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ABSTRACT Estimation of epidemiological and population parameters from molecular sequence data has become central to the
understanding of infectious disease dynamics. Various models have been proposed to infer details of the dynamics that describe epidemic
progression. These include inference approaches derived from Kingman’s coalescent theory. Here, we use recently described coalescent
theory for epidemic dynamics to develop stochastic and deterministic coalescent susceptible–infected–removed (SIR) tree priors. We
implement these in a Bayesian phylogenetic inference framework to permit joint estimation of SIR epidemic parameters and the sample
genealogy. We assess the performance of the two coalescent models and also juxtapose results obtained with a recently published birth–
death-sampling model for epidemic inference. Comparisons are made by analyzing sets of genealogies simulated under precisely known
epidemiological parameters. Additionally, we analyze influenza A (H1N1) sequence data sampled in the Canterbury region of New Zealand
and HIV-1 sequence data obtained from known United Kingdom infection clusters. We show that both coalescent SIR models are effective
at estimating epidemiological parameters from data with large fundamental reproductive number R0 and large population size S0:
Furthermore, we find that the stochastic variant generally outperforms its deterministic counterpart in terms of error, bias, and highest
posterior density coverage, particularly for smaller R0 and S0: However, each of these inference models is shown to have undesirable
properties in certain circumstances, especially for epidemic outbreaks with R0 close to one or with small effective susceptible populations.
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Phylodynamics and the Coalescent

THE epidemiological and evolutionary processes that under-
pin rapidly evolving species occur on a shared spatiotem-

poral frame of reference. Unified analyses that include both the
dynamics of an epidemic and the reconstruction of the patho-
gen phylogeny can therefore uncover otherwise inaccessible
information to aid in outbreak prevention. Such information
includes the rates of pathogen transmission and host recovery,
effective population sizes, and the “time of origin” representing

the introduction of the first infected individual into a popula-
tion of susceptible hosts.
The term phylodynamics was popularized by Grenfell et al.
(2004) to describe the interlaced study of immunodynamics,
epidemiology, and evolutionary mechanisms. Several phylo-
dynamic models, both stochastic and deterministic in nature,
have since been developed to characterize the phylogenetic
history of the pathogen species and compartmentalizations of
the host population throughout the epidemic. Such models
grant the ability to infer key epidemiological parameters from
genetic sequence data and include birth–death branching pro-
cesses (Stadler et al. 2012, 2013; Gavryushkina et al. 2014;
Kühnert et al. 2014), as well as coalescent approaches (Griffiths
and Tavaré 1994; Pybus et al. 2001; Rasmussen et al. 2011,
2014; Koelle and Rasmussen 2012; Dearlove andWilson 2013)
derived from Kingman’s coalescent theory (Kingman 1982).

Significant steps toward the unification of epidemiology
and statistical phylogenetics were made by Pybus et al. (2001),
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Volz et al. (2009), and Dearlove and Wilson (2013), with the
formalization and application of Kingman’s n-coalescent to
pathogen population dynamics. These methods involved nu-
merical integration of a set of ordinary differential equations
(ODEs) to find deterministic approximations to the variation in
the number of sampled lineages through time. Volz (2012)
extended the tree density calculation from previous work (Volz
et al. 2009) to allow for serially sampled and spatially struc-
tured genetic sequence data. In this coalescent model, the birth
and death rates can vary in time and by the state of the host, so
that “the birth rate of a single gene copy is both time- and
state-dependent” (Volz 2012, p. 7).

In this article, we assess the ability of coalescent-based
phylodynamic models to infer, in a Bayesian setting, a range
of epidemiological parameters from simulated data. While
Dearlove and Wilson (2013) paved the way by implementing
a coalescent approach for deterministic susceptible–infected
(SI), susceptible–infected–susceptible (SIS), and susceptible–
infected–removed (SIR) models for Bayesian inference, we
implement and rigorously test both deterministic and stochas-
tic coalescent SIR models of epidemic dynamics extended for
heterochronously sampled data.

Stochastic and Deterministic Models

Stochasticity and determinism in population sizes each main-
tain dominant roles in particular stages of an epidemic. Once
the infected population has grown considerably large, on the
order of 1000–10,000 lineages, the probability densities of
stochastically expressed population size dynamics converge to-
ward the deterministic interpretation (Rouzine et al. 2001).
However, during the early stages the population size of infected
individuals is small, and the dynamics of the epidemic are
therefore governed by stochastic processes due to the relative
significance of fluctuations in the demographic and rate para-
meters of the populationmodel (Kühnert et al. 2014). Therefore,
approximating the prevalence of infection by a deterministic
function requires the number of infected hosts within the ef-
fective population to be assumed as very large throughout the
duration of the described epidemic, i.e., once the exponen-
tial growth phase has been reached (Rouzine et al. 2001).

Population size is critical to the epidemiological system
and, as with any parameter in a Bayesian setting, yields the
most accurate estimations when detailed prior information
is available and incorporated into the inference (Drummond
et al. 2006). In our extension and implementation of the
coalescent model for epidemics, both stochastic and deter-
ministic population size processes are used for the simula-
tion of trees and/or trajectories for subsequent inference.

Compartmental Population Models (SIR)

Host populations can be compartmentalized simply but
effectively in mathematical models that describe epidemic
progression. The specific division of the aggregate population
depends on the contagion, spanning a range of scenarios

where hosts may or may not recover from infection, may or
may not be reinfected, etc. Such examples include the SI, SIS,
and SIR models (Anderson and May 1991; Keeling and
Rohani 2008). Each of these compartments can be expressed
either (a) by a set of ODEs that describe the deterministic
time development of real-valued compartment occupancies or
(b) in terms of integer-valued occupancies governed by con-
tinuous-time Markov chains (CTMC) that allow for a degree
of uncertainty in the timing and number of events that occur
over the course of the epidemic.

In this article, we concentrate on the SIR model, which
describes epidemics that include infected individuals who
are at some point in time removed from the effective
population by way of immunity, death, behavioral changes,
or some other termination of infectiousness. The deter-
ministic variant of this model was introduced by Kermack
and Mckendrick (1932) and is given by the trio of coupled
ODEs,

d
dt

SðtÞ ¼ 2bIðtÞSðtÞ; (1)

d
dt

IðtÞ ¼ bIðtÞSðtÞ2gIðtÞ; (2)

d
dt

RðtÞ ¼ gIðtÞ; (3)

where b and g respectively represent the transition rates
from susceptible S to infected I and infected I to removed
R. The model fully defines the population dynamics with
initial conditions Sðz0Þ; Iðz0Þ; and Rðz0Þ: It is worth recog-
nizing that, in the closed SIR model used here, there is no
demographic change in the host population. Therefore,
ðd=dtÞSðtÞ þ ðd=dtÞIðtÞ þ ðd=dtÞRðtÞ ¼ 0 and SðtÞ þ IðtÞþ
RðtÞ ¼ N; where N is the constant total population size.
Throughout this article we refer to the solutions to Equa-
tions 1–3 as deterministic SIR trajectories.

The comparable stochastic description is given in terms of
the probability of the epidemic state at time t given its initial
state and the rate parameters

pðs; i; r; tÞ
[ PrðSðtÞ ¼ s; IðtÞ ¼ i;RðtÞ ¼ rjSð0Þ; Ið0Þ;Rð0Þ;b; gÞ; (4)

which is governed by the following equation of motion:

d
dt

pðs; i; r; tÞ

¼ b½ðsþ 1Þði2 1Þpðsþ 1; i2 1; r; tÞ2 sipðs; i; r; tÞ�

þ g½ðiþ 1Þpðs; iþ 1; r2 1; tÞ2 ipðs; i; r; tÞ�:

(5)

An explicit sampling process is incorporated by allowing
each removal event to coincide with a sampling event with
a fixed probability c=ðcþ mÞ; where c and m are the overall
rates of sampled and unsampled removals, respectively, such
that g ¼ cþ m: We refer to epidemic histories sampled from
this model as stochastic SIR trajectories.
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Both types of epidemic trajectories can be related to
models of sampled transmission tree genealogies. In the
deterministic case, this relationship is made via the coalescent
distributions described in Volz (2012). We call this the de-
terministic coalescent SIR model. In the stochastic case, gene-
alogies appear naturally from a branching process in which
the branching events coincide with the transmission events in
the CTMC and only those lineages ancestral to sampled
removals are recorded. We call this the stochastic SIR model.

Another way of relating the stochastic SIR model to sampled
transmission trees involves drawing a realization of a stochastic
SIR epidemic and then using the coalescent distribution in Volz
(2012) to produce a tree conditional on the particular piecewise
constant infected compartment size corresponding to that real-
ization. We call this approach the stochastic coalescent SIR model.
Unlike BDSIR, the stochastic coalescent SIR model does not re-
quire the sampling process to be specified explicitly.

Both the transmission rate b and the removal rate g can
be estimated using each of the methods considered in this
article from data ascribed to an SIR epidemic.

Methods

Inference framework

All phylodynamic inference discussed in this article is based
on the joint posterior probability density

f ðT ;V;h; ujDÞ ¼ PrðDjT ; uÞf ðT jV;hÞfðVjhÞfðhÞf ðuÞ
PrðDÞ ; (6)

where the sampled transmission tree T ; the epidemic tra-
jectory denoted V ¼ ðS; I ;RÞ; the substitution parameters
u, and the epidemiological parameters h ¼ fb; g; S0; z0g are
all estimated from the sequence data. The sampled trans-
mission tree T is assumed to be identical to the pathogen
genealogy.

Here, S; I ; and R represent the host compartment sizes
from the present time t ¼ 0 back to the origin z0; such that
SðtÞ ¼ Sðz0 2 tÞ; IðtÞ ¼ Iðz0 2 tÞ; and RðtÞ ¼ Rðz0 2 tÞ:

The various terms making up the right-hand side of
Equation 6 are the tree likelihood PrðDjT ; uÞ; the tree prior
f ðT jV;hÞ; the epidemic trajectory density f ðVjhÞ; and the
substitution and epidemiological parameter priors f ðhÞ and
f ðuÞ: The probability PrðDÞ is merely a normalizing constant
and can be ignored. It is the product of the tree prior and
trajectory density f ðT jV;hÞf ðVjhÞ that distinguishes each of
the models considered in this article.

