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Abstract
Objectives: Bacteremia due to invasive Salmonella enterica has been reported earlier in children in Nigeria. This study aimed 
to detect the virulence and antibiotic resistance genes of invasive Salmonella enterica from children with bacteremia in north-
central Nigeria.
Method: From June 2015 to June 2018, 4163 blood cultures yielded 83 Salmonella isolates. This is a secondary cross-
sectional analysis of the Salmonella isolates. The Salmonella enterica were isolated and identified using standard bacteriology 
protocol. Biochemical identifications of the Salmonella enterica were made by Phoenix MD 50 identification system. Further 
identification and confirmation were done with polyvalent antisera O and invA gene. Antimicrobial susceptibility testing was 
done following clinical and laboratory standard institute guidelines. Resistant genes and virulence genes were determined 
using a real-time polymerase chain reaction.
Result: Salmonella typhi 51 (61.4%) was the most prevalent serovar, followed by Salmonella species 13 (15.7%), choleraesuis 
8 (9.6%), enteritidis 6 (7.2%), and typhimurium 5 (6.1%). Fifty-one (61.4%) of 83 Salmonella enterica were typhoidal, while 32 
(38.6%) were not. Sixty-five (78.3%) of the 83 Salmonella enterica isolates were resistant to ampicillin and trimethoprim-
sulfamethoxazole, followed by chloramphenicol 39 (46.7%), tetracycline 41 (41.4%), piperacillin 33 (33.9%), amoxicillin-
clavulanate, and streptomycin 21 (25.3%), while cephalothin was 19 (22.9%). Thirty-nine (46.9%) of the 83 Salmonella enterica 
isolates were multi-drug resistant, and none were extensive drug resistant or pan-drug resistant. A blaTEM 42 (50.6%), floR 
32 (38.6%), qnrA 24 (28.9%), tetB 20 (20.1%), tetA 10 (10.0%), and tetG 5 (6.0%) were the antibiotic resistance genes detected. 
There were perfect agreement between phenotypic and genotypic detection of antimicrobial resistance in tetracycline, 
ciprofloxacin, and chloramphenicol, while beta-lactam showed κ = 0.60 agreement. All of the Salmonella enterica isolates had the 
virulence genes invA, sopB, mgtC, and sip4D, while 33 (39.8%), 45 (51.8%), and 2 (2.4%) had ssaQ, spvC, and ljsGI-1, respectively.
Conclusion: Our findings showed multi-drug resistant Salmonella enterica in children with bacteremia in northern Nigeria. 
In addition, significant virulence and antimicrobial resistance genes were found in invasive Salmonella enterica in northern 
Nigeria. Thus, our study emphasizes the need to monitor antimicrobial resistance in Salmonella enterica from invasive sources 
in Nigeria and supports antibiotic prudence.
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Introduction

The type of infection that results from Salmonella enterica is 
determined by the virulence factors of the bacterium and the 
host’s factors.1–3 Salmonella infection could manifest clini-
cally as gastroenteritis (diarrhea, abdominal cramps, and 
fever) or a fatal febrile systemic infection (typhoid) that 
needs to be treated with antibiotics.4–7 Focal conditions and 
asymptomatic carriers are possible and are significant 
sources of continued infection transmission.8 Salmonella is a 
gram-negative, flagellated, with O, H, and Vi antigens. More 
than 1800 Salmonella serovars are known.2,9 Salmonellae 
infection is possible when the bacteria gets through the gas-
tric acid barrier, into the mucosa of the small and large intes-
tines, and makes toxins.10 Invasion of the epithelial cells 
causes the release of cytokines that cause inflammation.11 It 
results in diarrhea, leading to ulceration and the destruction 
of mucosal cells. Also, if this spread in the intestines persists, 
it could result in systemic infection.11

Horizontal gene transfers shape bacterial genomic diver-
sity.12 Some pathogens have genomic islands or islets (GI) 
with functionally linked genes.13,14 Salmonella pathogenic 
islands (SPIs) contain virulence genes, distinguishing them 
from nonpathogenic types.15–18 Virulence factors determine a 
host's pathogenicity.19 The adhesion and invasion of host 
cells by pathogenic S. enterica are aided by pef, spv, invA, 
and fim genes, respectively. Magnesium transport C (mgtC), 
Salmonella toxin (stn), and pip A, B, and D help the bacte-
rium survive in the host system.20,21

