
cancers

Article

FDG-PET Radiomics for Response Monitoring in
Non-Small-Cell Lung Cancer Treated with Radiation Therapy

Montserrat Carles 1,2,3,* , Tobias Fechter 1,2 , Gianluca Radicioni 4, Tanja Schimek-Jasch 4 , Sonja Adebahr 2,4,
Constantinos Zamboglou 2,4, Nils H. Nicolay 2,4 , Luis Martí-Bonmatí 3 , Ursula Nestle 2,4,5, Anca L. Grosu 2,4,
Dimos Baltas 1,2 , Michael Mix 6 and Eleni Gkika 2,4

����������
�������

Citation: Carles, M.; Fechter, T.;

Radicioni, G.; Schimek-Jasch, T.;

Adebahr, S.; Zamboglou, C.; Nicolay,

N.H.; Martí-Bonmatí, L.; Nestle, U.;

Grosu, A.L.; et al. FDG-PET

Radiomics for Response Monitoring

in Non-Small-Cell Lung Cancer

Treated with Radiation Therapy.

Cancers 2021, 13, 814. https://

doi.org/10.3390/cancers13040814

Academic Editor: Marcello Tiseo

Received: 16 December 2020

Accepted: 7 February 2021

Published: 15 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg,
Faculty of Medicine, 79106 Freiburg, Germany; tobias.fechter@uniklinik-freiburg.de (T.F.);
dimos.baltas@uniklinik-freiburg.de (D.B.)

2 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg of the
German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
Sonia.adebahr@uniklinik-freiburg.de (S.A.); constantinos.zamboglou@uniklinik-freiburg.de (C.Z.);
nils.nicolay@uniklinik-freiburg.de (N.H.N.); ursula.nestle@mariahilf.de (U.N.);
anca.grosu@uniklinik-freiburg.de (A.L.G.); eleni.gkika@uniklinik-freiburg.de (E.G.)

3 La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe
Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical
Infrastructures (ICTS), 46026 Valencia, Spain; marti_lui@gva.es

4 Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine,
79106 Freiburg, Germany; gianluca.radiccioni@uniklinik-freiburg.de (G.R.);
tanja.schimek-jasch@uniklinik-freiburg.de (T.S.-J.)

5 Department of Radiation Oncology, Kliniken Maria Hilf, GmbH Moenchengladbach,
41063 Moechengladbach, Germany

6 Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine,
79106 Freiburg, Germany; michael.mix@uniklinik-freiburg.de

* Correspondence: montserrat.carles@uniklinik-freiburg.de

Simple Summary: In this study, we strive to identify clinically relevant image feature (IF) changes
during chemoradiation in patients with non-small-cell lung cancer (NSCLC) to be able to predict
tumor responses in an early stage of treatment. All patients underwent static (3D) and respiratory-
gated 4D PET/CT scans before treatment and a 3D scan during or after treatment. Our proposed
method rejects IF changes due to intrinsic variability such as noise, resolution and movement through
breathing. The IF variability observed across 4D PET is employed as a patient individualized
normalization factor to emphasize statistically relevant IF changes during treatment.

Abstract: The aim of this study is to identify clinically relevant image feature (IF) changes during
chemoradiation and evaluate their efficacy in predicting treatment response. Patients with non-
small-cell lung cancer (NSCLC) were enrolled in two prospective trials (STRIPE, PET-Plan). We
evaluated 48 patients who underwent static (3D) and retrospectively-respiratory-gated 4D PET/CT
scans before treatment and a 3D scan during or after treatment. Our proposed method rejects IF
changes due to intrinsic variability. The IF variability observed across 4D PET is employed as a patient
individualized normalization factor to emphasize statistically relevant IF changes during treatment.
Predictions of overall survival (OS), local recurrence (LR) and distant metastasis (DM) were evaluated.
From 135 IFs, only 17 satisfied the required criteria of being normally distributed across 4D PET
and robust between 3D and 4D images. Changes during treatment in the area-under-the-curve of
the cumulative standard-uptake-value histogram (δAUCCSH ) within primary tumor discriminated
(AUC = 0.87, Specificity = 0.78) patients with and without LR. The resulted prognostic model was
validated with a different segmentation method (AUC = 0.83) and in a different patient cohort
(AUC = 0.63). The quantification of tumor FDG heterogeneity by δAUCCSH during chemoradiation
correlated with the incidence of local recurrence and might be recommended for monitoring treatment
response in patients with NSCLC.
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1. Introduction