For both the deterministic and stochastic coalescent SIR
models, the tree prior f ðT jV;hÞ is calculated in the following
way. First, consider the time span of a tree divided into seg-
ments bracketed by both sampling and coalescent events. By
considering intervals ending in sampling events as well as
coalescent-ending intervals, we follow previous work that ex-
tended coalescent approaches to time-stamped, serially sam-
pled data (Rodrigo and Felsenstein 1999; Drummond et al.
2002). Interval i is spanned by ki lineages and is the ith interval

when ordered from the most recent tip to the root. The set of
intervals A ending in sample events and the set of intervals Y
ending in coalescent events together encompass all intervals,
V ¼ A [ Y : Let the end time of an interval be ti (going back in
time), with t0 ¼ 0 as the time of the most recent tip and with
time increasing into the past. Then the probability density of
a genealogy given an epidemic trajectory is

f ðT jV;hÞ ¼
Y
i2Y

lkiðtiÞ
Y
i2V

vðti; kiÞ; (7)

where lkiðtÞ is the instantaneous coalescent rate at t pre-
scribed by Volz (2012),

lkiðtÞ ¼
�
ki
2

�
2bSðtÞ
IðtÞ ; (8)

and where vðti; kiÞ is the survival probability

vðti; kiÞ ¼ exp
�
2

Z ti

ti21

lkiðtÞdt
�
: (9)

The deterministic coalescent SIR model assumes that the SIR
epidemic trajectories are found by integrating the ODEs in
Equations 1–3. Therefore, under this model each epidemic
trajectory is a deterministic function of its parameters VðhÞ:
This means that the trajectory density can be written as

fðVjhÞ ¼ dðV2VðhÞÞ; (10)

where dðxÞ is the Dirac d-function and represents a point
mass concentrated at x ¼ 0:

In contrast, the stochastic coalescent SIR model assumes
that the epidemic is generated by a jump process corresponding
to the master equation given in Equation 5. In this case, the
probability f ðVjhÞ is nonsingular and thus contributes to the
uncertainty in the final inference result.

In the BDSIR model introduced by Kuhnert et al. (2014),
f ðVjhÞ is the same as for the stochastic coalescent SIR
model, but fðT jV;hÞ is defined differently. See Kühnert
et al. (2014) for details.

Markov chain Monte Carlo algorithm

We use Markov chain Monte Carlo (MCMC) to sample from
the joint posterior density given in Equation 6. Many of the
specifics of the algorithm used have been discussed previously,
in particular the method for calculating the tree likelihood
(Felsenstein 1981, 2004) and the mechanism for exploring
tree space (Drummond et al. 2002). However, the model-
specific product fðT jV;hÞf ðVjhÞ requires special attention.

As we are primarily interested in parametric inference
rather than the epidemic trajectory itself, we can regard V as
a nuisance parameter to be marginalized over. This margin-
alization can be achieved implicitly by sampling it using
MCMC and then ignoring this component of the sampled
state, which is the strategy we use when reporting the BDSIR
results. It can also be made an explicit part of the likelihood
calculation, which is the approach we take with the deterministic
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and stochastic coalescent SIR models. This marginalization
means that the product f ðT jV;hÞfðVjhÞ becomes

fðT jhÞ ¼
Z

f ðT jV;hÞf ðVjhÞdV; (11)

the probability density of the tree given the epidemiological
parameters.

In the case of the deterministic coalescent SIR model, this
density reduces to f ðT jVðhÞ;hÞ; meaning that the density of
the tree given epidemiological parameters h is obtained sim-
ply by substituting the numerical solution to Equations 1–3
for those parameters into Equation 7.

The stochastic coalescent SIR model is more complex, as
in this case the trajectory density f ðVjhÞ is nonsingular,
meaning that computing the integral in Equation 11 is non-
trivial. We treat this here using the “pseudomarginal” ap-

proach (Beaumont 2003; Andrieu and Roberts 2009) in
which, at each step in the MCMC chain, the marginalized
tree density f ðT jhÞ is replaced by the Monte Carlo estimate

f̂ ðT jhÞ ¼ 1
M

XM
r¼1

fðT jVr;hÞ; (12)

where each Vr is a trajectory sampled independently from
f ðVjhÞ; using a stochastic simulation algorithm (Sehl et al.
2009). Perhaps counterintuitively within an MCMC frame-
work, this stochastic likelihood converges to the true mar-
ginal posterior distribution regardless of the number M of
realizations used in the estimate. However, the magnitude of
M can significantly affect the rate at which the chain produ-
ces effectively independent samples from the posterior and
must be tuned carefully.

Figure 1 Stochastic SIR trajectories
for susceptible S, infected I, and recov-
ered R populations, with (top row)
S0 ¼ 999 and R0 ¼ 2:4975; (middle
row) S0 ¼ 499 and R0 ¼ 1:497; and
(bottom row) S0 ¼ 499 and R0 ¼
1:0978: (The right column shows
infected I only.)
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Implementation and validation

We have implemented the schemes described above for
performing inference under the deterministic and stochastic
coalescent SIR models within the BEAST 2 phylodynamics
package found at http://github.com/CompEvol/phylodynamics.
This has a number of advantages over a stand-alone imple-
mentation. Foremost, we were able to avoid reimplementing
components of the algorithm that are in common with other
already-implemented phylogenetic and phylodynamic anal-
yses, such as the MCMC proposal operators used to traverse
the parameter space. Furthermore, this greatly increases the
usefulness of the implementation, as it can be immediately
used in conjunction with a wide variety of nucleotide and
amino acid substitution models and parameter priors.

We have taken two steps to ensure our implementation is
correct. First, we compared tree probability density fðT jV;hÞ
values calculated using the main implementation of each of
the two models with those calculated using completely in-
dependent implementations in R (R Core Team 2014).

Second, we used the implemented MCMC algorithms to
sample transmission trees from the tree density given in
Equation 11 for each model. We then compared the distribu-
tions of tree height, total edge length, and binary clade count
summary statistics from these sampled ensembles with
sample distributions obtained directly via stochastic simula-
tion. As shown in Supporting Information, File S1, Figure S1,
Figure S2, and Figure S3 (Sampling from the prior) and in the
associated figures, the resulting pairs of distributions agree,
providing strong support for our claim that the implementa-
tions of the methods described above are correct.

Instructions for downloading and using this package are
also available on the project website located at http://
github.com/CompEvol/phylodynamics.

Simulation study

To evaluate the implementation and extension of the co-
alescent models, we performed analyses on both sequence
data and fixed trees simulated with known parameter values.
The median estimated values produced by each model were
then used to measure relative error and bias, along with the
widths and coverage of 95% highest posterior density (HPD)
intervals.

We used three methods for simulating the trees and
trajectories, as shown below:

Inference model:

fStoch: Coal: SIR Deter: Coal: SIR BDSIR
    

Simulation  scheme:8<
:

Stoch: Coal: SIR Stoch: Coal: SIR Stoch: Coal: SIR
Deter: Coal: SIR Deter: Coal: SIR Deter: Coal: SIR
Stochastic SIR Stochastic SIR Stochastic SIR:

The stochastic coalescent and deterministic coalescent
simulation schemes were used to validate the coalescent

SIR inference models. The stochastic SIR scheme, contrarily,
is emphasized for its realistic properties.

Stochastic SIR trees and trajectories were generated
using master equations in the simulation package MASTER
(Vaughan and Drummond 2013). Deterministic coalescent
trajectories were generated using a Runge–Kutta integrator
(Runge 1895; Kutta 1901) with adaptive step sizes to solve
a system of first order ODEs. Stochastic coalescent trajecto-
ries were generated using Sehl et al.’s (2009) SAL t-leaping
algorithm (Sehl et al. 2009).

To simulate the stochastic coalescent SIR trees, we used
the stochastic SIR trajectories, which could be converted to
effective population size with the mathematical expression
used to obtain Volz’s (2012) coalescent rate for the SIR
model: NeðtÞ ¼ 1=l2ðtÞ ¼ IðtÞ=ð2bSðtÞÞ: The sampling
times, generated by a sampling rate c, for the stochastic

Figure 2 (A) Full stochastic SIR transmission tree with both sampled
c-tips, shown in red, and otherwise removed m-tips, shown in yellow.
(B) The corresponding 140-tip sampled stochastic SIR tree. A and B were
generated in FigTree (Rambaut 2007).
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coalescent SIR trees were also taken from the MASTER out-
put to allow for direct comparison between the sets of trees.
In other words, the underlying epidemic function was the
same for both stochastic SIR and stochastic coalescent SIR
trees, the latter of which were then simulated under a piece-
wise constant population function.

Likewise, for the simulation of deterministic coalescent
trees we used deterministic SIR trajectories to construct a
population function and the relation Ne ¼ I=ð2bSÞ to con-
vert infected and susceptible host population sizes to effec-
tive population size. The sampling times were randomly
generated from a probability distribution so that the density
of samples taken through time was proportional to the num-
ber of infected individuals through time, as with the stochas-
tic SIR trees.

We simulated stochastic SIR trees, using multiple combi-
nations of parameter values. We were particularly interested
in varying the basic reproductive ratio R0 and the initial
susceptible population size S0; to observe the changes in
relative error, bias, and uncertainty in stochastic and deter-
ministic models. To alter the ratio R0 ¼ bS0=g and still gen-
erate sensible trees with a consistent number of tips, one or
more of the other parameters (birth rate b, removal rate g,
or S0) must also change. Table 2, Table S6, Table S7, and
Table S9 show the true values of the parameters for each set
of simulations. (The birth rate b is not shown, as our imple-
mentation allows either b or R0 to serve as a parameter in
the inference, and R0 is the parameter of interest. However,
b can be calculated via the other three, using b ¼ R0g=S0:
For example, when R0 ¼ 1:0978; S0 ¼ 499; and g ¼ 0:25;
then b ¼ 5:50E-4.)

Heterochronous trees: We generated 100 trees under each
of the three (stochastic SIR, stochastic coalescent SIR, and
deterministic coalescent SIR) models with parameters S0; b,
and g. For heterochronously sampled trees, each removal
generates a sample with probability c=ðcþ mÞ; where c is
the overall rate of sampled removals and m is the rate of
unsampled removals such that g ¼ cþ m:

The simulations ended once the number of infected
individuals reached zero, i.e., when the last infected individ-

ual was removed. This ensured that the simulated trajecto-
ries spanned past the exponential growth phase of the
epidemic and therefore included samples past the peak of
infected individuals. This choice of procedure was motivated
by (a) the suggestion of Stadler et al. (2014) that the be-
havior of the coalescent beyond the exponential phase could
either inflate or reduce bias and (b) the observations of
Dearlove and Wilson (2013) and Bošková et al. (2014) that
deterministic coalescent SIR models might be properly fitted
only once the epidemic has peaked. Figure 1 shows trajec-
tories of susceptible, infected, and removed individuals un-
derlying the simulation of stochastic SIR trees (Figure 2)
generated in MASTER. An example XML for simulating
these MASTER trees is provided in File S1.

