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Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system
and represent the basis of regenerative medicine applied to hematological disorders.
Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a
need to further understand HSC expansion in vivo. After embryonic HSCs are born from
the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future
adult HSC pool is established by considerable expansion. This takes place at different
anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult
niche, where they are maintained throughout adulthood. Exactly how HSC expansion is
controlled during embryogenesis remains to be characterized and is an important step
to improve the therapeutic use of HSCs. We will review the current knowledge of HSC
expansion in the different fetal niches across several model organisms and highlight
possible clinical applications.

Keywords: zebrafish, mammals, CHT, fetal liver, hematopoietic (stem) cells, caudal hematopoietic tissue,
microenvironment

INTRODUCTION

Hematopoiesis is a highly conserved process across many organisms that culminates with the
emergence of hematopoietic stem cells (HSCs). In zebrafish and mammals, hematopoiesis initiates
with the emergence of primitive myeloid and erythroid cells (Palis et al., 2001; Bertrand et al., 2005;
Palis, 2014; McGrath et al., 2015). Similar cells, prohemocytes, are also detected in drosophila larvae
that give rise to plasmatocytes (macrophage-like cells) and crystal cells (platelet-like cells) (Lebestky
et al., 2000). Primitive myeloid and erythroid cells are also detected in xenopus embryos (Ciau-
Uitz et al., 2014). Following this, definitive hematopoiesis then occurs in two distinct waves in
vertebrates. The first wave is characterized by the transient erythro-myeloid precursors (EMPs) that
arise in the yolk sac in mice and humans (Bertrand et al., 2005; McGrath et al., 2015), the posterior
blood island in zebrafish (Bertrand et al., 2007) and the posterior-lateral ventral blood island in
xenopus (Ciau-Uitz et al., 2014). The appearance of EMPs in chicken embryos remains to be
determined. The second wave consists of HSC specification from the aortic hemogenic endothelium
by the highly conserved process of endothelial-to-hematopoietic transition (EHT). The formation
of the hemogenic endothelium requires the correct balance of extrinsic and intrinsic factors to
initiate the expression of specific transcription factors, such as runx1 and gata2. During mammalian
and avian development, HSC specification occurs in the aorta-gonads-mesonephros (AGM) region
where they form intra-aortic clusters (Jaffredo et al., 2000; Bollerot et al., 2005a,b; Zovein et al., 2008;
Chen et al., 2009; Boisset et al., 2010) between embryonic (E) day 9.5 and 11.5 in mice, between E26
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and E40 in humans and between E3-4 in chickens. During
zebrafish development, HSCs emerge between 32 to 60 hours
post fertilization (hpf), from the hemogenic endothelium in the
dorsal aortal (Bertrand et al., 2010; Kissa and Herbomel, 2010),
a process that requires inflammatory cytokines produced by
neutrophils (Espin-Palazon et al., 2014) and extracellular matrix
(ECM) degradation by macrophages to allow HSCs to enter
circulation (Travnickova et al., 2015). HSCs are first detected in
the ventral blood island and then later in the dorsal lateral plate
mesoderm in xenopus (Ciau-Uitz et al., 2000) and transient cells
with HSC characteristics are closely associated to the cardiac tube
in drosophila (Dey et al., 2016).

In all these organisms, the initial specification from
endothelial cells (ECs) results in a limited number of HSCs
that must mature and expand. This is achieved by migrating
through different niches, each in distinct anatomical locations
that contain specific microenvironments. The first niche that
expands HSCs in mouse, humans and xenopus is the fetal liver
(FL) (Ema and Nakauchi, 2000; Ciau-Uitz et al., 2014) before they
migrate to the bone marrow (BM). In contrast, zebrafish HSCs
expand in the caudal hematopoietic tissue (CHT) (Tamplin et al.,
2015) and then migrate to the kidney marrow (KM) and chicken
HSCs expand in the para-aortic foci (PAF) before seeding the
BM (Dunon and Imhof, 2000; Jaffredo et al., 2000; Bollerot et al.,
2005a,b). This process is different in drosophila where an initial
wave of HSCs (derived from head mesoderm) arises early during
larvae development, followed by a second wave of HSCs found
in the lymph gland (Lebestky et al., 2000; Dey et al., 2016). HSCs
are then seeded in hematopoietic clusters in the dorsal abdomen
of adult drosophila (Ghosh et al., 2015; Dey et al., 2016).