In non-small cell lung cancer, [18F]fluoro-2-deoxy-D-glucose (FDG) PET is a valuable
tool for tumor detection and staging [1–4]. Furthermore, the use of FDG-PET/CT is the
standard of care for the definition of the target volume in radiotherapy treatment planning
as well as for treatment monitoring [5–8]. In some studies, relative changes of standardized
uptake value (SUV) in lung cancer patients correlated with the treatment outcome [9,10].
Additionally, the feasibility of response assessment during the first weeks of radiotherapy
treatment would allow for an adaptation of the treatment strategy, which might lead to
better local control rates [11].

Radiomics is the extraction and analysis of a large number of quantitative image
features (IF) including first-order (histogram and shape parameters) and second- or higher-
order statistics (texture features), which provide spatial and voxel intensity information.
Radiomics might help to develop descriptive or predictive models for improving diagnosis
or treatment selection [12]. In order to maximize the generalization ability of the resulted
model, radiomics requires a high level of IF robustness [13–15]. The low spatial resolution
and poor statistics of positron emission tomography (PET) images have a negative impact
on the IF variability compared to other imaging modalities such as computed tomography
(CT). In addition, PET IF variability has been proved to be very sensitive to image recon-
struction settings, tumor segmentation methods, SUV resampling methods and texture
feature matrix definitions [16,17]. Furthermore, the evaluation of lung cancer lesions using
PET/CT imaging presents additional challenges due to respiratory movement. Tumor
motion due to breathing cycles during PET scan acquisition results in inaccurate quantifi-
cation of radioactivity concentration and erroneous estimation of the shape and volume
of the lesion. All these degrading factors have an impact on the PET IF variability, from
now on referred to as “intrinsic variability”. The effect of each of these degrading factors
on IF quality depends on the considered IF. The intrinsic variability does not correlate
with clinical changes, that is, physiological processes and if not taken into account leads
to a misinterpretation of the results while analyzing clinical data. Thus, there is a need to
identify IF variations large enough (clinical) in the quantification of lung lesions changes
based on FDG-PET radiomics at different treatment time points to be considered relevant
for treatment monitoring [18].

Retrospectively respiratory gated 4D PET/CT has been proposed to minimize respi-
ratory motion degradation in PET/CT systems [19]. Our group previously investigated
the IF variability for 3D and 4D PET imaging protocols with experimental heterogeneous
phantoms [20] and lung cancer patients [21]. Results showed that although IF variability
across the breathing phases depends on the considered IF, all IF followed a normal distri-
bution for most lesions. In addition, and in concordance to previous publications [22], a
large number of IF was robust to the motion compensation implied in 4D PET/CT images.
The main purpose of this work was to identify relevant changes during chemoradiation
of NSCLC lesions based on FDG-PET radiomics and to evaluate the efficacy of radiomics
in predicting treatment outcome. Additionally, we aimed to evaluate a novel method,
which rejects IF variations originated by the noise, resolution and effects of breathing
motion inherent in PET images. The IF variability (standard deviation: σIF) observed
across the pre-treatment 4D PET breathing phases was employed as an individualized
patient normalization factor to emphasize statistically relevant IF changes during treatment.
The prediction of the response was used as a clinical outcome to assess the feasibility of
the method. The resultant prognostic model was additionally validated with a different
segmentation method and an additional patient cohort.
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2. Materials and Methods
2.1. Patient Cohorts

The entire study cohort consisted of patients with pulmonary lesions derived from two
prospective trials (PET Plan and STRIPE). All procedures performed in studies involving
human participants were in accordance with the ethical standards of the institutional or
national research committee and with the 1964 Helsinki Declaration and its later amend-
ments or comparable ethical standards. The randomized controlled PET-Plan trial (ARO
2009-09, ClinicalTrials.gov Identifier: NCT00697333, Deutsche Krebshilfe, German Can-
cer Aid Organisation, Nr 108237) was conducted in 24 centers in Germany, Austria and
Switzerland in accordance with the Helsinki Declaration. Study design, procedures and
main outcome results have been published elsewhere [23]. Briefly, patients with histologi-
cally proven inoperable locally advanced NSCLC suitable for chemoradiotherapy were
randomly assigned (1:1) to target volume delineation performed on 18F-FDG-PET and
CT (including CT-positive but 18F-FDG-negative nodes) plus elective nodal irradiation
and tumor-associated atelectasis, if applicable (conventional target group), or to target
volumes defined by PET alone (18F-FDG PET-based target group). Patients in the phase II
STRIPE trial (Deutsche Krebshilfe, German Cancer Aid Organisation, Nr 108472) with small
primary or metastatic lung tumors who refused surgery or whose tumors were inoperable
due to comorbidities were treated with SBRT. Study design, procedures and main outcome
results have been published elsewhere [24]. The 48 patients in our analyses (37 from PET
Plan and 11 from STRIPE) were prospectively recruited in our department.