The burden of invasive bloodstream infection due to S. 
enterica is increasing, especially in developing countries.5 
Globally, 1.2 million deaths attributable to S. enterica are 
recorded annually, with the vast majority occurring in 
resource-limited countries.22 In resource-limited countries, 
non-typhoidal Salmonella infections cause bacteremia in 
immune-compromised and malnourished adults and chil-
dren.16 Most morality from Salmonella infection is con-
nected to poor diagnostic infrastructures leading to 
misdiagnosis and drug misuse.23 It is established that most 
pathogenic bacteria are acquired from the environment, 
food, and water sources.24,25 Although typhoidal Salmonella 
is a human host-adapted strain, recent literature has found 
typhoidal Salmonella in the food chain and water sources.26–30

The worldwide rise of multi-drug resistance is a major 
health concern.31 It is becoming increasingly important to 
routinely apply antimicrobial susceptibility testing to select 
the antibiotic of choice and to screen for emerging multi-
drug resistant (MDR) strains,32 as several recent studies have 
reported the emergence of multi-drug resistant Salmonella 
pathogens from various origins, including humans,33 birds,34 
cattle,31 and fish.35

Pathogens’ high antimicrobial resistance has been attrib-
uted to antimicrobial misuse in human and animal hus-
bandry.36–39 Comparative genomic data from invasive 
Salmonella data and those from the environment and food 

chain have shown relatedness between clinical isolates and 
other sources.10,11,40 It has caused great concern as clinical S. 
enterica are resistant to the commonly used antibiotic, and 
some have been found to harbor extended-spectrum beta-
lactamases (ESBL) genes which could make treatment dif-
ficult.41–46 Recent data from surveillance has found 
non-typhoidal Salmonellae to be highly resistant to antimi-
crobials.4,47–49 Thus, clinical care for individuals with inva-
sive Salmonella infection is expensive, increases their 
hospital stay, and burdens them financially.50,51 Studies have 
been carried out on Salmonella virulence factors, but infor-
mation on invasive isolates is scarce, especially from the 
pediatric population. This study aims to investigate the viru-
lence and antimicrobial resistance genes pattern of S. enter-
ica from invasive bloodstream infection in children from 
north-central Nigeria.

Materials and methods

Study design

This is a secondary cross-sectional analysis of isolated S. 
enterica in children with bloodstream infection in the Federal 
Capital Territory (FCT) and Nasarawa State, Nigeria.

Collection of Salmonella isolates analyzed in the 
study

Eighty-three gram-negative bacilli isolates were collected 
from blood cultures recovered from the study conducted at 
seven hospitals in FCT and Nasarawa State, Nigeria. 
Presumptively identified Salmonella isolates from four thou-
sand and sixteen blood cultures were processed from June 
2015 to June 2018. The study was part of Community-
Acquired Bacteremia Syndrome in Young Nigeria Children 
conducted in north-central Nigeria from 2008 to 2018 by the 
International Foundation Against Infectious Diseases in 
Nigeria. The outcomes from 2008 to 2015 had been previ-
ously reported by Obaro et al.,5 and those previously reported 
isolates were excluded from this study.

Isolation of S. enterica of positive blood culture

Bacterial analysis, including gram staining and biochemical 
analysis using the analytical profile index (API20E) 
(Biomerieux, SA Lyon, France), was used to identify the 
Salmonella pathogens. Obaro et al.5 have previously 
described the protocol used to culture and isolate the S. 
enterica used in this work. Briefly, all positive bottles were 
subcultured onto MacConkey agar (Oxoid, London, UK) 
and Salmonella shigella agar (Oxoid) plates and then incu-
bated at 36°C for 24 h. The isolates were frozen at −80°C in 
10% skim milk glycerol (Hardy Diagnostics, Santa Maria, 
California, USA) until used.52 In conducting the study, the 
previously collected isolates were grown onto S. shigella 
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agar (Oxoid) and incubated at 37°C for 24 h. In checking for 
Salmonella isolates, colonies were looked for on the plates. 
The morphological traits and characteristics of Salmonella 
species were selected, and gram staining of the selected colo-
nies from each plate was examined.52 Biochemical assays, 
including reactions on triple sugar iron agar, lysine iron agar, 
indole synthesis in tryptone broth, and urea splitting ability, 
were then conducted using the Phoenix MD (Beckon-
Dickson systems, San Jose, California, USA). Molecular 
invA gene detection was used to validate the authenticity of 
the isolates. Polyvalent Salmonella antisera, A-G, A-S sur-
face antigen, flagellar H (phase 1 and phase 2) (Beckon-
Dickson systems) according to Kauffman-White Scheme53 
were used in the serotyping of the Salmonella isolates.