We required that the trees had n$ 100 leaves, filtering
out those in which the epidemic died out in the early stages,
i.e., when the initial infected individual was removed from
the effective population too quickly to infect others. (Note
that the inference procedures discussed in this article all
implicitly condition on the number of leaves.) The prob-
ability that the first event in a given trajectory is the re-
moval (by recovery, death, etc.) of patient zero is given by
d=ðbS0 þ dÞ ¼ 1=ð1þ R0Þ: When R0 � 2:50; this probability
is �   30%: In our case, 52/152 (�   34%) trees were “empty”
or containing only one node. The filtering process left us
with a mean of �   160 leaves for the simulated trees.

Homochronous trees: A major concern in the comparison
between Kühnert et al. (2014)’s birth–death-sampling SIR
inference model, which includes explicit sampling, and our
implementations of Volz (2012)’s coalescent SIR models,
which do not include explicit sampling, is that the former
is given extra information via the sampling process. Volz and
Frost (2014) addressed this issue by providing a coalescent
SIR model that does incorporate sampling explicitly.

That being said, results from Bošková et al. (2014) in-
dicate that the poor performance of the deterministic coa-
lescent SIR model in comparison with birth–death models
was due to the lack of handling stochastic population size
changes through time rather than the lack of information
about the sampling proportion. Their results showed that

Table 1 Results for simulated sequences: R0»2:50; S0=999

h Inference Truth Mean Median Error Bias Relative HPD width 95% HPD accuracy (%)

R0 Stoch.Coal.SIR 2.50 2.41 2.16 0.13 20.11 0.97 97.00
Deter.Coal.SIR 2.50 2.78 2.03 0.38 0.05 0.79 87.00
BDSIR 2.50 3.21 2.84 0.15 0.14 1.86 100.00

g Stoch.Coal.SIR 0.30 0.16 0.13 0.52 20.52 0.82 47.00
Deter.Coal.SIR 0.30 0.25 0.16 0.56 20.28 0.97 56.00
BDSIR 0.30 0.17 0.14 0.52 20.52 1.13 84.00

Sð0Þ Stoch.Coal.SIR 999 1805 1148 0.32 0.21 5.12 99.00
Deter.Coal.SIR 999 2384 1565 0.66 0.60 6.54 100.00
BDSIR 999 4002 2611 1.70 1.70 10.38 99.00

zð0Þ Stoch.Coal.SIR Varies 51.67 48.89 0.26 0.23 0.61 37.00
Deter.Coal.SIR Varies 49.13 46.46 0.22 0.20 0.26 29.00
BDSIR Varies 31.16 29.52 0.51 0.51 0.79 18.00
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the coalescent is “very robust to changes in sampling
schemes” (Boskova et al. 2014, p. 8).

Regardless, to ensure a fair comparison of BDSIR and the
coalescent SIR models, we simulated an SIR epidemic with
homochronous, or contemporaneous, sampling. This type of
simulation affords no additional information about the
population size for explicit-sampling models, as there is
only a single time of sampling.

We selected a simulation time of t ¼ 20 for the homo-
chronously sampled trees, with the trajectories being
sampled at high prevalence but also past the time of peak
prevalence. This is important for distinguishing SIR from SI/
SIS outbreaks, as it provides information about the removal
parameter g. In this set of simulations, each lineage was
sampled at t ¼ 20 with probability 0.7 (the leaf count dis-
tribution for varied sampling probabilities is in File S1).

Simulated sequences: To assess the ability of each SIR
model to infer epidemic parameters with the inclusion of
phylogenetic uncertainty, we also simulated the evolution of

2000-bp sequences down each simulated tree. We time
stamped the sequences with the tip dates of each corresponding
tree and informed the inference with the true Hasegawa–
Kishino–Yano (HKY) substitution model (Hasegawa et al.
1985), clock rate ¼ 5E-3; and k ¼ 5: These choices were
made to reflect real data, specifically those of influenza
(Vaughan et al. 2014).

Along with simulated sequence data, analyses were
performed with the simulated trees fixed (results are in File
S1), and the parameters R0; g, S0; and the origin of the tree
z0 were estimated with Bayesian prior distributions as listed
in Table 4.

Deterministic coalescent SIR on higher R0 and S0: Finally,
we had particular interest in the effects of varying the
population size parameter S0 on the deterministic coalescent
SIR model, as comparisons from initial analyses with lower
true R0 (�1.5 and �1.1) and S0 (= 499) showed higher
error and bias and lower 95% HPD coverage. Also, it is often
assumed that deterministic descriptions will perform well

Table 2 Simulation study results for fixed trees: R0 » 2:50 and S0= 999; R0 »1:50 and S0= 499; and R0 »1:10 and S0= 499

h Inference Truth Mean Median Error Bias Relative HPD width 95% HPD accuracy (%)

R0 Stoch.Coal.SIR 2.50 2.84 2.68 0.12 0.09 0.98 100.00
Deter.Coal.SIR 2.50 2.68 2.49 0.13 0.04 0.81 98.00
BDSIR 2.50 2.73 2.67 0.12 0.08 0.55 94.00

g Stoch.Coal.SIR 0.30 0.27 0.25 0.19 20.13 1.14 99.00
Deter.Coal.SIR 0.30 0.32 0.29 0.16 3.14E-3 1.27 99.00
BDSIR 0.30 0.28 0.27 0.13 20.09 0.62 95.00

Sð0Þ Stoch.Coal.SIR 999 1390 921 0.19 20.03 3.85 100.00
Deter.Coal.SIR 999 1807 1133 0.52 0.29 4.59 98.00
BDSIR 999 1591 1142 0.39 0.24 3.42 99.00

zð0Þ Stoch.Coal.SIR Varies 41.81 40.35 0.03 0.01 0.20 99.00
Deter.Coal.SIR Varies 41.17 39.99 0.03 0.01 0.07 76.00
BDSIR Varies 40.89 39.72 8.65E-4 25.13E-4 3.43E-3 97.00

R0 Stoch.Coal.SIR 1.50 1.48 1.37 0.09 20.06 0.81 100.00
Deter.Coal.SIR 1.50 1.80 1.49 0.24 0.15 0.52 85.00
BDSIR 1.50 1.46 1.43 0.08 20.03 0.47 99.00

g Stoch.Coal.SIR 0.30 0.19 0.17 0.40 20.40 1.06 85.00
Deter.Coal.SIR 0.30 0.26 0.23 0.27 20.22 1.15 89.00
BDSIR 0.30 0.26 0.25 0.18 20.18 0.72 97.00

Sð0Þ Stoch.Coal.SIR 499 599 390 0.25 20.22 3.56 100.00
Deter.Coal.SIR 499 562 361 0.44 20.26 3.36 91.00
BDSIR 499 996 714 0.51 0.49 4.63 100.00

zð0Þ Stoch.Coal.SIR Varies 76.47 68.24 0.55 0.54 0.58 99.00
Deter.Coal.SIR Varies 91.03 72.51 0.39 0.38 0.42 88.00
BDSIR Varies 69.11 66.51 0.34 20.31 0.20 94.00

R0 Stoch.Coal.SIR 1.10 1.39 1.32 0.22 0.22 1.09 99.00
Deter.Coal.SIR 1.10 1.68 1.44 0.46 0.46 0.59 25.00
BDSIR 1.10 1.34 1.32 0.20 0.20 0.51 75.00

g Stoch.Coal.SIR 0.25 0.17 0.15 0.37 20.36 1.11 84.00
Deter.Coal.SIR 0.25 0.22 0.18 0.30 20.22 1.16 86.00
BDSIR 0.25 0.28 0.26 0.12 0.09 0.92 100.00

Sð0Þ Stoch.Coal.SIR 499 608 398 0.24 20.18 3.38 100.00
Deter.Coal.SIR 499 553 337 0.42 20.26 3.08 92.00
BDSIR 499 1471 1040 1.21 1.21 6.52 99.00

zð0Þ Stoch.Coal.SIR Varies 91.60 84.55 0.06 0.02 0.60 97.00
Deter.Coal.SIR Varies 112.79 90.37 0.26 0.26 0.94 85.00
BDSIR Varies 82.98 80.93 0.02 20.01 0.08 88.00
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for higher R0 and larger population sizes. Table S7 and
Table S9 detail the parameter values we used to explore
the behavior of the deterministic coalescent on varied R0

and S0 combinations.

Interpretation of results

We compared the coalescent SIR, as well as BDSIR, param-
eter estimations from the simulated data to the true values
used to generate the SIR trajectories. Following Kühnert et al.
(2014), the precision and accuracy of these methods were
measured by relative error, bias, and HPD intervals. We used
the posterior median value of the parameter value ĥ com-
pared with the true parameter h 2 fR0; g; S0; z0g Relative
error and bias are then gauged by calculating the median
value over medians from all 100 trees, such that

REĥ ¼
P100

t¼1jĥ2hj=h
100

and

RBĥ ¼
P100

t¼1jĥ2hj
.
h

100
:

Measures of HPD interval widths are given by

95% HPD  upper  bound2 95% HPD  lower  bound
h

:

Table 1, Table 2, and Table 3 show these results, along with
the percentages of posterior estimates that produced 95% HPD
intervals containing the true values (i.e., 95% HPD coverage).

H1N1 data analysis

To test the efficacy of the coalescent SIR models on real
data, epidemic parameters R0; g, S0; and time of origin z0
were estimated from 42 seasonal influenza A (H1N1) sequences
sampled throughout the 2001 flu season in Canterbury, New
Zealand.

Influenza infections are well known for their seasonal SIR
behavior in nonequatorial populations, as each annual flu
season begins with a supply of susceptible hosts and tapers
off as the hosts recover with adaptive immunity (Iwasaki
and Pillai 2014). Due partly to this seasonal pattern, the
influenza virus is both a motivator for the development of
specialized models and a prime subject for testing phylody-
namic models (Koelle et al. 2006).

Sampling a particular region bypasses the necessity of
specifying geographically structured populations, and New

Zealand is an area of particular interest due to its geographic
location and relative isolation from other regions with
potentially varying dynamics. It is also assumed to play a key
role in the global circulation of influenza strains (Rambaut and
Holmes 2009; Bedford et al. 2010).