The main selection criterion for these patients was to have both static 3D PET/CT
and retrospectively respiratory-gated 4D PET/CT scans performed before the start of
the curatively intended chemoradiotherapy. The study population was divided into
three different datasets (Cohorts 1 to 3) based on the number and characteristics of the
PET/CT acquisitions. Clinical characteristics of the cohorts used for the development of
the prognostic model are summarized in Table 1. Twenty-eight patients (11 from Cohort 1
and 17 from Cohort 2) underwent PET/CT acquisitions during treatment and 20 patients (4
from Cohort 1, 5 from Cohort 2 and 11 from Cohort 3) after treatment (Figure 1). Treatment
response was evaluated in terms of overall survival (OS), local recurrence (LR) and distant
metastasis (DM) for cohorts 1 and 2.

2.2. PET/CT Acquisition

Scans were performed on two different PET/CT systems from Philips (Eindhoven, The
Netherlands): GEMINI TF TOF 64 (TF64) and GEMINI TF 16 Big Bore (BB). The scanners
fulfilled the requirements indicated in the European Association of Nuclear Medicine
(EANM) imaging guidelines (http://earl.eanm.org/ (accessed on 5 February 2021)) and
obtained EANM Research Ltd. (EARL) accreditation. The transverse spatial resolution
at 1 cm from the central axis of the scanner is 4.8 mm for both scanners. PET data were
corrected for randomness, scattering and attenuation based on the corresponding CT
dataset. The reconstruction method was a LOR-based ordered-subset iterative time-of-
flight algorithm using spherical coordinates (BLOB-OS-TF) with three iterations, 33 subsets
and a relaxation parameter of 0.35 for smoothing. Images were normalized to decay-
corrected injected activity per kg body weight standardized-uptake-value (SUV) [g/mL].
A 3D PET scan was planned 60 min after the injection of 350 MBq [18F]FDG. A 4D PET was
acquired after a 3D PET approximately 90 min post injection. The scanning parameters
involved in each cohort are summarized in Table 2.

ClinicalTrials.gov
http://earl.eanm.org/
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Table 1. Clinical characteristics for the patient cohorts used in this study.

Clinical Characteristics Cohort 1
(n = 15)

Cohort 2
(n = 22)

Cohort 3
(n = 11)

Clinical Trial Register NCT00697333 NCT00697333 DRKS00003658
PET-Plan PET-Plan STRIPE

Age
(years, mean ± SD, range) (67 ± 9, 51–78) (65 ± 10, 47–83) (74 ± 7, 60–83)

Sex - - -
Female 9(60%) 6(27%) 3(27%)
Male 6(40%) 16(73%) 8(73%)

Tumor Localization - - -
Peripheral 3(20%) 7(32%) 7(73%)

Central 12(80%) 15(68%) 3(27%)

Stage - - -
Ib (0%) (0%) 6(55%)
IIb (0%) 2(9%) 1(9%)
IIIa 8(53%) 5(23%) (0%)
IIIb 5(33%) 9(41%) (0%)
IIIc 1(7%) 5(23%) (0%)
IV (0%) 1(5%) 2(18%)

Metastases (0%) (0%) 2(18%)

Chemotherapy - - -
Concurrent 15(100%) 22(100%) (0%)

No (0%) (0%) 11(100%)

Radiotherapy (65 ± 11, 30–74) (66 ± 5, 60–74) (36 ± 1, 35–38) *
(Gy, mean ± SD, range) - - -

Overall Survival (47 ± 36, 1–105) (47 ± 21,4–77) (60 ± 31, 11–105)
(months, mean ± SD, range) - - -

Local Recurrence (yes) 6(40%) 9(41%) 2(18%)

Distant Metastasis (yes) 6(40%) 15(68%) 6(55%)

SD: standard deviation. * Prescribed dose in 60% Isodose.

