gene expression patterns reflecting
altered metabolism.
Frontiers in Immunology | www.frontiersin.org 4
Glycolytic Response to Spike Protein Is
Dependent on HIF-1a
Hypoxia inducible factor (HIF)-1a was demonstrated nearly 20
years ago to mediate pro-inflammatory responses in myeloid
cells (61), and has more recently been shown to regulate
glycolytic activation in monocytes, macrophages, and other
immune cells (62–64). SARS-CoV-2 activates HIF-1a-
mediated glycolysis in monocytes (36), so we reasoned that
this was a likely downstream mechanism by which the viral
spike protein causes this similar glycolytic reprogramming in our
experiments. As above, treatment of monocytes with S1 activated
glycolysis, and this effect was abrogated by pre-treatment with
chetomin (Figures 3A, B, F2,12 = 42.43, p<0.001), which disrupts
the interaction between HIF-1a and p300 to block the effects of
the former (65). Pre-treatment with chetomin also strongly
suppressed the cytokine response due to S1 treatment
(Figure 3C), including blunting transcription of IL1B (F2,12 =
27.35, p<0.001), IL6 (F2,12 = 16.11, p<0.001), CXCL8 (F2,12 =
25.54, p<0.001), and TNF (F2,12 = 29.04, p<0.001). Protein
concentrations of these cytokines in culture supernatants
showed similar patterns (Figure 3D). As such, HIF-1a appears
to be a master regulator of both glycolytic reprogramming and
inflammatory activation of monocytes under S1 stimulation.

Suppression of Glycolysis Alters
Inflammatory Responses to Spike Protein
To determine whethermetabolic reprogramming is responsible for
altered cytokine responses to S1,we suppressed glycolytic responses
during S1 treatment using 2-deoxyglucose (2-DG) pretreatment.
Treatment of monocytes with 2-DG ablated monocyte glycolytic
responses to S1 stimulation (Figure 4A) which was significant by
comparisonofareaunder the response curve (t6=-10.867, p<0.0001,
Figure 4B). However, 2-DG also suppressed mitochondrial
function in these cells (Figure 4C), though this was non-
significant by area under the oxygen consumption (t6=-2.2284,
p=0.0674, Figure 4D). This effect has been noted previously during
responses to LPS (66). Anticipating this, we also included a
condition where monocytes were cultured under glucose
deprivation, as a second method of suppressing glycolytic
activation. We noted a similar ablation of glycolytic responses to
S1 using this strategy (Figure 4A) which was significant by area
under the curve analysis (t6=-14.045, p<0.0001, Figure 4B).
However, glucose deprivation caused an increase in oxygen
consumption after S1 treatment (Figure 4C) which was
significant compared to media- (t6 = 4.6618, p=0.0069) or 2-DG
(t6=-15.607, p<0.001) pretreated monocytes (Figure 4D).

Pre-treatment of monocytes with 2-DG also strongly inhibited
cytokine expression compared to cells treated with S1 (Figure 4E),
including transcription of IL1B (W=0, p=0.0313), IL6 (t6=-5.912,
p=0.0021), CXCL8 (W=0, p=0.0313), and TNF (W=0, p=0.0313).
However, glucose deprived monocytes generally maintained their
ability to transcribe pro-inflammatory cytokines in response to S1,
with only IL1B expression showing a modest 25.1% reduction in
glucose deprived compared to S1-treated monocytes (Figure 4E,
W=0, p=0.0313). Protein concentrations in cell culture
supernatants followed gene expression patterns (Figure 4F).
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Monocytes appear to utilize fatty acid oxidation to compensate for
loss of glycolysis during cytokine responses as has been previously
demonstrated with LPS (66–69), and therefore the 2-DG-
mediated suppression of S1-induced inflammation is likely due
to its ability to suppress both glycolysis and mitochondrial
metabolism in concert.
Frontiers in Immunology | www.frontiersin.org 5
Metformin Abrogates Inflammatory
Response to Spike Protein
The small molecule compounds chetomin and 2-deoxyglucose
inhibited immunometabolic activation in monocytes,
suggesting a potential strategy for treating hypercytokinemia
during COVID-19. However, chetomin is not approved for use
A B