Mouse and zebrafish studies have shown that HSCs physically
interact with ECs that promote their proliferation in the fetal
niche (Tamplin et al., 2015; Khan et al., 2016). We, and others,
have shown that this expansion depends on the expression
of several cytokines produced by stromal cells and caudal
ECs (cECs) (Tamplin et al., 2015; Mahony et al., 2016, 2018).
Additional signals are also important for their expansion, which
will be discussed in this review. This embryonic expansion is an
essential step in the formation of the adult HSC pool and the
correct maturation of HSCs.

The self-renewing and multipotent properties of HSCs make
these cells an excellent target for regenerative medicine protocols
(Cavazzana-Calvo et al., 2000; Walasek et al., 2012; Aiuti et al.,
2013). Many therapies currently make use of ex vivo expansion
of autologous human HSCs, using a cytokine cocktail, but always
with limited efficiency (Petzer et al., 1996; Cavazzana-Calvo et al.,
2000; Schuster et al., 2012). Therefore a better understanding of
the different combinations of cytokines present in the niche along
with the additional mechanisms and signaling pathways that
normally expand HSCs is required to improve clinical treatment
of a range of hematopoietic diseases. Here, we review the
recent literature that describes the extrinsic signals important for
HSC homing, expansion and finally release from the embryonic
niche across zebrafish, xenopus, chicken, and mammals. The
anatomical sites where hematopoiesis occurs in these organisms
are summarized in Table 1. We will then briefly discuss the
possible clinical implications of this current knowledge.

TABLE 1 | Summary of anatomical sites of hematopoiesis in the
mentioned species.

Species HSC emergence HSC expansion Adult hematopoiesis

Human AGM Fetal liver Bone marrow

Mouse AGM Fetal liver Bone marrow

Chicken AGM PAF/YS Bone marrow

Xenopus VBI/DLP Fetal liver Bone marrow

Zebrafish AGM CHT Kidney marrow

Drosophila Lymph node Lymph node Hematopoietic hubs

AGM, aorta, gonads, mesonephros. VBI/DLP, ventral blood island/dorsal
lateral plate mesoderm. PAF, para aortic foci. YS, yolk sac. CHT, Caudal
hematopoietic tissue.

HSC EMERGENCE AND HOMING TO
THE EMBRYONIC NICHE

Mammals
Mammalian HSCs are produced from the floor of the embryonic
aorta in the AGM region (Zovein et al., 2008; Chen et al., 2009;
Ivanovs et al., 2011) but also in the vitelline and umbilical arteries
(de Bruijn et al., 2000). Additionally, human and murine studies
have detected HSCs in the placenta that arise independently from
and in parallel with the HSCs from the AGM (Gekas et al.,
2005; Ottersbach and Dzierzak, 2005; Rhodes et al., 2008; Gekas
et al., 2010). However it remains unknown what contribution
placenta-derived HSCs make to the adult stem cell pool. HSCs
then colonize the FL from E11 in mice and E28 in humans, mainly
in response to CXCL12 (Chou and Lodish, 2010). CXCL12,
released from ECs, stromal cells and mesenchymal progenitors,
is well characterized for its role in HSC homing, retention and
survival in the niche (Ara et al., 2003; Christensen et al., 2004;
Sugiyama et al., 2006; Sawitza et al., 2009; Greenbaum et al.,
2013). CXCL12 enhances migration of FL-HSCs in combination
with stem cell factor (SCF), when compared to BM-HSCs
(Christensen et al., 2004). Furthermore, mice lacking CXCL12
or its receptor (CXCR4) display normal FL hematopoiesis but
aberrant spleen and BM colonization, suggesting that specific
and distinct signaling environments attract and maintain HSCs
(Nagasawa et al., 1996; Ara et al., 2003). In the FL, HSCs are found
closely associated with ECs and stromal cells that promote HSC
expansion (Tamplin et al., 2015; Khan et al., 2016).