We used an HKY nucleotide substitution model, with a
substitution rate of 5E-3 as estimated in Vaughan et al.
(2014), and informed the models with dated sequences. Pri-
ors used for the Bayesian inference are shown in Table 4.

HIV-1 data analysis

In addition to our analysis of H1N1 sequence data, we
selected HIV-1 subtype B nucleotide sequences collected
from infected individuals located in the United Kingdom.
The coalescent SIR results were collated with the results
from the BDSIR data analysis performed by Kühnert et al.
(2014), using the same sequences. More details of this anal-
ysis are provided in File S1.

Results and Discussion

Simulation study

Results for epidemic parameter inference from nucleotide
sequences simulated from stochastic SIR trees are provided
in Table 1 for R0 � 2:50. Results for inference from fixed
trees (R0 � 2:50, R0 � 1:50, R0 � 1:10) are shown in Table
2, with 95% HPD coverage shown for each analysis in Figure
3. Inference results for analyses with true R0 ¼ 1:0987 and
varying population size (S0 ¼ 499; 999; 1999) are described
in Tables S1 and S2 in the supporting information, along
with results from trees simulated under the stochastic and
deterministic coalescent models for validation.

Heterochronous trees: For R0 � 2:50; all three inference
methods performed similarly for parameters R0 and g, with
high 95% HPD coverage and low error and bias. The most
weakly identifiable parameter S0 yielded the largest HPD
intervals for all three inference models. The deterministic co-
alescent returned higher error (0.52) and bias (0.29) than the
stochastic coalescent SIR (0.19, 20.03) and BDSIR (0.39,
0.24) and recovered the origin parameter z0 for only 76 of
100 simulated trees, while the stochastic coalescent and BDSIR
respectively recovered z0 for 99 and 97 of 100 simulations.

For R0 � 1:50; the relative HPD widths (akin to variance)
for three of the four estimated parameters (R0; g, and z0) were
smallest for BDSIR. For the parameter S0; the relative HPD
width is largest for BDSIR, although it also had slightly higher

Table 3 Epidemic parameter inference from H1N1 sequences in New Zealand

Inference model R0 g S0 Root of the tree (yr) Origin z0 of the epidemic (yr)

Stoch. Coal. SIR 1.46 (1.04–2.14) 27.08 (4.20–64.03) 6.90E4 (175–2.86E5) 0.53 (0.44–0.61) 0.69 (0.45–1.03)
Deter. Coal. SIR 1.35 (1.05–1.84) 34.50 (3.86–82.16) 1.20E5 (29–4.59E5) 0.54 (0.45–0.62) 0.73 (0.47–1.04)
BDSIR 1.61 (1.09–2.29) 27.72 (6.82–55.04) 2.22E4 (259–9.38E4) 0.49 (0.41–0.56) 0.53 (0.43–0.65)

Shown are mean estimates (and 95% HPD intervals) of each epidemic parameter inferred from seasonal influenza A (H1N1) sequence data collected in the Canterbury region
of New Zealand throughout the 2001 flu season.
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95% HPD coverage than deterministic coalescent SIR and the
same as stochastic coalescent SIR. The deterministic coalescent
SIR method recovered the truth for 85, 89, 91, and 88 of 100
trees for parameters R0; g, S0; and z0; while its stochastic
analog recovered the truth for 100, 85, 100, and 99 of 100
trees for the same parameters. Finally, for stochastic coalescent
SIR and BDSIR, error and (absolute) bias were relatively low
for R0; arguably the parameter of most interest to epidemiol-
ogists since it represents the number of individuals each in-
fected individual will infect in a naive population. Deterministic
coalescent SIR has a higher error (0.24) and bias (0.15) and
also has significantly lower coverage for R0 (85%).

For R0 � 1:10; the two stochastic models again outper-
formed the deterministic coalescent in error, bias, and 95%
HPD coverage. The stochastic coalescent most reliably re-
covered the truth for R0 (99 of 100 simulations), while the
deterministic coalescent had more than double the error and
bias and still recovered the truth for only 25 of the 100
simulations. BDSIR had the lowest error and bias for R0

under this scheme, although it recovered the truth for only
75 of 100 simulations. For removal parameter g, BDSIR again
yielded lower error and bias, in this case returning the truth
for 100/100 trees (in contrast to 84 and 86 from the stochastic
and deterministic coalescent, respectively).

In the stochastic models, there is a greater trade-off
between parameters due to the impact the relationship
between them has on the survival of trajectories at low R0: A
larger estimated removal rate tends to require a larger sus-
ceptible population for the epidemic to avoid dying out in
the early stages. Likewise, a smaller susceptible population
implies a smaller estimated g.

Deterministic coalescent SIR on higher R0 and S0: As
mentioned in the preceding subsection, the deterministic
coalescent model yielded higher error and bias than both
the stochastic coalescent and BDSIR for most parameters
with R0 � 1:10 and S0 ¼ 499:

To investigate the deterministic model’s sensitivity to pop-
ulation sizes, we also simulated a range of population sizes
(S0 ¼ 499, 999, and 1999) for R0 ¼ 1:0987: Even with
S0 ¼ 1999; the deterministic coalescent SIR model’s 95%
HPD coverage was low. For parameters R0; g, S0; and z0; this

coverage was respectively 40%, 64%, 66%, and 18%. Table
S6 shows these results.

Additionally, we increased both R0 (to 3.5 and 5) and S0
(to 4999 and 9999). However, for parameters R0; g, and S0;
the deterministic coalescent SIR showed increased error, bi-
as, and HPD widths, and the HPD coverage for z0 did not
improve. These results are shown in Table S9.

While each of these methods is an approximation, the
deterministic coalescent particularly suffers from model mis-
specification since it does not account for the stochasticity
that is always present in the early stages of epidemics,
regardless of S0:

Homochronous trees: Results for homochronously sampled
trees are given in Table S3.

All three SIR inference models recover the truth for .95/
100 trees within their respective 95% HPD widths for epidemic
parameters R0; g, and S0: The time of origin z0 was recovered
for 100/100 trees by BDSIR, 95/100 trees by stochastic co-
alescent SIR, and 73/100 trees by deterministic coalescent SIR.
However, relative error and bias also increased consistently
across all three models, along with the 95% HPD widths.
The deterministic coalescent had the highest error, bias, and
HPD width for R0 and highest error and HPD width for S0;
which is consistent with the heterochronously sampled data.

Further consideration of the effects of sampling rate changes
and sampling model misspecification are warranted for BDSIR
and coalescent SIR, the latter of which has been facilitated by
Volz and Frost (2014).

Simulated sequences: Relative error and bias were inflated
across all three inference models with the addition of phylo-
genetic uncertainty, and in certain cases the 95% HPD
coverage was lower than with fixed trees. The deterministic
coalescent model recovered the truth within its 95% HPD
intervals only for $90 of the 100 trees in the case of S0: The
true values for the parameters R0; g, and z0 were covered by
95% HPD intervals for 87, 56, and 29 of the 100 trees, re-
spectively. This is contrasted with the performance of the
stochastic coalescent (100, 97, 47, and 37 for parameters
S0; R0; g, and z0) and BDSIR (99, 100, 84, and 18 for S0;
R0; g, and z0), as shown in Table 1.

Table 4 Bayesian prior distributions

Annalysis R0 g Sð0Þ zð0Þ c=ðcþ mÞ
R0 � 2:5; S0 ¼ 999 LogN(1, 1) LogN(21, 1) LogN(7, 1) Unif(0, 100) Beta(1, 1)
R0 � 1:5; S0 ¼ 499 LogN(0.5, 1) LogN(21, 1) LogN(6, 1) Unif(0, 500) Beta(1, 1)
R0 � 1:1; S0 ¼ 499 LogN(0.1, 1) LogN(21.5, 1) LogN(6, 1) Unif(0, 500) Beta(1, 1)
R0 � 1:1; S0 ¼ 999a LogN(0.1, 1) LogN(21.5, 1) LogN(7, 1) Unif(0, 500) —

R0 � 1:1; S0 ¼ 1999a LogN(0.1, 1) LogN(21.5, 1) LogN(7.5, 1) Unif(0, 500) —

R0 � 1:2; S0 ¼ 499a LogN(0.2, 1) LogN(21, 1) LogN(6, 1) Unif(0, 500) —

H1N1 Unif(0, 10) LogN(3, 0.75) LogN(13, 2) Unif(0, 10) Beta(1, 1)
HIV-1 LogN(1, 1) LogN(21, 1) LogN(7, 1) Unif(0, 100) Beta(1, 1)

Shown are prior distributions for the reestimation of SIR parameters—the reproductive ratio R0; the rate of removal g, the number of susceptible individuals at the start of the
epidemic Sð0Þ; the time of origin zð0Þ; and the sampling proportion c=ðcþ mÞ for BDSIR—from the simulated trees, seasonal influenza A (H1N1), and human immunode-
ficiency virus (HIV-1) data analyses. LogN(M, S) is a log-normal distribution with mean M and standard deviation S in log space.
a Only applies to deterministic coalescent SIR; see details in File S1.
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Error, bias, and 95% HPD widths were higher with si-
mulated sequences for all three inference models for para-
meters g, S0; and z0 than with fixed trees. This indicates the
importance of calibrating epidemic parameters of interest. In
our case, we emphasize the basic reproductive number R0;

often the parameter of most interest to epidemiologists. For
R0; stochastic coalescent SIR and BDSIR recovered the truth
within their 95% HPD intervals for 97 and 100 of the 100
simulations, respectively. They also showed only slight
changes in error and bias compared to inference performed
on the fixed trees used to generate the sequences. The de-
terministic coalescent SIR model recovered R0 for 87 of the
100 simulations (contrasted with 98/100 for the fixed trees)
and with increased error.

Priors and identifiability: It is important to understand the
impact of selected priors on inference results, as the priors
are where the power of Bayesian inference lies. For example,
we found relatively weak identifiability in the initial
susceptible population parameter S0; which must either be
fixed or be estimated alongside the origin parameter z0:

In addition to allowing each parameter to be either fixed
or estimated, we have provided options for parameterization

of our models, with either the transmission rate b or R0

acting as operable parameters in MCMC analysis. For the
deterministic coalescent, there is also an option to use the
intrinsic growth parameter described by Dearlove and
Wilson (2013).