Table 2. PET scanning parameters.

Scannig Parameters Cohort 1
(n = 15)

Cohort 2
(n = 22)

Cohort 3
(n = 11)

4D PET/CT before RT yes yes yes
PET/CT System - - -

TF-64 15 4 11
BB 0 18 0

Voxel Dimension (mm3) 4 × 4 × 4 4 × 4 × 4 4 × 4 × 4

3DPET/CT before RT yes yes yes

PET/CT System - - -

TF-64 15 4 11

BB 0 18 0

Voxel Dimension (mm3) 4 × 4 × 4 2 × 2 × 2 4 × 4 × 4

3DPET/CT during RT yes yes yes

PET/CT System - - -

TF-64 11 4 11

BB 0 13 0

Voxel Dimension (mm3) 4 × 4 × 4 2 × 2 × 2 4 × 4 × 4

3DPET/CT after RT yes yes yes

PET/CT System - - -

TF-64 4 0 11

BB 0 5 0

Voxel Dimension (mm3) 4 × 4 × 4 4 × 4 × 4 4 × 4 × 4

Time interval between 3D scans
(days, mean ± SD, range) (68 ± 92, 14–343) (196 ± 340, 13–1123) (140 ± 67, 42–271)



Cancers 2021, 13, 814 5 of 14Cancers 2021, 13, FDG-PET Radiomics for NSCLC monitoring 5 of 15 
 

 

 
Figure 1. Flowchart of the three cohorts: (i) cohort 1 and 3 were employed to identify the IF satis-
fying the criteria of being normally distributed across 4D PET and robust between 3D and 4D im-
ages; (ii) cohort 1 with manual segmentation of the primary tumor was the training cohort to de-
velop the radiomics model for prediction of treatment response; and (iii) cohort 1 with COA (dif-
ferent segmentation) and cohort 2 (different voxel size for 3D image reconstruction and different 
patients) to validate the radiomics model. 
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Figure 1. Flowchart of the three cohorts: (i) cohort 1 and 3 were employed to identify the IF satisfying the criteria of being
normally distributed across 4D PET and robust between 3D and 4D images; (ii) cohort 1 with manual segmentation of the
primary tumor was the training cohort to develop the radiomics model for prediction of treatment response; and (iii) cohort
1 with COA (different segmentation) and cohort 2 (different voxel size for 3D image reconstruction and different patients) to
validate the radiomics model.

2.3. Tumor Segmentation

Two different methods were applied to delineate the primary tumor lesion: (i) a
manual contour by consensus of two radiation oncologists and (ii) the semi-automatic
segmentation method Contrast-oriented-algorithm (COA) approved by a radiation oncolo-
gist. COA was previously validated with heterogeneous experimental phantoms and lung
cancer patients [20].

2.4. Image Features Extraction

A total of 135 IF were computed with an open-source code [25] based on MATLAB®

(The MathWorks Inc., Natick, MA, USA) for all PET images and all segmentations presented
in Figure 1. The radiomics IF used in this study are listed in the Supplementary Materials
Table S1. As recommended by previous investigations [21,26], SUV values of the voxels
within the contour were discretized with a fixed bin width (W = 0.01) for texture feature
computation. Texture features were derived from five matrices: the 3D version of the
gray-level co-occurrence matrix (GLCM), the gray-level run length matrix (GLRLM), the
gray-level size zone matrix (GLSZM) and the neighborhood gray tone difference matrix
(NGTDM). In addition, on the voxel intensities within the contour we applied: (i) a Wavelet
band-pass filtering (WF) with a weight ratio of 1:2 between band-pass sub-bands and other
sub-bands and (ii) an equal-probability quantization algorithm (Q) by using the function
histeq of MATLAB®.
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2.5. Statistical Analysis