In addition to cytokine secretion, a direct contact between
the different cells within the FL and hematopoietic progenitors
is also important to maintain and expand HSCs (Nanno et al.,
1994; Corlu et al., 1998). HSCs express a number of integrins and
adhesion receptors that are critical for the correct trafficking of
HSCs to the FL and could mediate cell contact. For example, VE-
Cadherin (CD144), α2b-integrin (CD41), β1-integrin (CD29),
cKIT and CXCR4 are well established trafficking molecules
expressed by HSCs and play a key role in HSC guidance to the
fetal niche (Mazo et al., 2011).

Further studies have demonstrated that umbilical HSCs have
a higher affinity to adhere to adult BM than embryonic HSCs,
which is due to a specific shift in the expression of specific
integrins by HSCs. This suggests that integrin expression is

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 March 2019 | Volume 7 | Article 34

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00034 March 8, 2019 Time: 17:25 # 3

Mahony and Bertrand The Embryonic HSC Niche

required during development to mediate homing to specific
niches (Roy and Verfaillie, 1999). Integrins (mainly α4-integrin)
are implicated in mediating HSC interaction with the vascular
niche in the BM (Mazo et al., 1998), and their inhibition mobilizes
HSCs from the FL (Kim et al., 2016). Human endothelium-
derived HSCs also express and use a myeloid adhesion factor,
glycosylphosphatidylinositol-anchored surface protein (GPI-80;
also known as Vanin-2, or VNN2) (Prashad et al., 2015), to
facilitate their migration and expansion in the fetal niche.

Several ECM, cell adhesion and cytoskeleton pathways are
enriched in the AFT024 murine FL fibroblast-derived stromal
cell line [a cell line that supports HSC expansion in vitro (Nolta
et al., 2002)] and within HSCs, permitting HSC migration and
anchoring to their niches (Charbord and Moore, 2005).

Chicken
Definitive chicken hematopoiesis is initiated at E3-4 by the
emergence of intra-aortic clusters of HSCs derived from
endothelium (as seen in mammals) (Jaffredo et al., 2000;
Bollerot et al., 2005a,b; Yvernogeau and Robin, 2017). HSCs
then migrate to the neighboring mesenchyme, ventral to the
aorta and located in the PAFs, that support the development
of CD45+ cells (Cormier, 1993; Geerts et al., 1993), such as
myeloerythroid progenitor cells and immature thymic precursors
(that have not yet undergone T-cell receptor rearrangements)
(Lampisuo et al., 1999; Jaffredo et al., 2000; Liippo et al., 2000;
Saynajakangas et al., 2009). An additional site of embryonic
hematopoiesis includes the yolk sac, which also contributes to
the expansion and maturation of erythroid and myeloid cells
(Guedes et al., 2014). However, the homing signals to the chicken
PAFs remain unidentified. Although little is known about the
microenvironment that would support HSCs in the chicken
PAFs, differential expression of integrins may play an important
role in supporting HSCs (Corbel, 2002).

Xenopus
Fate-mapping and grafting experiments showed that bona fide
HSCs are generated in the dorsal lateral plate (DLP), the
equivalent of the mammalian AGM (Turpen et al., 1981; Maeno
et al., 1985; Ciau-Uitz et al., 2000; Clements and Traver,
2013). In larval stages, DLP-derived HSCs reach maturity and
seed the FL where they produce erythrocytes that will replace
embryonic primitive erythrocytes. The FL is the main site
of HSC expansion and differentiation during embryogenesis,
i.e., before metamorphosis (Chen and Turpen, 1995). Classical
studies made use of kidney and liver sections from bullfrog
tadpoles to reveal hematopoietic microenvironments, supporting
red blood cell development (Broyles et al., 1981). After
metamorphosis, the majority of the blood cells are DLP-derived
(Ciau-Uitz et al., 2014).