The choice of parameterization necessarily affects the
prior that will be used in the inference and should be
considered carefully. However, we found that once a parame-
terization has been selected, our inference models are robust to
different prior distributions placed on each parameter. We also
used broader prior distributions on the deterministic coalescent
to test whether this would increase its lower 95% HPD
coverage relative to the stochastic models. We found that
doing so increased the error and bias of the results without
increasing the accuracy (shown in Table S4).

H1N1 data analysis

Epidemic parameter estimates from serially sampled in-
fluenza A (H1N1) virus sequence data are shown in Table 3.

The estimated means of the basic reproductive number
were R0 ¼ 1.46, 1.35, and 1.61 for the stochastic coalescent,
the deterministic coalescent, and BDSIR, respectively. Esti-
mates of R0 from pandemic H1N1 in New Zealand range

Figure 3 Estimates of Rð0Þ from true
stochastic SIR trees using inference me-
thods by column, with stochastic coales-
cent SIR (A–C), deterministic coalescent
SIR (D–F), and BDSIR (G–I). The truth
varies by row, with R0 ¼ 2:4975 (A, D,
and G), R0 ¼ 1:4970 (B, E, and H), and
R0 ¼ 1:0978 (C, F, and I).
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from �1.2 to 1.5 (Paine et al. 2010; Opatowski et al. 2011;
Roberts and Nishiura 2011; Roberts 2013; Biggerstaff et al.
2014), and estimates of R0 for seasonal H1N1 from other
countries also range from �1.2 to 1.5 (Chowell et al. 2008).
The 95% HPD intervals were very similar across each model,
ranging from just over 1.0 to �2.0.

The population of the Canterbury region in 2001 was
reported to be �481; 431 by the Environment Canterbury Re-
gional Council (Ecan 2001) and 521; 832 by Statistics New
Zealand (StatsNZ 2001). The mean estimates of S0 were con-
siderably lower using the stochastic coalescent (S0 ¼ 69; 000),
the deterministic coalescent (S0 ¼ 120; 000), and BDSIR
(S0 ¼ 22; 200). However, the effective population of suscepti-
bles is assumed to be much smaller, as the total population
contains individuals of various susceptibility, e.g., those with
partial immunity from vaccination and previous or secondary
infections.

Most people recover from flu symptoms, the time they are
likely to be most infectious, within a few days up to 2 weeks
(CDC 2014; WHO 2014). This provides a range of probable
true values for the removal parameter g. The sequence data
and molecular clock rate, and therefore the tree, are in units
of years. Therefore, our g range would be from 365/14 days
to 365/2 days or from g ¼ 26:1 to g ¼ 182:5: The stochastic
coalescent, the deterministic coalescent, and BDSIR respec-
tively inferred g means of 27.08, 34.50, and 27.72. These
estimates are on the low side compared to epidemiological
models for influenza that include explicit spatial and house-
hold effects (Ferguson et al. 2005), but a moderate misfit of
the model is not unexpected when fitting a simple closed
SIR model with no population substructure.

The root of the tree was very similar across all inference
models, respectively 0.53, 0.54, and 0.49 for stochastic co-
alescent SIR, deterministic coalescent SIR, and BDSIR. The
same was true for the origin z0; with: 0.69, 0.73, and 0.53
for the stochastic coalescent, the deterministic coalescent,
and BDSIR. All three inference models returned tree root
and origin estimates that are consistent with previous esti-
mates from single flu seasons. That is, the tree age is young
and the root coincides with the start of the (winter) influ-
enza season in the Southern Hemisphere. The time of in-
troduction of influenza into the region, z0; was 1 or 2
months before the root. This supports the notion that the
sequences selected represent a single introduction of the
strain into the Canterbury population (see File S1 for details
of data selection and Figure S4 for representative trees
inferred from an alternate data selection.).

The trees estimated by each of the three models are typical
for influenza (see Figure 4 for representative trees from each
posterior), with branches that are quick to coalesce moving
backward in time from the most recently sampled tip.

HIV-1 data analysis

Results for inference from HIV-1 sequence data can be found
in File S1. 95% HPD intervals are shown in Figure S5, Figure
S6, Figure S7, and Table S8.

Computational efficiency

Finally, Table S5 shows comparisons of computation times
under each inference model for each type of data

Figure 4 Representative influenza A (H1N1) posterior trees from infer-
ence using the (A) BDSIR, (B) stochastic coalescent SIR, and (C) determin-
istic coalescent SIR inference models.
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analyzed. The deterministic coalescent SIR model is by far
the fastest to sample and converge, with stochastic coales-
cent SIR and BDSIR varying, depending on the type of
data.

Closing remarks

A key reason for the success of coalescent theory in pop-
ulation genetics is its mathematical simplicity and the com-
putational efficiency of calculating the probability density
of a sample genealogy. Our results show that a stochastic
variant of coalescent theory can be successfully adapted to
estimate epidemiological parameters in a true Bayesian
inference context. This stochastic coalescent SIR model
performs better than the deterministic analog for estimat-
ing epidemic parameters in some circumstances. Unfortu-
nately, the stochastic model relies on a computationally
demanding Monte Carlo estimate of the coalescent density
via simulation of an ensemble of epidemic trajectories,
negating one of the main advantages of coalescent theory.
In fact, the current implementation is less computationally
efficient than the implementation of the BDSIR model.
However, an advantage of the stochastic coalescent over
the explicit sampling model in BDSIR is its robustness to
biased sampling schemes, as has been shown for the
case of pure exponential growth dynamics (Bošková et al.
2014).

A more computationally efficient approach to computing
the coalescent probability of the sample genealogy in the
stochastic setting would be to use particle filtering
(Andrieu and Roberts 2009; Andrieu et al. 2010; Rasmussen
et al. 2011, 2014), but there are no theoretical barriers
to applying particle MCMC to the exact model (Stadler
et al. 2014). Therefore, an obvious extension of this work
would be to apply particle MCMC algorithms to the exact
stochastic SIR model that was used in simulations in this
work. We anticipate that the exact model would outper-
form all the methods tested here, especially when R0 is
close to one.

In the meantime, the Bayesian coalescent inference me-
thods developed here make it feasible to estimate epidemic
parameters from time-stamped, serially sampled molecular
sequence data, while accurately accounting for uncertainty
in the topology and the divergence times of the phylogenetic
tree.
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Bošková, V., S. Bonhoeffer, and T. Stadler, 2014 Inference of ep-
idemiological dynamics based on simulated phylogenies using
birth-death and coalescent models. PLoS Comput. Biol. 10:
e1003913.

CDC, 2014 United States Centers for Disease Control and Preven-
tion. Available at: http://www.cdc.gov/flu/. Accessed: November,
2014.

Chowell, G., M. Miller, and C. Viboud, 2008 Seasonal influenza in
the United States, France, And Australia: transmission and pros-
pects for control. Epidemiol. Infect. 6: 852–864.

Dearlove, B., and D. J. Wilson, 2013 Coalescent inference for in-
fectious disease: meta-analysis of hepatitis C. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 368: 20120314.

Drummond, A. J., G. K. Nicholls, A. G. Rodrigo, and W. Solomon,
2002 Estimating mutation parameters, population history and
genealogy simultaneously from temporally spaced sequence
data. Genetics 161: 1307–1320.

Drummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut,
2006 Relaxed phylogenetics and dating with confidence. PLoS
Biol. 4: e88.

ECAN, 2001 Environment Canterbury Regional Council. Available
at: http://ecan.govt.nz/about-us/population/how-many/pages/
census.aspx. Accessed: November, 2014.

Felsenstein, J., 1981 Evolutionary trees from DNA sequences:
a maximum likelihood approach. J. Mol. Evol. 17: 368–376.

Felsenstein, J., 2004 Inferring Phylogenies. Sinauer Associates,
Sunderland, MA.

Ferguson, N., D. Cummings, S. Cauchemez, C. Fraser, S. Riley et al.,
2005 Strategies for containing an emerging influenza pan-
demic in southeast Asia. Nature 437: 209–214.

Gavryushkina, A., D. Welch, T. Stadler, and A. Drummond,
2014 Bayesian inference of sampled ancestor trees for epide-
miology and fossil calibration. arXiv:1406.4573.

Grenfell, B. T., O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly
et al., 2004 Unifying the epidemiological and evolutionary dy-
namics of pathogens. Science 303: 327–332.

Griffiths, R. C., and S. Tavaré, 1994 Ancestral inference in pop-
ulation genetics. Stat. Sci. 9: 307–319.

Hasegawa, M., H. Kishino, and T. Yano, 1985 Dating of the
human-ape splitting by a molecular clock of mitochondrial
DNA. J. Mol. Evol. 22: 160–174.

Iwasaki, A., and P. S. Pillai, 2014 Innate immunity to influenza
virus infection. Nat. Rev. Immunol. 14: 315–328.

Keeling, M. J., and P. Rohani, 2008 Modeling Infectious Diseases in
Humans and Animals. Princeton University Press, Princeton.

Kermack, W., and A. McKendrick, 1932 Contributions to the
mathematical theory of epidemics. ii. The problem of endemic-
ity. Proc. R. Soc. A 138: 55–83.

606 A. Popinga et al.

http://www.nesi.org.nz/
http://www.royalsociety.org.nz/programmes/funds/marsden/awards/2013-awards/
http://www.royalsociety.org.nz/programmes/funds/marsden/awards/2013-awards/
http://www.cdc.gov/flu/
http://ecan.govt.nz/about-us/population/how-many/pages/census.aspx
http://ecan.govt.nz/about-us/population/how-many/pages/census.aspx


Kingman, J. F. C., 1982 The coalescent. Stoch. Proc. Appl. 13: 235–248.
Koelle, K., and D. A. Rasmussen, 2012 Rates of coalescence for

common epidemiological models at equilibrium. J. R. Soc. In-
terface 9: 997–1007.

Koelle, K., S. Cobey, B. Grenfell, and M. Pascual, 2006 Epochal
evolution shapes the phylodynamics of interpandemic influenza
a (h3n2) in humans. Science 314: 1898–1903.

Kühnert, D., T. Stadler, T. G. Vaughan, and A. J. Drummond,
2014 Simultaneous reconstruction of evolutionary history
and epidemiological dynamics from viral sequences with the
birth-death SIR model. J. R. Soc. Interface 11: 20131106.

Kutta, M. W., 1901 Beitrag zur näherungsweisen integration totaler
differentialgleichungen. Zeitschrift für Mathematik und Physik
46: 435–453.