Statistical analysis was performed using in-house software based on Wolfram Mathe-
matica v 11.2. Normality was evaluated by the Shapiro–Wilk test. The Wilcoxon signed
rank (WSR) test was used when comparing two data samples and positive findings were
confirmed by the 95% confidence interval (CI) of the Bland–Altman percentage plot anal-
ysis [27]. For the analysis of overall survival, Kaplan–Meier curves were estimated and
the comparison between groups was evaluated with the log-rank test. Multivariate Cox
regression was used for estimation of hazard ratios (HR) with 95% CI. In the analysis of the
binary outputs (distant metastasis and local recurrence), the Mann–Whitney U test was
used for non-pairwise comparison between groups. For positive findings, an open-source
multivariate binary logistic regression analysis [25] was additionally performed that in-
volved imbalance-adjusted bootstrap resampling in prediction performance estimation and
the computation of model coefficients. To correct for multiple test comparisons, the p values
were adjusted for multiple testing by controlling the false discovery rate using Benjamin
and Hochberg’s method [28]. A p < 0.05 was considered to be statistically significant.

2.6. Proposed Method

Our aim was to identify statistically relevant IF variations during chemoradiotherapy
under the assumption that they would have a higher probability of being clinically relevant
when ruling out those emerging from the intrinsic variability of the PET/CT images. The
proposed method is based on two main findings from previous investigations: (i) our
group observed that most IF were normally distributed across the breathing phases for
28 heterogeneous phantoms following 16 respiratory patters and for 31 lung cancer patients;
(ii) there were IF robust to the motion compensation implied by 4D PET/CT.

The method consists of three main steps:

i. Identification of the IF following a normal distribution across the pre-treatment
4D breathing phases. The objective was to ensure that the 4D protocol and the
robustness of the IF were good enough to reproduce FDG-distribution quantization
across the respiratory phases. For each patient, a primary lesion was segmented
on each breathing phase and values for the 135 IF were computed, Figure 2. We
considered that IF satisfied the selection criteria when their values across the 4D
frames followed a normal distribution (Shapiro–Wilk test) in more than 70% of the
patients.

ii. Identification of IF robustness throughout 3D and 4D PET images. The objective
was to ensure that the IFs were robust enough to be reproducible with and without
a motion-compensation reconstruction protocol.

iii. Quantification of relative IF variations during treatment ∆rIF weighted according
to variability across 4D frames:

δIF =
∆rIF

σIF
(1)

where this normalization factor permitted the emphasis of statistically relevant IF changes
during treatment (δIF).

Consequently, the normalized relative deviation (δ) of the IF, which satisfied both
selection criteria, was evaluated for the predictive accuracy of the treatment response.
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Figure 2. Scheme of the workflow for the first IF selection criteria: IF normal distributed across 4D breathing phases in 70%
of the patients.

3. Results
3.1. Method Development

For the proposed method, the IF that simultaneously satisfied both preconditions—to
be normal-distributed along 4D breathing phases and to be robust throughout 3D and
4D PET images—were identified. The results using the Shapiro–Wilk test in the study
of normality and the Wilcoxon–Rank test in the study of comparability are summarized
in Table 3. The names of the IF are listed in the Supplementary Material in Table S2.
Overall, 17 IF were simultaneously normal-distributed along 4D breathing phases and
robust throughout 3D and 4D PET images (definitions in Table S1): AUCCSH, VarianceCM,
WF-VarianceCM, WF-SRE,WF-LRE, WF-RLN, WF-RP, Q-SZE, Q-LZE, Q-ZSN, Q-ZP, Q-SRE,
Q-LRE, Q-RLN, Q-RP, Q-ContrastNG, Q-Busyness.

Table 3. Number of IF in each cohort and for each segmentation (manual or contrast-oriented
algorithm COA) that satisfied the criteria required for the method proposed.

Segmentation Cohort 1
Manual

Cohort 1
COA

Cohort 3
Manual All

Normal Distributed across 4D 65 61 50 31

Comparable (4D vs. 3D) 83 69 131 62

3.2. Prognostic Model

Cohort 1 and cohort 2 were used for the development of the prognostic model.
Both prospective cohorts presented similar average values for overall survival (OS):
47 ± 36 months for cohort 1 and 47 ± 21 months for cohort 2. Local recurrence (LR)
was observed in 6 out of 15 patients (40%) from cohort 1 and in 9 out of 22 (41%) in cohort
2. Distant metastases (DM) were observed in 6 out of 15 patients (40%) in cohort 1 and in
15 out of 22 (68%) in cohort 2.