C

E

F

D

FIGURE 1 | Recombinant SARS-CoV-2 spike protein subunit 1 (rS1) mediates immunometabolic activation of monocytes. (A) Monocytes increase extracellular
acidification response rate (ECAR) in a dose-dependent manner when treated with rS1. (B) Quantification of ECAR by area under the curve (AUC). (C) rS1 treatment
suppresses oxygen consumption rate (OCR) in monocytes in a dose-dependent fashion. (D) Quantification of OCR by AUC. (E) Gene expression analysis by qPCR
reveals dose-dependent increases in responses of IL1B, IL6, CXCL8, and TNF to rS1 stimulation. (F) Protein expression analysis by ELISA reveals dose-dependent
increases in responses of IL-6 and TNFa to rS1 stimulation. ECAR and OCR data in panels A-D are adjusted for values indexed to 1×105 cells/well. *, **, ***p < 0.05,
p < 0.01, p < 0.001 vs. 0 nM rS1. †, ††, †††: p < 0.05, p < 0.01, p < 0.001 vs. 10 nM rS1. N = 8 biological replicates. Bars and error bars are mean ± SEM.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cory et al. Immunometabolism and Metformin in SARS-CoV-2
in humans, although it has shown efficacy in vivo in animal
models (65). Additionally, 2-DG has poor efficacy in humans
due to rapid metabolism and limited bioavailability (70).
Therefore, we investigated the ability of the common
diabetes and geroprotector drug metformin to inhibit
cytokine production in S1-stimulated monocytes. Metformin
activates AMPK (71) and (independently of AMPK) opposes
the action of HIF-1a (72, 73), and additionally inhibits
mitochondrial metabolism through blocking complex I of the
electron transport chain (74, 75), thus we hypothesized that it
would have a qualitatively similar effect to 2-DG in inhibiting
cytokine production through dual inhibition of glycolysis
and OXPHOS.

Pre-treatment with metformin abrogated the glycolytic
response to S1 in monocytes (Figures 5A, B, F2,12 = 60.05,
p<0.001) and strongly inhibited cellular respiration (Figures 5C,
D, Friedman c2 (df=2)=12.286, p=0.0021) in Seahorse assays.
Likewise, metformin pre-treatment suppressed cytokine
responses to S1 treatment in monocytes (Figure 5E), including
IL1B (Friedman c2 (df=2)=12.286, p=0.0021), IL6 (Friedman c2

(df=2)=10.571, p=0.0051), CXCL8 (F2,12 = 68.18, p<0.0001), and
TNF (Friedman c2 (df=2)=12.286, p=0.0021). As in previous
experiments, protein concentrations (Figure 5F) followed gene
expression patterns.
Metformin Abrogates IL-6 Production in
Virus-Stimulated Monocytes
Recent evidence suggests that myeloid cells recognize SARS-CoV-
2 spike protein through C-type lectins (53, 54). However, the
SARS-CoV-2 virion also contains additional immunoregulatory
and pro-inflammatory proteins (76, 77), therefore we examined
the ability of metformin to block cytokine responses to live SARS-
CoV-2. Monocytes treated for 24 hr with SARS-CoV-2 increased
expression of IL-6 protein, and this was suppressed by metformin
pre-treatment (Figure 5G, F2,14 = 11.48, p=0.0011), suggesting
that the anti-inflammatory effect of metformin is generalizable to
SARS-CoV-2 infection of monocytes.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

The present study resulted in several advances of major
importance for the understanding of SARS-CoV-2 innate
immune responses. First, we report here that monocytes
treated with recombinant spike protein subunit 1 from the
current pandemic SARS-CoV-2 undergo a dose-dependent
increase in glycolysis which can be suppressed by a HIF-1a
inhibitor and mediates the production of pro-inflammatory
cytokines. These data suggest an initial signaling event which
precipitates changes in glucose and lipid metabolism during
SARS-CoV-2 infection in monocytes which have been
previously reported to be linked to inflammatory activation
(36, 37). Monocyte and monocyte-derived macrophages are
substantially enriched in the lungs of SARS-CoV-2-infected
individuals with severe COVID-19 (10, 11, 14–17) and
respond to experimental viral infection by producing pro-
inflammatory cytokines (36–40), therefore these results reflect
a potential mechanism by which hypercytokinemia occurs
during the early innate immune response to SARS-CoV-2.