Opatowski, L., C. Fraser, J. Griffin, E. de Silva, M. Van Kerkhove
et al., 2011 Transmission characteristics of the 2009 h1n1 in-
fluenza pandemic: comparison of 8 southern hemisphere coun-
tries. PLoS Pathog. 7: e1002225.

Paine, S., G. Mercer, P. Kelly, D. Bandaranayake, M. Baker et al.,
2010 Transmissability of 2009 pandemic influenza a(h1n1) in
New Zealand: effective reproduction number and influence of age,
ethnicity, and importations. Eurosurveillance 15(24). Available at:
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19591.

Pybus, O. G., M. A. Charleston, S. Gupta, A. Rambaut, E. C. Holmes
et al., 2001 The epidemic behavior of the hepatitis c virus.
Science 292: 2323–2325.

R Core Team, 2014 R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

Rambaut, A., 2007 Figtree. Available at: http://tree.bio.ed.ac.uk/
software/figtree/.

Rambaut, A., and E. Holmes, 2009 The early molecular epidemi-
ology of the swine-origin a/h1n1 human influenza pandemic.
PLoS Curr. 1: RRN1003.

Rasmussen, D. A., O. Ratmann, and K. Koelle, 2011 Inference for
nonlinear epidemiological models using genealogies and time
series. PLoS Comput. Biol. 7: e1002136.

Rasmussen, D. A., E. M. Volz, and K. Koelle, 2014 Phylodynamic
inference for structured epidemiological models. PLoS Comput.
Biol. 10: e1003570.

Roberts, M., 2013 Epidemic models with uncertainty in the re-
production number. J. Math. Biol. 66: 1463–1474.

Roberts, M., and H. Nishiura, 2011 Early estimation of the repro-
duction number in the presence of imported cases: pandemic
influenza h1n1–2009 in New Zealand. PLoS ONE 6: e17835.

Rodrigo, A., and J. Felsenstein, 1999 Coalescent approaches to
HIV population genetics, pp. 233–272 in The evolution of HIV,
edited by K. A. Crandall. The Johns Hopkins University Press,
Baltimore.

Rouzine, I. M., A. Rodrigo, and J. M. Coffin, 2001 Transition
between stochastic evolution and deterministic evolution in
the presence of selection: general theory and application to
virology. Microbiol. Mol. Biol. Rev. 65: 151–185.

Runge, C., 1895 Ueber die numerische auflösung von differential-
gleichungen. Math. Ann.. 46: 167–178.

Sehl, M., A. V. Alekseyenko, and K. L. Lange, 2009 Accurate sto-
chastic simulation via the step anticipation tau-leaping (sal)
algorithm. J. Comput. Biol. 16: 1195–1208.

Stadler, T., R. Kouyos, V. von Wyl, S. Yerly, J. Böni et al.,
2012 Estimating the basic reproductive number from viral se-
quence data. Mol. Biol. Evol. 29: 347–357.

Stadler, T., D. Kühnert, S. Bonhoeffer, and A. J. Drummond,
2013 Birth-death skyline plot reveals temporal changes of ep-
idemic spread in HIV and hepatitis C virus (HCV). Proc. Natl.
Acad. Sci. USA 110: 228–233.

Stadler, T., T. G. Vaughan, A. Gavruskin, S. Guindon, D. Kühnert,
et al., 2014 Population genetics vs. population dynamics: How
well can coalescent-based models approximate population dy-
namic processes? Genetics 190: 187–201.

StatsNZ, 2001 Statistics New Zealand. Available at: http://stats.
govt.nz/Census/.

Vaughan, T. G., and A. J. Drummond, 2013 A stochastic simulator
of birth-death master equations with application to phylody-
namics. Mol. Biol. Evol. 30: 1480–1493.

Vaughan, T., D. Kühnert, A. Popinga, D. Welch, and A. Drummond,
2014 Efficient Bayesian inference under the structured coales-
cent. Bioinformatics 30: 2272–2279.

Volz, E., and S. D. Frost, 2014 Sampling through time and phy-
lodynamic inference with coalescent and birth-death models.
J. R. Soc. Interface 11: 20140945.

Volz, E. M., 2012 Complex population dynamics and the coales-
cent under neutrality. Genetics 190: 187–201.

Volz, E. M., S. L. Kosakovsky Pond, M. J. Ward, A. J. Leigh Brown,
and S. D. W. Frost, 2009 Phylodynamics of infectious disease
epidemics. Genetics 183: 1421–1430.

WHO, 2014 World Health Organization. Available at: http://
www.who.int/topics/influenza/en/. Accessed: November, 2014.

Communicating editor: Y. S. Song

Bayesian Coalescent Epidemic Inference 607

http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19591
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://stats.govt.nz/Census/
http://stats.govt.nz/Census/
http://www.who.int/topics/influenza/en/
http://www.who.int/topics/influenza/en/


GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.172791/-/DC1

Inferring Epidemiological Dynamics with Bayesian
Coalescent Inference: The Merits of Deterministic

and Stochastic Models
Alex Popinga, Tim Vaughan, Tanja Stadler, and Alexei J. Drummond

Copyright © 2015 by the Genetics Society of America
DOI: 10.1534/genetics.114.172791



Supporting material for “Inferring epidemiological

dynamics with Bayesian coalescent inference: The

merits of deterministic and stochastic models”

1 Sampling from the prior

In order to assess the correctness of our implementation of the deterministic
coalescent SIR and stochastic coalescent SIR models, for each model we used the
MCMC algorithm to sample trees from the corresponding distribution f(T |η),
and compared these samples with coalescent trees simulated directly under the
model.

The chosen η included β = 7.5 × 10−4, γ = 0.3, S0 = 999 and z0 = 30.
The comparisons were performed for trees generated from 20 leaves, sampled at
integer times 0 through 19, inclusive.

For the deterministic coalescent SIR model, the direct simulation involved
numerically solving the Eqs. (1)–(3) in the main text for t ∈ [0, 30] and using
this solution in combination with Eq. (10) in the main text to determine the
instantaneous coalescent rate λ(τ). This rate was used to simulate each of the
coalescent trees in the usual fashion for heterochronous leaf times. In the case
that the MRCA was not reached before the origin time of the epidemic, the tree
was discarded and the simulation repeated.

The direct simulation proceeded in a similar way for the stochastic coales-
cent SIR model, the major difference being that the stochasticity of this model
required each coalescent tree to be simulated under a distinct realization of the
stochastic trajectory.

Comparisons between the direct simulation and MCMC results are shown
in Figures S1 and S2 for three different summary statistics and show very close
agreement.

2 Validation through simulated data analysis

As part of the validation of our implementation of the two coalescent SIR
models, trees were simulated by their own methods (using stochastically- and
deterministically-generated SIR trajectories, as discussed in the Methods sec-
tion of the main paper), and relevant epidemiological parameters were inferred
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using the stochastic and deterministic coalescent SIR models. Tables 1 and 2
show the results of these analyses, indicative of correct implementations.

Analyses for varying R0 (and necessarily, slightly varied other parameters,
such as the birth rate β) are provided in Tables S3 and S4. Results from tests of
the influence of broader priors (with larger standard deviations in log space) are
shown in Table S4. It appears that allowance of broader priors reduces 95% HPD
coverage in some cases (e.g., for parameter R0) when using the deterministic
coalescent SIR inference model, as they increase error and bias.

Finally, it was noticed that even for the higher true parameter values of
R0 = 2.50 and S0 = 999, under which deterministic coalescent SIR is expected
to perform relatively well, there was an inability to accurately estimate the
origin parameter z0. Figure S3 provides some insight into this conundrum by
examining the trajectories used for tree simulation and subsequent analysis.

2.1 H1N1 data selection

Initially, the H1N1 dataset contained 45 sequences. The ages of the inferred trees
(Figure S4) using the original 45 sequences extended more than 1.5 years into the
past for each of the SIR models, which is contrary to what we expect for a single,
current strain of seasonal influenza. Three taxa (labelled 32197, 31893, and
31988) were hypothesized to belong to a unique strain, e.g., an additional seeding
from outside the Canterbury region or a low-lying previous strain. Removing
these three taxa caused the inferred trees to behave as expected, i.e., tree heights
and epidemic origin z0 less than a year old. It also raised the estimated R0 values
for all three SIR models (initially 1.24, 1.10, and 1.55 for stochastic coalescent
SIR, deterministic coalescent SIR, and BDSIR, respectively), as well as those
for γ (initially 8.74, 12.65, and 11.33 for stochastic coalescent SIR, deterministic
coalescent SIR, and BDSIR, respectively).

It will be interesting to further investigate the interplay between influenza
strains and its contribution to the overall dynamics. For the closed SIR models
discussed in this manuscript, however, this additional complexity leads to in-
creased chance of model misspecification and misleading results. Therefore, we
focused our attention on the analyses using 42 sequences.

2.2 HIV-1 data analysis

The original HIV-1 dataset (Hué et al. 2005) was agglomerated from both acute
and chronic infections sampled in the United Kingdom (UK) and constitutes six
phylogenetic clusters, from which the five used here (Clusters 1-4 and 6) were
drawn. These particular clusters, with the omission of Cluster 5, were cho-
sen simply for the purpose of direct comparison with Kühnert et al. (2014).
Our extension to the models allowed us to imprint respective tip dates on the
sequence data, sampled from 1999 to 2003, for inclusion in the likelihood com-
putation.

For the selected five clusters, the nucleotide alignments contained 41, 62,
29, 26, and 35 sequences, respectively, each with 952 sites. The substitution
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scheme chosen for phylogenetic analysis was the symmetric and independent
general time reversible model (GTR), with gamma distributed rate variation and
explicit proportion of invariable sites (GTR+G+I). Following Hué et al. (2005),
the substitution rate was set to 2.55e-4 substitutions per site per year. All other
parameters were estimated conjointly, and the Bayesian prior distributions are
presented in Table 4: Bayesian prior distributions.

The pathophysiology of HIV is multifarious, and the patterns of its advance-
ment within an infected host change throughout time. In addition to increased
complexity potentially caused by recombination events, the transition between
HIV’s acute and chronic phases alters the host’s infectivity (Guss 1994). The
SIR compartmental model used for this particular phylodynamic analysis on the
UK cluster data does not allow for independent infection rates for the acute and
chronic phases (but see Volz et al. (2012) and Volz et al. (2013)). However, in
this study we did not attempt to estimate the infection rate β and thus did not
expect such a difference to significantly impact the estimation of the parameters
of interest: the basic reproductive number R0, removal rate γ, size of the initial
susceptible population S0, and origin of the outbreak z0.