By Antimicrobial Susceptibility Testing and Multiple 
Antimicrobial Resistance (MAR) Index according to Clinical 
and Laboratory Standards Institute recommendations,54 the 
antibiotic susceptibility of the isolates was determined. The 
antibiotic discs (ampicillin (10 μg), amoxicillin-clavulanate 
(30/10 μg), piperacillin (30 μg), piperacillin-tazobactam 
(30/10 μg), streptomycin (10 μg), trimethoprim-sulfameth-
oxazole (10/25 μg), chloramphenicol (30 μg), tetracycline 
(30 μg), aztreonam (30 μg), gentamicin (10 μg), amikacin 
(30 μg), cephalothin (30 μg), cefuroxime (30 μg), cefotaxime 
(30 μg), ceftazidime (30 μg), cefepime (30 μg), ceftriaxone 
(30 μg), levofloxacin (5 μg), meropenem (10 μg), imipenem 
(10 μg), tigecycline (25 μg), cefotaxime-clavulanate 
(30/10 μg), and ceftazidime-clavulanate (30/10 μg) that were 
utilized in a disk diffusion assay were from Oxoid. The BD 
PhoenixTM M50 system (Beckon-Dickson systems) was used 
for minimal inhibitory concentration (MIC) testing. For cip-
rofloxacin, MIC values >0.064 g/mL were viewed as 
reduced susceptibility, while MIC values 4 g/mL were inter-
preted as resistant; for azithromycin, MIC values >16 g/mL 
were interpreted as resistant. According to Davis and 
Brown,55 the MAR indexes were derived as the ratio of anti-
biotics to which resistance was demonstrated to the number 
of antibiotics for which the isolate was screened for suscep-
tibility. According to Algammal et al.,32 the resistance pro-
files were classified as MDR, extensive drug resistant 
(XDR), or pan-drug resistant (PDR).

Molecular detection of resistance and virulence 
genes

Genomic DNA was extracted using the Maxwell 16-cell 
DNA purification kit (Promega, Madison, Wisconsin, USA) 
on an automated machine (Maxwell 16 extraction system, 
Madison, Wisconsin, USA). The real-time polymerase chain 
reaction (PCR) assays were performed on the AriaMx sys-
tem (Agilent Inc., Santa Clara, California, USA). Primers 
and probes were purchased from LGC, Biosearch (Novato, 
California, USA) for the different genes based on primers 
and probes used by Ibrahim et al.56 for invA; Bugarel Weil 
et al.57 for sopB, ssaQ, mgtC, spi4D, spvC, and ljsGI-1; 

Roschanski et al.58 for blaTEM, blaSHV; Vien et al.59 for qnrA; 
Singh and Mustapha60 for floR and tetG; and Guarddon 
et al.61 for tetA and tetB. Supplemental Tables 1 and 2 show 
the genes sequences and amplification conditions used. A 
quality-controlled positive and negative internally character-
ized known resistant and susceptible Salmonella typhi strains 
from International Typhoid Consortium62 were used as con-
trols for amplification for detecting the resistance genes and 
virulence during PCR. Also, no template controls were 
incorporated into the PCR as an additional method of inter-
nal control in the PCR.

A 12.5 μL of Perfecta master mix low ROX kit (Quanta 
Bioscience Inc., Madison, Wisconsin, USA), 1.0 μL of each 
10 mM primers and probes, 7.5 μL of Nuclease free water 
(Sigma-Aldrich, St Louis, Missouri, USA), and 2.0 μL of 
DNA template make up a 25 μL PCR reaction mixture. 
Thermal conditions were those described by the referenced 
authors (Tables 1 and 2). After the amplification experiments 
were completed, the cycle thresholds were determined by 
identifying the fluorescence signal by analyzing the amplifi-
cation plots in AriaMx system software version 3.1.

Statistical analysis

Data were imputed and validated in Excel 2016. Descriptive 
statistics were computed for the multiple antibiotic resistance 
index. Agreement between the values of antimicrobial resis-
tance phenotypes and their corresponding genotypes was 
established by κ value (coefficient of agreement) according 
to Jeamsripong et al.63 Chi-square and Fisher’s exact test 
were used to test association as appropriate in every case. 
p < 0.05 was taken as statistically significant. Statistical 
Package for Social Science Version 20 (IBM, Santa Barbara, 
California, USA) was used.

Results

Prevalence and phenotypic characteristics of 
recovered Salmonella species

Table 1 shows the Salmonella serovars found in the study, S. 
typhi 51 (61.4%) was the most occurring serovar, Salmonella 
typhimurium 5 (6.1%), Salmonella enteritidis 6 (7.2%), 
Salmonella choleraesuis 8 (9.6%), and Salmonella species 

Table 1. Identification of Salmonella by API 20E.