Importantly, the available evidence suggests that infection of
monocytes/macrophages by SARS-CoV-2 is abortive (39, 40, 78),
thus recognition of SARS-CoV-2 structural proteins or genomic
material is the likely mechanism by which direct infection
precipitates inflammatory responses in this cell type. Our data
suggest the spike protein is one such determinant, although we
cannot conclude it is the only such mechanism given that recent
reports have demonstrated inflammatory responses in
macrophages treated with the SARS-CoV-2 envelope protein
(76). It is also possible, however, that direct viral binding to
monocytes is not the only way in which these cells can be
exposed to the viral spike protein. Recent evidence suggests
that vaccine antigens including S1 are released into the
circulation following vaccination (albeit at very low levels)
(79), and this represents a potential pro-inflammatory stimulus
for monocytes. Monocyte/macrophage recognition of S1 may
also contribute to the local (muscle) inflammatory response
during vaccination. Additionally, the viral spike protein
A B C

FIGURE 2 | Recombinant SARS-CoV-2 spike protein subunit 1 (S1) alters expression of anti-inflammatory cytokine and polarization-related genes. (A) S1 treatment
increased expression of IL10. (B) S1 treatment decreased expression of TGFB1. (C) S1 increased expression of CDKN2A and HLA-DRA, while decreasing expression of
CPT1A, G6PD, and TLR4. *, *, ***p < 0.05, p < 0.01, p < 0.001 vs. media-treated cells. N = 7 biological replicates. Bars and error bars are mean ± SEM.
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undergoes cleavage by furin during binding to ACE2 (80), and it
has been suggested that this could lead to release of the S1
subunit during infection (81), although to date this is speculative.

ACE2 has limited expression on immune cells including
monocytes and macrophages (82), which has called into
question whether they can directly recognize SARS-CoV-2. In
this study we did not identify the mechanism for monocyte
recognition of S1, but several recent papers have shed light on
this. Two reports recently demonstrated spike binding to C-type
lectin receptors (53, 54) which mediates pro-inflammatory
signaling in myeloid cells. Likewise, monocytes and
macrophages express high levels of CD147 (82), and this
receptor has been shown to recognize spike protein and
contribute to activation of T cells (83). Monocytes therefore
Frontiers in Immunology | www.frontiersin.org 7
have multiple methods of recognizing S1, and the receptor(s)
responsible for signaling to induce immunometabolic activation
deserve further investigation.

The second major advance in this study is the identification of
metformin as a potential immunometabolic regulator of
inflammatory responses to SARS-CoV-2. Small molecule
inhibitors of HIF-1a (chetomin) and glucose metabolism (2-
deoxyglucose) blocked cytokine production in S1-treated
monocytes, suggesting that interfering with downstream
signaling pathways activated by spike protein binding is a
potential therapeutic strategy to target inflammation during
COVID-19. As these compounds are not approved for human
use or have low efficacy in humans as described above, we
evaluated the ability of metformin to suppress glycolytic
A B

C

D

FIGURE 3 | HIF-1a inhibition suppresses immunometabolic activation of monocytes due to recombinant spike protein (rS1). (A) Monocytes increase extracellular
acidification response rate (ECAR) when treated with 30 nM rS1, but this is blocked by pre-treatment with chetomin. (B) Quantification of ECAR by area under the
curve (AUC). (C) rS1 increase of expression of IL1B, IL6, CXCL8, and TNF is reversed by chetomin pre-treatment. (D) rS1 increase of IL-1b, IL-6, IL-8, and TNFa is
reversed by chetomin pre-treatment. *, **, ***: p < 0.05, p < 0.01, p < 0.001 vs. untreated cells. †, ††, †††: p < 0.05, p < 0.01, p < 0.001 vs. rS1-treated cells. N =
7 biological replicates. Bars and error bars are mean ± SEM.
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reprogramming and cytokine production in S1-stimulated
monocytes. Metformin reduced cytokine production and
strongly inhibited both glycolysis and cellular respiration in
culture, suggesting it as a potential treatment for
hyperinflammation during COVID-19. Further, metformin
blocked IL-6 production in monocytes infected with live
SARS-CoV-2, suggesting this effect is not limited to artificial
Frontiers in Immunology | www.frontiersin.org 8
stimulation conditions with purified recombinant protein.
However, we were unable to perform additional experiments
using live SARS-CoV-2 to replicate further findings from this
study, so a great deal of additional work is necessary to link our
S1 data to our very preliminary SARS-CoV-2 observation.

Metformin is extremely inexpensive compared to many
pharmaceuticals, with an estimated manufacturing cost under
A B