2.2.1 HIV-1 inference results

In regard to parameter inference from the serially-sampled HIV-1 sequence data,
the stochastic coalescent SIR, deterministic coalescent SIR, and BDSIR methods
were most alike in light of the R0 results. The medians and HPD intervals for all
clusters pertaining to this parameter, (especially Clusters 1, 2, 3, and 6), were
very close, and those of Cluster 4 were still congruent across the three analyses
(Figure S5).

The coalescent SIR models and BDSIR disagreed with respect to the age of
the most recent common ancestor and the origin z0 (Figure S6). The coalescent
SIR models also exhibited much larger 95% HPD intervals for z0 in each of the
clusters; while BDSIR encompassed an average of 16 years, the stochastic coa-
lescent SIR and deterministic coalescent SIR models had averages of 49 and 37
years, respectively. Furthermore, the estimated age of the common ancestor of
the tree was older under the coalescent SIR models than the estimates reported
by either BDSIR or the original data analysis (Hué et al. 2005) for each cluster.
This was also true for the time of origin for the epidemic, although for certain
clusters the differences between the coalescent estimates of the origin z0 and the
birth-death estimates were much greater than others (e.g., Cluster 3).

The estimates of removal rate γ from Clusters 1 and 6 were very similar
across the three methods (Figure S7). However, both coalescent SIR models
estimated considerably higher γ values for Clusters 2-4 than BDSIR. This is
reflective of the simulation study results, where the two coalescent models did
not perform as well as BDSIR for the removal parameter.

Median estimates for the initial susceptible population S0 were quite similar
in all methods for Clusters 1-4, although BDSIR displayed much wider HPD
intervals than stochastic coalescent SIR and deterministic coalescent SIR (Figure
S8). In Cluster 6, the coalescent SIR models showed the smallest HPD intervals
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for their individual analyses on each cluster, while the opposite was true for
BDSIR. There was also a disparity between the median estimates for the two
coalescent approaches and that of BDSIR for Cluster 6. To this effect, it should
be noted that the number of infections accrued throughout the duration of the
epidemic was reported as Ne = 1, 350 by Hué et al. This casts some suspicion on
the low susceptible population estimates obtained by the stochastic coalescent
SIR and deterministic coalescent SIR methods (median estimates of S0 = 727
and S0 = 693, respectively), since they appear lower than the estimated number
of infected individuals from the original study.

There is disagreement in the literature in regard to the modelling of HIV-
1 evolutionary dynamics under stochastic or deterministic processes (Nijhuis
et al. 1998; Rouzine and Coffin 1999; Achaz et al. 2004; Shriner et al.
2004). The predicament dwells in the observation that the actual effective
population size Ne for HIV-1 is often smaller than the total population size
(Kouyos et al. 2006). While most of this debate has focused on within-host
population dynamics, many of the arguments hold when considering the broader
epidemic dynamics of host-to-host transmission. As previously mentioned, the
appropriateness of these descriptions is hinged on the magnitude of the infected
population, precisely, the effective infected population size. Consequently, even
when the total infected population is quite large there may yet be significant
stochastic effects in play.

Finally, as mentioned in the main article, the existence of two distinct infec-
tious stages and the possibility of large effects due to recombination are reasons
for any discrepancy produced by these SIR inference models.

2.2.2 Example XML

Below is an example XML for simulating 100 trees and trajectories in MASTER
(Vaughan and Drummond 2013). This example is for R0 = 2.4975 and S0 =
999. The simulation ends when the infected I population returns to zero, i.e.,
when the last infected individual is removed.

<beast version=‘2.0’

namespace=‘master.beast:beast.core.parameter:beast.evolution.tree.TreeHeightLogger’>

<run spec=‘InheritanceEnsemble’

nTraj=‘100’

samplePopulationSizes=‘true’

verbosity=‘1’>

<model spec=‘InheritanceModel’ id=‘model’>

<population spec=‘Population’ id=‘S’ populationName=‘S’/>

<population spec=‘Population’ id=‘I’ populationName=‘I’/>

<population spec=‘Population’ id=‘R’ populationName=‘R’/>

<population spec=‘Population’ id=‘Rh’ populationName=‘Rh’/>

<!-- infection reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Infection’ rate=‘0.00075’>

S + I -> 2I
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</reaction>

<!-- recovery reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Recovery’ rate=‘0.25’>

I -> R

</reaction>

<!-- sampling reaction -->

<reaction spec=‘InheritanceReaction’ reactionName=‘Sampling’ rate=‘0.05’>

I -> Rh

</reaction>

</model>

<initialState spec=‘InitState’>

<populationSize spec=‘PopulationSize’ population=‘@S’ size=‘999’/>

<lineageSeed spec=‘Individual’ population=‘@I’/>

</initialState>

<populationEndCondition spec=‘PopulationEndCondition’

population=‘@I’

threshold=‘0’

exceedCondition=‘false’/>

<inheritancePostProcessor spec=‘LineageFilter’

reactionName=‘Sampling’

discard=‘false’/>

<output spec=‘NewickOutput’ fileName=‘SIR.newick’/>

<output spec=‘NexusOutput’ fileName=‘SIR.nexus’/>

<output spec=‘JsonOutput’ fileName=‘SIR.json’/>

</run>

</beast>

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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Figure S1: Comparison between distributions of summary statistics of trees
sampled using MCMC employing our implementation of the deterministic coa-
lescent SIR model likelihood and those calculated, and those of trees sampled
using direct simulation. Summary statistics shown are (a) the age of the MRCA
of the transmission tree, (b) the sum of all edge lengths in the tree, and (c) the
total number of two-leaf clades in the tree.
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Figure S2: Comparison between distributions of summary statistics of trees
sampled using MCMC employing our implementation of the stochastic coales-
cent SIR model likelihood and those calculated, and those of trees sampled using
direct simulation. Summary statistics shown are (a) the age of the MRCA of
the transmission tree, (b) the sum of all edge lengths in the tree, and (c) the
total number of two-leaf clades in the tree.
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Figure S3: (a) True stochastic SIR trajectories simulated jointly alongside phy-
logenies, with the corresponding trajectories used by deterministic coalescent
SIR. Adjusting deterministic coalescent SIR to fit the underlying stochastic tra-
jectories causes major shifts to the origin z0. (b) Deterministic residuals with
z0 either fitted or not.
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Figure S4: Representative influenza A (H1N1) posterior trees from inference
using the stochastic coalescent SIR (left), deterministic coalescent SIR (right),
BDSIR (bottom) models.
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Figure S5: 95% HPD intervals of R0 for the HIV-1 subtype B UK cluster anal-
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Figure S6: 95% HPD intervals for coalescent [Volz (2012)] and birth-death
[Kühnert et al. (2014)] estimations of the time into the past at which the root
of the HIV-1 tree and introduction of the first infection occurred.
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Figure S7: 95% HPD intervals of γ for the HIV-1 subtype B UK cluster analyses
using coalescent and birth-death methods.
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Table S1: Simulation Study Results for Stochastic Coalescent Trees

η Inference Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 Stoch.Coal.SIR 2.50 2.81 2.64 0.11 0.08 0.95 100.00%
Deter.Coal.SIR 2.50 2.73 2.65 0.14 0.06 0.85 96.00%

γ Stoch.Coal.SIR 0.30 0.28 0.26 0.16 -0.11 1.17 99.00%
Deter.Coal.SIR 0.30 0.30 0.28 0.18 -0.03 1.20 99.00%

S(0) Stoch.Coal.SIR 999 1456 986 0.21 0.02 3.93 100.00%
Deter.Coal.SIR 999 1720 1057 0.48 0.24 4.28 99.00%

z(0) Stoch.Coal.SIR (varies) 42.36 40.43 0.03 0.02 0.20 98.00%
Deter.Coal.SIR (varies) 41.25 39.77 0.03 0.01 0.07 64.00%
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Table S2: Simulation Study Results for Deterministic Coalescent
Trees

η Inference Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 Stoch.Coal.SIR 2.50 2.44 2.37 0.06 -0.05 0.67 100.00%
Deter.Coal.SIR 2.50 2.51 2.46 0.08 -0.01 0.59 99.00%

γ Stoch.Coal.SIR 0.30 0.33 0.31 0.07 0.05 1.00 100.00%
Deter.Coal.SIR 0.30 0.32 0.30 0.10 0.02 0.79 100.00%

S(0) Stoch.Coal.SIR 999 1586 1142 0.26 0.20 3.83 100.00%
Deter.Coal.SIR 999 1426 1030 0.36 0.13 3.03 100.00%

z(0) Stoch.Coal.SIR 44.12 45.52 44.74 0.02 0.01 0.19 93.00%
Deter.Coal.SIR 44.12 44.34 44.11 0.02 1.93e-3 0.08 92.00%
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Table S3: Results for Homochronous Sampling

η Inference Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 Stoch.Coal.SIR 2.50 3.04 2.74 0.13 0.11 1.32 100.00%
Deter.Coal.SIR 2.50 4.05 3.29 0.34 0.32 2.38 100.00%

BDSIR 2.50 2.84 2.49 0.16 0.03 1.45 97.00%

γ Stoch.Coal.SIR 0.30 0.26 0.23 0.25 -0.21 1.43 100.00%
Deter.Coal.SIR 0.30 0.26 0.19 0.36 -0.31 2.03 100.00%

BDSIR 0.30 0.23 0.17 0.42 -0.42 2.04 100.00%

S(0) Stoch.Coal.SIR 999 1660 1065 0.18 0.09 4.75 100.00%
Deter.Coal.SIR 999 4127 679 0.78 0.09 10.24 100.00%

BDSIR 999 1907 1320 0.41 0.41 4.86 100.00%

z(0) Stoch.Coal.SIR 20.0 20.17 19.82 0.09 -0.03 0.43 95.00%
Deter.Coal.SIR 20.0 19.09 19.21 0.09 -0.05 0.19 73.00%

BDSIR 20.0 36.56 29.38 0.55 0.54 4.24 100.00%
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Table S4: Simulation Study Results: The Effect of Broader Priors on
Deterministic Coalescent SIR

η St. Dev. Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 2 1.50 2.06 1.75 0.40 0.35 0.86 79.00%
R0 1 1.50 1.80 1.49 0.24 0.15 0.52 85.00%
R0 2 2.50 3.31 2.85 0.34 0.24 1.43 95.00%
R0 1 2.50 2.68 2.49 0.13 0.04 0.80 99.00%