Salmonella ID Clinical samples n = 83 n (%)

Salmonella typhi 51 (61.4)
Salmonella typhimurium 5 (6.1)
Salmonella enteritidis 6 (7.2)
Salmonella choleraesuis 8 (9.6)
Salmonella species 13 (15.7)

n: number; %: percentage.
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13 (15.7%) were the other identified serovars in this study. 
Figure 1 showed a statistically significant (p = 0.02) higher 
typhoidal Salmonellae 51 (61.4%) than non-typhoidal 32 
(38.6%) Salmonellae in the study.

Antimicrobial susceptibility testing, antibiotic 
resistance genes outcomes

Table 2 shows the resistance pattern of the Salmonella iso-
lates. Of the 83 S. enterica isolates, 65 (78.3%) were resist-
ant to ampicillin and trimethoprim-sulfamethoxazole. A 
significant (p = 0.03) higher resistance was found in typhoi-
dal Salmonellae 44 (86.3%) compared non-typhoidal 
Salmonellae 21 (65.6%). Resistance to tetracycline 41 
(49.4%) was higher, with a statistically significant difference 
(p = 0.0004) in typhoidal Salmonellae 33 (64.7%) than in 
non-typhoidal Salmonellae 8 (25.0%).

Resistance to other antimicrobials was as follows: amox-
icillin-clavulanate 21 (25.3%), piperacillin 33 (39.8%), 
cephalothin 19 (22.9%), chloramphenicol 39 (46.9%), strep-
tomycin 21 (25.3%), azithromycin 9 (10.8%) with no statis-
tically significant differences (p > 0.05) in typhoidal 
Salmonellae and non-typhoidal Salmonella in the study. 
Intermediate ciprofloxacin susceptibility occurred in 24 
(28.9%) Salmonella isolates. Also, intermediate azithromy-
cin susceptibility occurred in nine (10.8%) Salmonella 
isolates.

MDR was found in 39 (46.9%) of the 83 S. enterica iso-
lated. Of the 39 S. enterica isolates that demonstrated MDR 
phenotypically, 30 (58.9%) were typhoidal Salmonellae. In 
comparison, nine (28.1%) of them were non-typhoidal 
Salmonellae. No XDR and PDR were observed in the study, 
as shown in Figure 2. Figure 3 shows the MAR indexes of 
the Salmonella isolates, 50 (60.2%) of the isolates showed 
higher statistically significant MAR (>0.2) than the other 33 
(39.8%) Salmonella isolates with MAR ⩽ 0.2.

Of the resistance genes investigated, the blaTEM gene with 
42 (50.5%) was the most common occurrence in the study. 
The occurrences of the other resistance genes were as fol-
lows, floR 32 (38.6%), tetA 10 (12.0%), tetB 20 (24.1%), 
tetG 5 (6.0%), and qnrA genes 24 (28.9%). The study showed 
no blaSHV and blaCTX-M, as shown in Figure 4. Table 3 shows 
the occurrence of the resistance genes in typhoidal and non-
typhoidal S. enterica. There was no statistical significance 
(p > 0.05) differences in the occurrence of the resistance 
genes in typhoidal and non-typhoidal S. enterica.

For even phenotypic resistance recorded, the correspond-
ing gene was determined, κ agreement analysis was done, 
and the outcomes showed perfect agreement for chloram-
phenicol (κ = 0.954), tetracycline (κ = 1), and ciprofloxacin 

Table 2. The non-susceptibility pattern between invasive typhoidal and non-typhoidal Salmonellae in the study.

Classes Antibiotics No of positive 
isolates n = 83 (%)

Salmonella enterica p-Value

Typhoidal n = 51 Non-typhoidal n = 32

Beta-lactams
Penicillin
First cephalosporin

Ampicillin* 65 (78.3) 44 (86.3) 21 (65.6) 0.03
Amoxicillin-clavulanate* 21 (25.3) 13 (25.5) 9 (28.1) 0.79
Piperacillin* 33 (39.8) 20 (39.2) 13 (40.6) 0.41
Cephalothin* 19 (22.9) 12 (23.5) 7 (21.9) 0.86

Sulfonamides Trimethoprim-sulfamethoxazole* 65 (78.3) 44 (86.3) 21 (65.6) 0.03
Phenicol Chloramphenicol* 39 (46.9) 22 (43.1) 17 (53.1) 0.37
Tetracycline Tetracycline* 41 (49.4) 33 (64.7) 8 (25.0) 0.0004
Aminoglycosides Streptomycin* 21 (25.3) 10 (19.6) 11 (34.4) 0.13

aAzithromycin (IAS)** 9 (10.8) 5 (9.8) 4 (12.5) 0.73
Fluoroquinolone bCiprofloxacin (ICS)* 24 (28.9) 16 (31.4) 8 (25.0) 0.53

n: number; %: percentage; ICS: intermediate ciprofloxacin susceptibility; IAS: intermediate azithromycin susceptibility. p < 0.05 = statistical significance. 
p > 0.05 = statistical insignificance.
*Chi-square statistic.
**Fisher’s exact test.
aMIC ciprofloxacin>0.064 µg/mL.
bMIC azithromycin >16 µg/mL.