Zebrafish
During zebrafish development, gata2b (the earliest hemogenic
endothelium marker) is expressed in ECs in the floor of the
dorsal aorta (Butko et al., 2015). HSCs are then specified
through the expression of runx1 and cmyb, and can be observed
undergoing EHT from the floor of the dorsal aorta between

32–60 hpf (Bertrand et al., 2010; Kissa and Herbomel, 2010;
Mahony et al., 2018). Contrary to mammals, zebrafish HSCs
then migrate toward the vein, where they enter circulation to
migrate to the CHT (Bertrand et al., 2010). Within the CHT they
considerably expand between 3 and 4 days post fertilization (dpf)
(Murayama et al., 2006; Tamplin et al., 2015; Mahony et al., 2016;
Staal et al., 2016). HSCs migrate to the CHT embryonic niche
in response to cxcl12a, expressed from stromal cells (Tamplin
et al., 2015). Further zebrafish studies have identified klf6a as
an important transcription factor that directly regulates ccl25b
expression in ECs (Xue et al., 2015, 2017). Xue et al. (2017)
demonstrated that ccl25b is expressed in the CHT at 48hpf
and is an important cytokine for HSC chemoattraction to and
expansion within the CHT niche. These results were further
corroborated by the ex vivo culture of murine HSCs in the
presence of Ccl21 (murine ortholog of ccl25b) that enhanced HSC
expansion through activation of its receptor, Ccr7 (Xue et al.,
2017). Upon arrival in the CHT niche, VCAM+ macrophages
are also required to direct HSCs (through binding to α4-integrin
expressed by HSCs) toward venous capillaries and retain them in
their embryonic niche (Li et al., 2018).

NON-CELL-AUTONOMOUS MEDIATORS
OF HSC EXPANSION IN THE
EMBRYONIC NICHE

The HSC pool first undergoes expansion shortly after HSC
emergence from the AGM (Taoudi et al., 2008; Rybtsov et al.,
2016), before migrating to their fetal niche. The number of
HSCs then greatly expands to around 38 times their original
number, peaking at around E14 in mice and ceasing around
2–4 days postnatal (Morrison et al., 1995; Ema and Nakauchi,
2000; Baumann et al., 2004; Lessard et al., 2004; Chen et al.,
2009; Payushina, 2012). Therefore, fully characterizing the
different cells and environmental cues that expand HSCs in
different organisms is required to improve the currently limited
regenerative therapies. We will hereafter describe the different
elements of the microenvironment that contribute to this
expansion, across the vertebrate phylum.

Stromal Cells
In the mouse embryo, HSCs are closely associated with Nestin+

periportal stromal cells that express many HSC expansion factors,
such as angptl2 (Khan et al., 2016). Many different supportive
stromal cell lines also have been derived from the mouse FL, such
as AFT024, that support HSCs in vitro (Nolta et al., 2002), and
the KM3 cell line, that supports human embryonic stem cells
(Hu et al., 2012). The analysis of the AFT024 cell line revealed
an enrichment in secreted factors such as insulin like growth
factor, SCF, angiopoietin-3, Wnts and Ephrin2a that support
HSCs (Charbord and Moore, 2005).

A subtype of stromal cells, stellate cells, are fat storing
hepatic sinusoid cells that appear around E10-11 in the mouse
embryo and express a number of cytokines, ECM and adhesion
molecules (Ramadori and Saile, 2002; Tan et al., 2017). Stellate
cells are Desmin-positive and are found in close proximity to
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HSCs (Kiassov et al., 1995). These cells express many different
supportive hematopoietic cytokines such as OSM, Csf1, THPO,
EPO, Igf1, SCF/KitL and Cxcl12 (Fujio et al., 1994; Kubota
et al., 2007; Tan et al., 2017). Stellate cells also express VCAM,
fibronectin1, vitronectin1, Lamb1-1 (Laminin-b1-1) and Lamc1
(Laminin-c1) (Kubota et al., 2007; Tan et al., 2017). In vitro, adult
hepatic stellate cells can maintain HSCs in a similar manner to
BM mesenchymal stem cells (Kordes et al., 2013). Stellate cells
may therefore play an important role in maintaining the liver
microenvironment and expanding the HSC pool.