C

E

F

D

FIGURE 4 | Targeting glycolysis has variable effects on recombinant spike protein (rS1) responses in monocytes. (A) Glucose deprivation or pre-treatment with 2-
deoxyglucose (2-DG) block extracellular acidification rate (ECAR) increase due to rS1 treatment. (B) Quantification of ECAR by area under the curve (AUC). (C) 2-DG
inhibits oxygen consumption rate in rS1-treated monocytes, but glucose-deprived monocytes upregulate OCR in response to rS1. (D) Quantification of OCR by
AUC. (E) 2-DG blocks expression of IL1B, IL6, CXCL8, and TNF due to rS1 stimulation, but glucose deprivation has limited effects on cytokine expression. (F) 2-DG
blocks protein production of pro-inflammatory cytokines, but glucose deprivation has limited effect. *, **, ***: p < 0.05, p < 0.01, p < 0.001 vs. rS1-treated cells.
†, ††, †††: p < 0.05, p < 0.01, p < 0.001 vs. 2-DG-treated cells. N = 7 biological replicates. Bars and error bars are mean ± SEM.
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FIGURE 5 | Metformin suppresses immunometabolic activation in monocytes treated with recombinant spike protein (rS1). (A) Metformin pre-treatment blocks the
increase in extracellular acidification rate (ECAR) mediated by rS1. (B) Quantification of ECAR by area under the curve (AUC). (C) Metformin suppresses oxygen
consumption rate (OCR). (D) Quantification of OCR by AUC. (E) Metformin suppresses cytokine responses, as demonstrated by gene expression of IL1B, IL6,
CXCL8, and TNF, during rS1 stimulation in monocytes. (F) Metformin suppresses protein production of pro-inflammatory cytokines IL-1b, IL-6, IL-8, and TNFa
during S1 stimulation in monocytes. (G) Metformin inhibits IL-6 production in monocytes infected with SARS-CoV-2 strain WA1/2020 (Cov2) at 0.5 MOI. *, **, ***: p <
0.05, p < 0.01, p < 0.001 vs. unstimulated cells. †, †††: p < 0.05, p < 0.001 vs. rS1-treated or Cov2-infected cells. N = 7-8 biological replicates. Bars and error bars
are mean ± SEM.
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10 USD per kg for the active ingredient (84) and a monthly
wholesale cost as low as 25 USD (85). Metformin has been
previously noted as a treatment for non-COVID acute
respiratory distress syndrome (86) and is a potent suppressor
of immune activation of monocytes and macrophages by other
molecules including LPS (87–89). Additionally, several
epidemiological studies have noted decreased mortality (90–94)
and inflammation (systemic C-reactive protein) (95, 96) in
COVID-19 patients who were taking metformin prior to
diagnosis. These effects varied between studies, with mortality
reductions of 20% - 80% across reports, but a meta-analysis
found an overall reduction of 46% in mortality across 5
qualifying studies (94). Therefore, given these observations and
its low cost, excellent safety profile, wide availability, and efficacy
in inhibiting inflammatory responses to S1 in vitro, metformin is
a promising candidate for further exploration as a COVID-19
therapeutic. Our study is limited to a single in vitro measure of
metformin as a therapeutic for COVID-19, so a great deal of
further study is necessary in order to establish this drug as a
viable treatment. To this end, one recent study demonstrated
metformin as efficacious in preventing acute respiratory distress
syndrome in a preclinical animal model of COVID-19 (97).
Therefore, although metformin is most likely to be useful as an
adjuvant rather than front-line therapy for severe acute COVID-
19 , i t remains an at t rac t ive opt ion for targe t ing
hyperinflammation in this disease to limit severity and mortality.

Limitations of this study include the small sample size,
although the large effect sizes in most experiments are
sufficient to convincingly demonstrate the interrogated
mechanisms. More significantly, this study relies on healthy
younger subjects and so does not address how comorbidities
such as aging or obesity would affect the measured outcomes or
the efficacy of the therapies we tested. We determined this to be
appropriate, given our focus on mechanistic investigation in this
study. However, further research is needed to determine if other
populations have different responses to S1 and/or metformin.
We additionally did not recruit with respect to race or sex and
therefore have a relatively diverse sample which could increase
variability. However, the magnitude of the responses did not
show patterns consistent with race- or sex-based differences in
our outcome measures. While it is conceivable that such
differences exist, the effects are likely to be small enough that
large studies would be necessary to detect small between-
population differences. Finally, none of our subjects were
previously taking metformin, and the ability of in vivo
metformin to modulate monocyte responses to S1 requires
further study.
CONCLUSION

In summary, we demonstrate here that the spike protein subunit
1 from SARS-CoV-2 causes activation of HIF-1a dependent
glycolysis and inflammatory cytokine production in monocytes
which can be suppressed by treatment with the diabetes drug
metformin. These experiments detail a mechanism by which
Frontiers in Immunology | www.frontiersin.org 10
SARS-CoV-2 mediates metabolic reprogramming previously
described in human monocytes, and additionally provides a
potential mechanism for the observation that metformin is
protective against mortality in COVID-19 patients. Continued
research in this area has the potential to define therapeutic
strategies and additional molecular targets for the treatment of
COVID-19-associated hyperinflammation.
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