Figure 1. Classification of Salmonella enterica in the study.
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(κ = 1), but there was a moderate agreement between pheno-
typic detection of β-lactam and the genotypic detection with 
κ = 0.60 as shown in Supplemental Table 3.

PCR-based detection of virulence-
determined genes

Of the seven virulence genes examined, SPIs encoding genes 
(invA, sopB, mgtC, and spi4D) were found in all the 
Salmonella isolates 83 (100.0%). Gene spvC occurred in 45 
(51.8%) S. enterica recovered in the study. In comparison, 
gene ssaQ occurrence was found in 33 (39.8 %) of the 
Salmonella isolates, but the ljsGI-1 gene was found in 2 
(2.4%) of the Salmonella isolates shown in Figure 5. The 
prevalence of spvC genes in typhoidal Salmonellae 30 
(58.8%) was insignificantly higher than non-typhoidal 
Salmonellae 16 (57.1%). In contrast, gene ssaQ occurrence 
in typhoidal Salmonellae 17 (33.3%) is significantly 
(p = 0.02) lower than in non-typhoidal Salmonellae 16 
(57.1%). The ljsGI-1 gene was found only in two (3.9%) 
typhoidal sub-group, as shown in Table 4.

Discussion

Increased resistant S. enterica has continued to pose a sig-
nificant threat to human health and animal protection, and 
their spread is being increasingly found in clinical, food, and 
animal samples. Our study found typhoidal Salmonella sero-
vars and non-typhoidal Salmonella serovars similar to the 
report by Awol et al.64 in a multicenter study. Ke et al.65 and 
Stanaway et al.66 show that children in poor and middle-
income countries with sub-optimal water, sanitation, and 
hygiene have a considerable and progressive increase in 
invasive non-typhoidal Salmonella (iNTS) infection. 
Invasive typhoid and non-typhoidal Salmonella have been 
previously reported in Nigerian children.5,8,27,67,68

Regarding the serovars found in this study, S. typhi was 
the highest, followed by S. choleraesuis, S. enteritidis, and S. 
typhimurium. Salmonella typhi is the most common serovar 
in invasive Salmonella infection in children, according to 
previous studies conducted in Nigeria and elsewhere.5,8,67,69–71 
Serovars S. enteritidis and S. typhimurium are not frequently 
observed in invasive non-typhoidal infections in industrial-
ized countries. Still, in sub-Saharan Africa, they are becom-
ing a reoccurring decimal. Two African authors have 
previously reported them in invasive Salmonella 
infection.72,73

High levels of resistance to ampicillin, trimethoprim-sul-
famethoxazole, tetracycline, and other routinely used antibi-
otics were found in our investigation. Salmonella strains 
isolated from invasive environments resist many of the most 
widely used antibiotics.5,67,70,71 In particular, multidrug-
resistant iNTS caused life-threatening invasive disease out-
breaks in children in Nigeria, Rwanda, and Malawi.67,74,75

The antimicrobial resistance of iNTS is a big problem 
because it can cause bacteremia in immunocompromised 
people.76 The high prevalence of antimicrobial-resistant 
Salmonella is a serious concern for public health.58 Salmonella 
typhi was the most common cause of invasive typhoidal 

Figure 2. Occurrence of MDR of Salmonella enterica isolated.
MDR: multi-drug resistant.

Figure 3. Multiple antimicrobial resistance index of Salmonella 
serovars.