γ 2 0.30 0.31 0.23 0.37 -0.12 1.59 96.00%
γ 1 0.30 0.26 0.23 0.27 -0.22 1.15 89.00%
γ 2 0.30 0.31 0.25 0.33 -0.09 1.59 95.00%
γ 1 0.30 0.32 0.29 0.16 3.14e-3 1.27 99.00%

S(0) 2 499 2041 249 1.40 0.49 7.75 85.00%
S(0) 1 499 562 361 0.44 -0.26 3.36 91.00%
S(0) 2 999 3028 717 1.05 0.33 6.60 94.00%
S(0) 1 499 553.38 337 0.42 -0.26 3.08 92.00%

z(0) 2 (varies) 65.10 62.01 0.04 0.03 0.25 86.00%
z(0) 1 (varies) 91.03 72.51 0.39 0.38 0.42 88.00%
z(0) 2 (varies) 40.97 39.85 0.03 -6.78e-4 0.08 81.00%
z(0) 1 (varies) 112.79 90.37 0.26 0.26 0.94 85.00%
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Table S5: Comparison of Computation Times for Bayesian Inference
of Epidemic Parameters from Genetic Sequence Data using SIR
Models

Data Type Inference Model Mean time per million
samples (MCMC)

Stoch.Coal.SIR 20m 41s
Sim. Study (R0 ≈ 2.50) Deter.Coal.SIR 3m 27s

BDSIR 56m 27s
Stoch.Coal.SIR 1h 43m 30s

Sim. Study (R0 ≈ 1.50) Deter.Coal.SIR 3m 47s
BDSIR 41m 35s

Stoch.Coal.SIR 1h 50m 41s
Sim. Study (R0 ≈ 1.10) Deter.Coal.SIR 6m 45s

BDSIR 41m 21s
Stoch.Coal.SIR 1h 20m 55s

H1N1 Deter.Coal.SIR 9m 44s
BDSIR 47m 33s

Stoch.Coal.SIR 14h 37m 45s
HIV-1 Deter.Coal.SIR 7m 56s

BDSIR 1h 38m 54s
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Table S6: Deterministic Coalescent SIR Results for Simulated Se-
quences: R0 = 1.0987 and S0 = 499, R0 = 1.0989 and S0 = 999,
R0 = 1.09945 and S0 = 1999

η Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 ≈1.10 1.89 1.28 0.62 0.63 0.40 52.00%
γ 0.30 0.57 0.44 0.59 0.52 2.14 95.00%
S(0) 499 1830 1222 1.50 1.31 11.49 96.00%
z(0) (varies) 109.55 76.21 0.61 0.54 0.35 37.00%

R0 ≈1.10 1.55 1.35 0.25 0.25 0.45 16.00%
γ 0.30 0.27 0.24 0.20 -0.12 1.23 61.00%
S(0) 999 1293 804 0.27 -0.10 3.58 64.00%
z(0) (varies) 117.39 99.75 0.25 0.18 0.23 23.00%

R0 ≈1.10 1.37 1.22 0.16 0.16 0.28 40.00%
γ 0.30 0.26 0.24 0.18 -0.14 1.13 64.00%
S(0) 1999 2292 1531 0.23 -0.18 3.45 66.00%
z(0) (varies) 150.39 138.69 0.23 0.20 0.32 18.00%
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Table S7: Simulation Study Details

Type of simulated data Inference models used

1. Varying R0 and S0 (orig.)
(a) R0 ≈ 1.1, S0 = 499, γ = 0.25, ψ = 0.15 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR
(b) R0 ≈ 1.2, S0 = 499, γ = 0.30, ψ = 0.15 Deter.Coal.SIR
(c) R0 ≈ 1.5, S0 = 499, γ = 0.30, ψ = 0.15 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR
(d) R0 ≈ 1.5, S0 = 999, γ = 0.30, ψ = 0.20 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR
(e) R0 ≈ 2.5, S0 = 999, γ = 0.30, ψ = 0.05 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR

2. Varying S0 for fixed R0

(a) R0 ≈ 1.1, S0 = 499, γ = 0.25, ψ = 0.15 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR
(f) R0 ≈ 1.1, S0 = 999, γ = 0.30, ψ = 0.20 Deter.Coal.SIR

(g) R0 ≈ 1.1, S0 = 1999, γ = 0.30, ψ = 0.09 Deter.Coal.SIR

3. Contemporaneous sampling
(d) R0 ≈ 1.5, S0 = 999, γ = 0.30, ψ = 0.20 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR
(e) R0 ≈ 2.5, S0 = 999, γ = 0.30, ψ = 0.05 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR

4. Phylogenetic uncertainty
(e) R0 ≈ 2.5, S0 = 999, γ = 0.30, ψ = 0.05 Deter.Coal.SIR, Stoch.Coal.SIR, BDSIR

5. Reparameterization (growth rate)
(e) R0 ≈ 2.5, S0 = 999, γ = 0.30, ψ = 0.05 Deter.Coal.SIR
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Table S8: Epidemic Parameter Estimations from HIV-1 Subtype B
Sequence Data

Inference Model R0 γ S0 Root of Origin z0 of the
HIV cluster the tree (yr) epidemic (yr)

Stoch. Coal. SIR
——————

Cluster 1 3.31 0.27 1165 1971 1969
(2.40 - 4.26) (8.17E-2 - 0.48) (448 - 1974) (1946-1987) (1942-1986)

Cluster 2 2.42 0.32 976 1975 1972
(1.86 - 3.07) (7.72E-2 - 0.57) (371 - 1701) (1953 - 1988) (1947 - 1988)

Cluster 3 2.10 0.41 1442 1979 1973
(1.07 - 3.73) (2.59e-2 - 0.86) (33 - 4568) (1959 - 1990) (1943 - 1989)

Cluster 4 3.48 0.28 1757 1964 1961
(1.69 - 5.24) (0.08 - 0.61) (148 - 5260) (1922 - 1990) (1918 - 1991)

Cluster 6 3.09 0.19 727 1972 1970
(1.94 - 4.53) (3.72e-2 - 0.41) (236 - 1312) (1950 - 1989) (1947 - 1988)

Deter. Coal. SIR
——————–

Cluster 1 3.43 0.26 1158 1969 1967
(2.52 - 4.40) (6.95E-2 - 0.50) (397 - 2023) (1941-1987) (1939-1986)

Cluster 2 2.34 0.38 1163 1979 1977
(1.92 - 2.81) (0.13 - 0.66) (530 - 1895) (1967 - 1989) (1964 - 1987)

Cluster 3 1.87 0.54 1298 1979 1975
(1.42 - 2.43) (0.14 - 0.97) (399 - 2267) (1965 - 1989) (1960 - 1987)

Cluster 4 3.35 0.34 1479 1972 1971
(2.02 - 4.86) (8.22e-2 - 0.65) (397 - 2792) (1948 - 1990) (1946 - 1989)

Cluster 6 3.14 0.18 693 1971 1969
(1.98 - 4.64) (2.99e-2 - 0.37) (213 - 1241) (1949 - 1989) (1943 - 1988)

BDSIR
—————
Cluster 1 3.22 0.30 880 1986 1983

(2.18-4.27) (0.15-0.47) (142-3592) (1983-1988) (1978-1987)
Cluster 2 2.45 0.17 1745 1983 1978

(1.53-3.68) (0.06-0.35) (190-8892) (1979-1986) (1968-1984)
Cluster 3 1.90 0.20 1540 1985 1978

(1.22-2.78) (0.09-0.39) (153-8558) (1981-1988) (1962-1986)
Cluster 4 2.62 0.15 1921 1987 1981

(1.45-4.29) (0.06-0.31) (128-11007) (1983-1990) (1970-1988)
Cluster 6 3.17 0.15 2862 1986 1983

(1.73-5.43) (0.06-0.31) (183-16909) (1981-1989) (1975-1989)
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Table S9: Deterministic Coalescent SIR Results from Trees Simulated
with Higher S0 (with Fixed R0) and Higher R0 (with Fixed S0)

η Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 2.50 2.68 2.49 0.13 0.04 0.81 98.00%

γ 0.30 0.32 0.29 0.16 3.14e-3 1.27 99.00%

S(0) 999 1807 1133 0.52 0.29 4.59 98.00%

z(0) (varies) 41.17 39.99 0.03 0.01 0.07 76.00%

R0 2.50 3.28 2.97 0.23 0.20 1.42 100.00%

γ 0.35 0.30 0.28 0.24 -0.20 1.28 99.00%

S(0) 4999 7733 4838 0.34 0.03 4.18 100.00%

z(0) (varies) 37.45 36.15 0.03 1.48e-3 0.06 56.00%

R0 2.50 3.76 3.05 0.26 0.23 1.50 100.00%

γ 0.40 0.33 0.31 0.26 -0.22 1.22 100.00%

S(0) 9999 12,609 7405 0.35 -0.15 3.31 100.00%

z(0) (varies) 34.99 34.28 0.04 -1.94e-3 0.05 43.00%

η Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 2.50 2.68 2.49 0.13 0.04 0.81 98.00%

γ 0.30 0.32 0.29 0.16 3.14e-3 1.27 99.00%

S(0) 999 1807 1133 0.52 0.29 4.59 98.00%

z(0) (varies) 41.17 39.99 0.03 0.01 0.07 76.00%

R0 3.50 3.92 3.76 0.18 0.06 0.95 95.00%

γ 0.30 0.31 0.29 0.21 -0.01 1.16 99.00%

S(0) 999 1909 1060 0.64 0.36 4.26 100.00%

z(0) (varies) 30.65 30.35 0.04 -6.35e-3 0.05 45.00%

R0 5.00 6.13 5.53 0.20 0.12 1.39 100.00%

γ 0.30 0.28 0.27 0.29 -0.09 1.18 100.00%

S(0) 999 2144 1220 0.68 0.49 4.94 99.00%

z(0) (varies) 26.28 25.26 0.03 -0.01 0.03 52.00%

η Truth Mean Median Error Bias Relative 95% HPD
HPD width accuracy

R0 5.00 7.20 6.37 0.27 0.23 2.53 100.00%

γ 0.30 0.26 0.22 0.26 -0.19 1.41 100.00%

S(0) 9999 17,339 10,518 0.31 0.12 4.91 100.00%

z(0) (varies) 28.20 26.93 0.03 -0.01 1.05 36.00%
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