We evaluated the prediction of response for the normalized relative deviation of the
17 IF derived from the evaluation in the above-mentioned method. The analysis was
initially carried out for cohort 1 using a manual segmentation and sequentially validated in
cohort 1 with COA segmentation and in cohort 2 using manual segmentation. Statistically
significant correlations between δIF and treatment outcome were considered false positives,
that is, casually linked with the outcome if they were not significant for all (training and
validation) cohorts. The only IF that showed statistically significant correlation with the
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treatment outcome for all cohorts was the area-under-the curve of the cumulative histogram
(AUCCSH). The normalized relative deviation of AUCCSH (δAUCCSH ) could differentiate
patients with LR from patients without LR in patients with locally advanced NSCLC treated
with chemoradiation.

In Figure 3a results for the manual segmentation was applied for the 11 patients of
cohort 1 with 3D PET during radiotherapy (RT) are shown. The time interval between
the 3D PET images (before and during RT) was 19 ± 10 days. The resulted prognostic
model had an AUC of 0.87 and a specificity of 0.78. δAUCCSH resulted in a median = 5,
mean ± standard deviation = 7.2 ± 4.5 and range of (1.3, 12.3) for patients with LR, and in
median = 0.3, mean ± standard deviation = 0.8 ± 5.9 and range of (−16, 2.6) for patients
without LR. Therefore, patients with increasing homogeneity in the primary tumor during
chemoradiation had a higher probability of local recurrence. Results were confirmed when
all 15 patients of cohort 1 were considered, including those with FDG-PET after the end of
RT. For these 15 patients the average time interval between treatment and response FDG
PET was 68 ± 92 days. The accuracy in RL discrimination showed an AUC = 0.80 and
specificity = 0.74. Similar accuracy results (AUC = 0.83 and specificity = 0.75) were obtained
when COA was employed instead of the manual segmentation (Figure 3b). Lower model
accuracy (AUC = 0.63 and specificity = 0.61) was obtained for the 22 additional patients
from cohort 2 with manual segmentation. An example of 3D PET images with and without
LR is presented in Figure 4.
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standard deviation = 7.2 ± 4.5 and range of (1.3, 12.3) for patients with LR, and in median 
= 0.3, mean ± standard deviation = 0.8 ± 5.9 and range of (−16, 2.6) for patients without LR. 
Therefore, patients with increasing homogeneity in the primary tumor during chemora-
diation had a higher probability of local recurrence. Results were confirmed when all 15 
patients of cohort 1 were considered, including those with FDG-PET after the end of RT. 
For these 15 patients the average time interval between treatment and response FDG PET 
was 68 ± 92 days. The accuracy in RL discrimination showed an AUC = 0.80 and speci-
ficity = 0.74. Similar accuracy results (AUC = 0.83 and specificity = 0.75) were obtained 
when COA was employed instead of the manual segmentation (Figure 3b). Lower model 
accuracy (AUC = 0.63 and specificity = 0.61) was obtained for the 22 additional patients 
from cohort 2 with manual segmentation. An example of 3D PET images with and 
without LR is presented in Figure 4. 
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4. Discussion

Our novel method based on FDG-PET radiomics allows identifying clinically relevant
radiomic changes during chemoradiation in locally advanced inoperable NSCLC. We could
confirm that 17 IF satisfied simultaneously the two criteria required for the feasibility of
the method: they were normal-distributed across 4D breathing frames, and they were
consistent throughout 3D and 4D images. Consequently, for these 17 IFs we could justify
the use of the variability across the pre-treatment 4D PET breathing phases as a patient
individualized normalization factor to emphasize statistically relevant IF changes during
treatment. Furthermore, we tested the implementation of the method in the prediction of
treatment outcome in 37 lung cancer patients and preliminary validation results showed
that the normalized relative deviation of the AUC of the cumulative histogram, δAUCCSH ,
differentiates patients with local recurrence from patients without local recurrence.