Figure 4. Prevalence of resistance genes from the Salmonella 
enterica isolates.
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Salmonella infection, and its high MDR and low ciprofloxa-
cin susceptibility rates were the most striking findings of our 
investigation. This result is consistent with patterns seen in 

Cambodia by Vlieghe et al.77 when describing MDR in S. 
typhi. The MDR has been observed in S. enterica in several 
countries in literature.78–80 Salmonella typhi with multi-drug 
resistance was found in an assessment of typhoid fever cases 
in Pakistan, Vietnam, India, China, Indonesia, and 
Nigeria.73,81–85Our finding regarding MDR in Salmonella iso-
lates in Nigeria agreed with previous reports and the assertion 
that Nigeria is in the vicinity region referred to as a hotspot 
for antimicrobial overuse.19,86

The MAR index, a cost-effective and valid method of 
bacteria origin tracking, was also calculated. It has become 
possible to tell bacteria apart by their resistance to the most 
popular antibiotics in human medicine by doing a MAR 
analysis.87–89 Compared to other methods of bacteria source 
tracking, such as genotypic characterization, the MAR 
indexing method is cost-effective, rapid, and easy to per-
form.90 MAR index values greater than 0.2 indicate a high-
risk source of contamination and index for high antibiotics 
usage.88 This study reported a high MAR index >0.2 for S. 
enterica from invasive sources, which concerns the efficacy 
of treatment options available. High MAR in S. enterica has 
been attributed to plasmids containing one or more resist-
ance genes,91–93 each encoding a single antibiotic resistance 
phenotype.94 This study did not find XDR and PDR support 
in literature.91–93

Our results revealed significant positivity of blaTEM in the 
S. enterica studied. The blaTEM gene found in this study was 
slightly higher in invasive typhoidal strains than iNTS. The 
presence of the blaTEM gene in most of the S. enterica in our 
study supported earlier assertion, which suggested that 
blaTEM genes code for beta-lactam drug resistance like ampi-
cillin.95 Beta-lactamase produced by gram-negative bacteria 
remains the primary mechanism by which they develop 
resistance to beta-lactam antibiotics. Additionally, ESBLs 
are increasingly common among S. enterica serovars, and 
their frequency and prevalence have been reported to rise.96–

98 Although blaCTX-M and blaSHV were not found in this study, 
recent studies from Asia and some parts of Africa have 

Table 3. Occurrences of resistance genes in typhoidal and non-typhoidal Salmonella in the study.

Classes Genes No positive isolates N = 83 (%) Salmonella enterica p-Value

Typhoidal n = 51 Non-typhoidal n = 32

Beta-lactams blaTEM* 42 (50.6) 29 (56.9) 13 (40.6) 0.15
blaSHV 0 (0.0) 0 (0.0) 0 (0.0) NA
blaCTX-M 0 (0.0) 0 (0.0) 0 (0.0) NA

Chloramphenicol floR* 32 (38.6) 20 (39.2) 12 (37.5) 0.88
Tetracycline tetA** 10 (12.0) 8 (15.7) 2 (6.3) 0.30

tetB* 20 (24.1) 13 (25.5) 7 (21.9) 0.71
tetG** 5 (6.0) 2 (3.9) 3 (9.4) 0.37

Fluoroquinolone qnrA* 24 (28.9) 16 (31.4) 8 (25.0) 0.53

n: number; %: percentage; NA: not applicable. p < 0.05 = statistical significance; p > 0.05 = statistical insignificance.
*Chi-square statistic.
**Fisher’s exact test.

Figure 5. Prevalence of virulence genes from the Salmonella 
enterica isolates.

Table 4. Occurrence of virulence genes in invasive typhoidal and 
non-typhoidal Salmonella.

Genes Total Typhoidal Non-typhoidal p-Value

n = 83
n (%)

n = 51
n (%)

n = 32
n (%)

 

invA 83 (100.0) 51 (100.0) 32 (100.0) 1.0
sopB 83 (100.0) 51 (100.0) 32 (100.0) 1.0
mgtC 83 (100.0) 51 (100.0) 32 (100.0) 1.0
Sip4D 83 (100.0) 51 (100.0) 32 (100.0) 1.0
spvC 45 (51.8) 30 (58.8) 15 (42.8) 0.29
ssaQ 33 (39.8) 17 (33.3) 16 (57.1) 0.02
ljsGI-1 2 (2.4) 2 (3.9) 0 (0.0) 0.52

n: number; %: percentage. p < 0.05 = statistical significance; p > 0.05 = sta-
tistical insignificance.
*Chi-square statistic.
**Fisher’s exact test..
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reported them,96,99 specifically reports of the blaSHV gene 
from clinical S. enterica from India.100–103 Therefore, moni-
toring the incidence of blaTEM in S. enterica isolates is a cru-
cial public health tool in combatting this threat.

Salmonella enterica isolates with phenotypically interme-
diate ciprofloxacin susceptibility (ICS) were found to harbor 
plasmid-mediated quinolone resistance (PMQR) genes 
(qnrA). This observation agrees with a report from India104 
with observations in human samples (51.4%), food-produc-
ing animals (28.6%), environmental samples (11.4%), and 
animal samples (8.6%), respectively.89,105–107 Ciprofloxacin 
has become prominent in treating severe infections caused 
by S. enterica, especially those resistant to nalidixic acid, 
which has increased significantly in recent years. Still, high 
resistance levels to ciprofloxacin are rare, but its resistance is 
foundational for other resistance mechanisms.75,108,109 
Mutants resistant to fluoroquinolones are being rapidly 
selected due to the spread of PMQR genes.110 Moreover, 
interactions between mutations in the QRDR and PMQR 
genes might result in high fluoroquinolones MIC. However, 
a study111 speculated that the qnr genes could increase fluo-
roquinolone resistance.

In literature, tetA, tetB, and tetG were consistently found 
in S. enterica of human origin. The tetB gene is predominant 
among the phenotypic tetracycline-resistant strains in the lit-
erature. Our findings agreed with two studies that have 
reported tetA and tetB in S. enterica from a human with gas-
troenteritis in India and Nigeria.112,113 tetG has also been 
reported in humans with bacteremia in Nigeria.113 However, 
studies examining tetracycline resistance in multiple isolates 
reported tetA, tetB, and other types in S. enterica isolates 
from humans and those from animals, environments, and 
poultries.113,114 Regarding the family Enterobacteriaceae, 
the tetB and tetA tetracycline resistance determinants have 
historically been the most prevalent.112 However, tet (C, D, 
E, M, O) associated with tetracycline resistance in Salmonella 
species and other bacteria are less frequently found.

Salmonella isolates that have developed phenotypic 
resistance to chloramphenicol are strongly linked to the 
development and expression of efflux that pumps the drug 
out of the bacteria’s cells,115,116 encoded by floR or cml genes. 
In our study, all invasive S. enterica phenotypically resistant 
to chloramphenicol had floR gene. These findings agree with 
reports of floR gene detection from S. enterica in the litera-
ture.117,118 Also, it has been asserted that the floR gene of 
Salmonella pathogenicity island-1 contributes to S. enterica 
infectivity.92 Chloramphenicol was one of Nigeria’s most 
common drugs of choice in treating Salmonella-related 
infections. A survey revealed 72.4%–89.2% increased resist-
ance from 1997 to 2007, thus limiting its therapeutic 
value.117,118 In Iraq, chloramphenicol-associated genes 
were highly occurring in S. enterica strains isolated from 
clinical samples.119,120 In literature, chloramphenicol was 
the first-line drug used to treat typhoid fever, but its recur-
rent use limits its therapeutic value due to resistance 
development.119,120

The presence of invA, sopB, spi4D, and mgtC genes in all 
the tested isolates agreed with the literature’s earlier evi-
dence.13,121,122 Salmonella invasion gene (invA) is involved 
in the invasion of the intestinal epithelium cells and is found 
in pathogenic S. enterica.123 Therefore, for Salmonella infec-
tion to occur, invasion of the cells must occur, aided by invA 
gene.124–126 The invA gene influences the type of Salmonella 
infection that could result in either systemic or localized.127 
This gene is a transcriptional regulator required to express 
several genes encoding type III secretion system SPI-1 effec-
tor proteins.57,121,128 The invA gene was previously hypothe-
sized to be widely distributed among the S. enterica isolates 
irrespective of their serovars or source of isolation. Thus, the 
invA gene is a suitable target for detecting S. enterica from 
different biological specimens, as documented in the 
literature.56,60,121,127,129–131

The inositide phosphate phosphatase (sopB) gene is an 
effector protein that induces macropinocytosis. Gene sopB is 
an actin-binding protein that interacts with the host cell actin 
cytoskeleton. It is required for efficient bacterial internaliza-
tion by the host cell.132 The sopB gene in all isolates is 
instructive because sopB has been reportedly involved in 
micropinocytosis.133 Macrophages have been considered the 
main target of Salmonella during infection, and these cells 
are responsible for bacterial dissemination and control.134–136 
In addition to macrophages, other immune system cells are 
targets of S. enterica pathogens, dendritic cells, and 
neutrophils.

Furthermore, B cells have also been targeted by S. enter-
ica through the expression of sopB.137 The sopB genes are 
necessary for intracellular survival in the host, so the pres-
ence of sopB gene is suggested to contribute to the invasive-
ness of S. enterica pathogens,138,139 found in all the isolates 
in this study. The sopB gene is also involved in host cell 
survival by activating the Akt signaling pathway, including 
activation of the host innate immune system and cell death.133 
The presence of bacterial effector sopB in our study sup-
ported the earlier assumption that activation of Akt pathway 
is mediated through the expression of sopB.