In the development of the method, different segmentation approaches and patient
cohorts were used. When comparing the same cohort but with different segmentation
approaches, manual segmentation resulted in a larger number of IF satisfying the two
criteria (65 normal-distributed and 83 comparable) than for COA (61 normal-distributed
and 69 comparable). The decreasing number of robust IF for COA could be justified by the
fact that, in comparison with manual segmentation, automatic segmentations like COA
are more sensitive to image noise, heterogeneity and signal blurring due to the lesion
motion [20]. When comparing two different patient cohorts, more IF were robust between
3D and 4D in cohort 3 (131 IF) than for the same segmentation in cohort 1 (83 IF). It could
not be explained by the range of lesion sizes or locations involved in the cohorts because
decreased robustness would be expected for smaller lesions and for more significant lesion
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movement. However, in cohort 3 the lesions were smaller (median volume = 12 ± 9 mL)
and 7/11 had a peripheral location compared to cohort 1 where lesions were larger (median
volume = 86 ± 66 mL) and 3/15 were peripheral. A possible explanation for the unexpected
decreased number of robust IF observed for cohort 1 could be a more irregular respiratory
patterns for these central lesions as the respiratory pattern is a very significant degrading
factor for IF robustness between 4D and 3D [29]. Overall, IF variability was sensitive to the
segmentation and to the localization and volume of the treated lesions. We could therefore
emphasize the importance of involving different cohorts in model development in order to
increase the ability to generalize the resulting method.

In addition, it should be remarked that the method proposed would permit the
identification of clinically relevant changes during treatment for a given image feature.
In previous publications, two approaches were employed to define PET IF stability: In
first method, IF were considered not stable if their relative deviations were larger than the
relative deviations observed for volume or for SUV (maximum and mean) [30]. The second
method was to consider IF as stable if they had a relative deviation lower than 15% [31]
Although these methods were considered reasonable, it has been demonstrated that for
phantoms [29] and for patients [21] the intrinsic variability of an IF and the impact of the
degrading factor on an IF [16,32] varies between the respective features. Consequently, it
should be recommended that a stability criterion individually adapted to the respective
IF be used and the use of general rules be avoided. In addition, the criteria to identify
clinically relevant changes during treatment using the proposed method would be also
patient-dependent. It is well known that PET noise and resolution are degrading factors of
IF variability and their impact on IF variability can be expected to be more significant for
smaller lesions and lower uptake concentrations. Therefore, a stability criterion individually
adapted to the patient, that is, adapted to the SUV and volume of the lesion, would be
preferable to a common stability criterion applied to all patients independent of lesions
characteristics.

Once we identified the IF eligible for their use in the proposed method we tested
the implementation of the method in the outcome prediction for lung cancer patients,
who were separated into training cohorts and validation cohorts. The training cohort
was selected in terms of homogeneity: all response 3D PETs were acquired in the second
week after the start of the treatment, and all PETs had the same resolution. Interestingly,
accuracy obtained for the model of LR prediction in the training cohort (AUC = 0.87,
Specificity = 0.78) was also high (AUC = 0.80, specificity = 0.74) when 4 additional patients,
for whom response 3D PET was acquired after treatment, were included. For the validation
cohorts, the model accuracy was independent on whether 3D PET was done during or after
treatment. These results would not be enough to confirm the robustness of the method
with respect to the time of the 3D PET acquisition for response monitoring. However,
based on these results, the robustness of the method with respect to the time could not be
rejected, which would imply an important advantage for the application of the method
in clinical routine. In addition, LR prediction was equally accurate for lesions segmented
manually or by COA. From these results, the replacement of manual segmentation by COA
segmentation could be recommended. It would not only reduce inter- and intra-observer
variability, but it would also reduce the time invested, which is requisite for the application
of the method in clinical routine. Although previous phantom experiments had already
reported the robustness of AUCCSH with respect to different PET/CT systems, CT metal
artefacts and reconstruction voxel size [32], the accuracy of the LR prediction model was
also evaluated for a second validation cohort of 22 new patients, mixing 2 and 4 mm PET
images. For cohort 2, accuracy results were poorer but still comparable to findings reported
in previous publications [33].