In literature,126 Salmonella’s SPI-3 island is associated 
with intra-macrophage invasion, which supports survival 
when Mg2+, required in the bacteria transported system, is 
of limited amount. The presence of mgtC gene in all the 
Salmonella in this study supported the proposition that S. 
enterica uses the expression of mgtC gene to circumvent the 
lack of Mg2+ in the bacteria. They, therefore, initiate Mg2+ 
production without depending on the host for Mg2+. Our 
findings are supported in earlier literature.13,137,139,140 
Salmonella enterica contains several transport systems, both 
inducible and constitutive.140 These transport systems have 
functional complementarities to adjust the Mg2+ concentra-
tion in different environmental conditions. In addition, these 
systems are controlled by transcriptional and post-transcrip-
tional regulatory networks to maintain strict control of the 
Mg2+ balance.126 Regarding maintaining Salmonella viabil-
ity and development in environments with low Mg2+ levels, 
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mgtC appears to be the most crucial SPI-3 component, as 
reported in some S. enterica isolates140 and S. typhi.13 Since 
mgtC is encoded in a region of SPI-3 that is highly con-
served, it plays a crucial role in virulence that is not met by 
any other factor encoded in SPI-3 or anywhere else on the S. 
enterica chromosome.121,141

The ssaQ gene was detected in 33 (39.8 %) Salmonella 
isolates examined. The importance of this gene is relevant in 
the surveillance of S. enterica, which has been involved in 
systemic infection in the past. It has been found to produce 
proteins for the bacteria that bind to and stabilize the larger 
protein, which is important for the overall efficiency of the 
secretory system.142 Essential for virulence in host cells, sur-
vival in macrophages, and biofilm development is the ssaQ 
gene, which codes for proteins in the SPI-2 type III secretion 
system.143

The Salmonella plasmid virulence (spvC) gene was sig-
nificantly higher in iNTS than in typhoid Salmonella iso-
lates. By eliminating their beta-subunits, the spvC gene 
renders inactive the host’s dual-phosphorylated mitogen-
activated protein kinases. It is also hypothesized to play a 
role in systemic S. enterica infection due to its anti-inflam-
matory effector effects and attenuation of the intestinal 
inflammatory response.144 The spvB gene may collaborate 
with spvC and other Salmonella effectors to play a role in 
pathogenesis by triggering apoptosis in human macrophages. 
The spv genes increase the virulence of non-typhoid 
Salmonella serovars to induce extra-intestinal illness, as 
shown by experimental models and human epidemiological 
data.145 Intestinal infections caused by non-typhoid 
Salmonella, typically present as self-limiting gastroenteritis, 
can be terminated by spv genes.129 In mice, a study145 discov-
ered that the spv locus in Salmonella serovars is a crucial 
distinction in the pathogenesis of typhoid fever compared to 
that of non-typhoid Salmonella bacteremia.

Study limitations

As this is a further study on Salmonella isolates from an ini-
tial isolation process, the sample size was not determined; as 
such, all the Salmonella isolates recovered from 2015 to 
2018 were included in this study. Gene sequencing of the 
antibiotic resistance and the virulence genes of Salmonella 
isolates detected were not done to detect mutations that could 
adversely affect the activity of the antimicrobial agents and 
their pathogenicity abilities.

Conclusions

The result of our study illustrates the emergence of multi-
drug resistant S. enterica from children with bacteremia in 
north-central Nigeria. The most common antibiotics that S. 
enterica recovered were resistant to were ampicillin and tri-
methoprim-sulfamethoxazole. Some recovered S. enterica 
demonstrated multi-drug resistance to penicillins, first-gen-
eration cephalosporin (cephalothin), phenicol, sulfonamide, 

tetracycline, aminoglycosides, and fluoroquinolone. None of 
the S. enterica isolates met the criteria required for XDR and 
PDR designation. The recovered antimicrobial resistance 
genes (blaTEM, qnrA, floR, tetA, tetB, and tetG) were found. 
The most prevalent gene was blaTEM, while tetG was the least 
prevalent resistance gene. The invA, sopB, mgtC, and sip4D 
were found in all the recovered S. enterica isolates. At the 
same time, most S. enterica also harbored spvC and ssaQ 
genes, respectively, with ljsGI-1 gene found in only two S. 
typhi isolates. Therefore, this study recommends continuous 
monitoring of antimicrobial resistance patterns of S. enterica 
from invasive sources in Nigeria and encourages the prudent 
use of antibiotics and the practices of other infection preven-
tion control measures.
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