Many publications focused on radiomics in lung cancer [34–36], but only part of
these publications focused on FDG-PET images. From them, a small number evaluated
IF variations during or after treatment (delta radiomics) [33]. To our knowledge, we
present the first prediction model based on IF variations adjusted to account for the
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intrinsic variability of IF. Our results showed that δAUCCSH could differentiate patients
with local recurrence from patients without local recurrence. AUCCSH is a first-order
statistics, that is, it does not take into account spatial information, which reflects tumor
heterogeneity. The cumulative SUV-volume histogram (CSH) is an analogue to the dose-
volume histogram employed in RT-planning. In CSH, the percent of tumor volume with
an SUV (instead of dose) above a certain threshold is plotted against that threshold, which
varied from 0 to 100% of the maximum SUV (SUVmax). The area under the curve of these
plots, AUCCSH, is a quantitative index of heterogeneity, where AUCCSH increases with
homogeneity. For patients with local recurrence δAUCCSH resulted in (median = 5, mean
± standard deviation = 7.2 ± 4.5, ranging from 1.3 to 12.3) and for patients without local
recurrence in (median = 0.3, mean ± standard deviation = 0.8 ± 5.9, ranging from −16 to
2.6) (See example in Figure 2). We could, therefore, conclude that patients whose primary
tumor homogeneity increased during therapy had a higher probability of local recurrence.
Previous publications have also reported significant correlations between AUCCSH and RT
outcome for lung cancer patients: prediction of recurrence based on pre-treatment AUCCSH
quantification [37] and prediction of OS based on changes in AUCCSH during treatment [38].
The same correlations could be observed in our data sample, but they were not statistically
significant. Although it is known that intratumoral heterogeneity in FDG distribution
correlates with many factors at the cellular level (such as intracellular hypoxia, necrotic
infiltration, vascularization and tumor cell proliferation [39]), the underlying physiological
processes, which might explain why an increased FDG homogeneity in terms of AUC would
be derived in local recurrence are still not clear. For a better understanding of our results on
a cellular or immunological level (e.g., by an increase in the T-cell infiltration), it would be of
interest to evaluate our findings with a mid-treatment histological examination. From our
knowledge, no publication concerning other cancer sites has demonstrated a statistically
significant prediction of treatment response by AUCCSH. It could probably be due to
the fact that AUCCSH is not as frequently evaluated as other histogram parameters [16],
such as SUVmean, Skewness, Kurtosis or coefficient of variance. Nevertheless, patients
with an increase in primary tumor homogeneity during therapy (e.g., diagnosed using
a mid-treatment 18F-FDG PET) might benefit from concepts such as dose escalation or
an additional boost of the primary tumor. In order to avoid treatment prolongation and
subsequently avoiding the effect of an accelerated repopulation of tumor clonogens [40,41],
either hyperfractionation [42] or hypofractionation [11] can be used. Such concepts have
been tested previously, using metabolic tumor volumes according to 18F-FDG-avidity on
mid-treatment PET scans with conflicting results [42–44]. From the results reported in this
study, it might be of interest to evaluate these treatments on the basis of an increase of
18F-FDG homogeneity in terms of AUC.

The main limitation of our study is the small sample size. A wide patient population
is required to increase the statistical significance of our results. Current work is therefore
focused on the recruitment of additional patients from other German institutions involved
in STRIPE and PET-Plan trials. This wider, more heterogeneous, patient population will
allow us to evaluate the performance of our model in an external validation cohort. Con-
sequently, the LR prediction model observed for the patient population involved in the
current analysis should be understood as a proof of concept for the feasibility of the use
of the proposed method to identify clinical relevant changes during the treatment of lung
cancer patients based FDG-PET radiomics. The confirmation of this LR prediction in a
larger patient cohort is therefore required. However, from our preliminary results, and
in agreement with previous publications, the quantification of tumor FDG heterogene-
ity by δAUCCSH could be implemented when monitoring treatment response of NSCLC
patients treated with chemoradiation and assist with mid-treatment adaption and dose
intensification concepts such as isotopic dose escalation.
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5. Conclusions

The presented novel method based on FDG-PET radiomics identifies clinically relevant
changes during chemoradiation in patients with NSCLC. For the selected 17 IF, which
were normally distributed across 4D breathing frames and robust throughout 3D and
4D images, we could justify the use of the variability across the pre-treatment 4D PET
breathing phases as a patient-individualized normalization factor to emphasize statistically
relevant IF changes during treatment. In addition, we reported the first prediction model
based on IF variations which were adjusted to account for the intrinsic variability of IF.
Preliminary results showed that patients for which primary tumor homogeneity, quantified
by AUCCSH, increased during therapy had a higher probability for local recurrence. These
patients could profit the most from mid-treatment adaptions of the target volume as well
as from isotoxically escalated concepts such as in the PET-Plan trial.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/4/814/s1. Table S1: Image features (radiomics) and Table S2: Image features robustness
required for the proposed method. Black box means positive result for the analysis described on
the first row and represents the property of interest. In last column, IF robustness was defined by
simultaneously satisfying both criteria (normal-distributed (fifth column) and comparable (ninth
column)).
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