Recent studies have also focused on zebrafish stromal cells,
derived from the somites (Murayama et al., 2015). Isolated
CHT zebrafish stromal cells [caudal hematopoietic embryonic
stromal tissue (CHEST)] from 3dpf embryos express a range
of hematopoietic cytokines, some of which are not present
in isolated kidney cells from adult fish (such as gcsfb, il11a,
il11b, and fgf21). Furthermore CHEST cells were able to expand
cultured HSCs and stimulate HSC differentiation in vitro (Wolf
et al., 2017). The development of these zebrafish stromal cell
lines is an important step and represents a valuable tool to
study hematopoiesis in this model. Indeed, by comparing the
transcriptome of CHEST, ZKS (zebrafish kidney stromal cells)
and ZEST (zebrafish embryonic stromal trunk cells), Berrun and
colleagues highlighted the hematopoietic role of isthmin 1 (ism1),
a secreted protein required for HSC development as well as
erythro-myeloid differentiation (Berrun et al., 2018).

In addition to hematopoietic cytokines, lipid metabolism is
also important for HSC expansion and development during
embryogenesis. This was recently demonstrated through the
study of lipoprotein lipase (lpl), an enzyme expressed by
stromal and/or ECs in the CHT, and required for fatty
acid metabolism. Both lpl and its cofactor apolipoprotein
c2 (apoc2) controlled the release of an essential fatty acid,
(Docosahexaenoic acid), which was identified as a novel HSC
expansion factor (Liu et al., 2018). This study highlighted
an additional possible pathway important for improving HSC
expansion ex vivo.

The anterior lobe of the drosophila lymph gland consists
of a medullary zone (MZ), a cortical zone (CZ) and the
posterior signaling center (PSC). Prohemocytes are located in the
MZ and give rise to mature hemocytes, plasmatocytes, crystal
cells and rare lamellocytes, in response to immune challenge
(Evans et al., 2003). These progeny cells will then colonize
the CZ. The drosophila PSC is an important signaling niche
that controls blood cell production and maturation and has
been associated to mammalian stromal cells (Lebestky et al.,
2003). The PSC is a source of Hedgehog signal that activates
the zinc finger transcription factor Cubitus interruptus (Ci)
(homolog of the vertebrate Gli proteins) in cells located in
the MZ to maintain quiescence of blood progenitors and fine
tune differentiation upon immune challenge, independently
of the EBF transcription factor Col within blood progenitors
(Mandal et al., 2007; Benmimoun et al., 2015a,b; Pennetier
et al., 2012). Further studies have suggested that the PSC
may interact with nearby cells directly though thin processes
that extend into the MZ (Mandal et al., 2007). Additional
signals that affect PSC signaling and HSC maintenance include

odorants that stimulate γ-aminobutyric acid release from the
brain and drosophila insulin-like growth factor 2 by adipocytes
(Yu et al., 2018).

Endothelial Cells
HSCs arrive in the zebrafish CHT niche and progressively
colonize this tissue from 48 hpf until 80 hpf (Tamplin et al.,
2015). Although some HSCs are still present at 96 hpf, the
majority have proliferated and left the CHT niche (Mahony et al.,
2016). To accommodate HSCs within the CHT, the vascular
niche is remodeled to improve stem cell seeding, a process
that is controlled by cxcr1 (Blaser et al., 2017). Upon arrival
to the CHT niche, HSCs trigger a “cuddling” behavior from
caudal endothelial cells (cECs). This cuddling allows the cECs
to maintain close proximity between an HSC and a stromal
cell, which induces HSC proliferation (Tamplin et al., 2015).
The cuddled HSC then undergoes cell division where either
both daughter cells will leave the niche, one will leave and
the one most proximal to the stromal cell will stay or both
will stay. Strikingly, pharmacological stimulation of HSC niche
engraftment leads to an overall increase in the number of adult
stem cells, as shown by lineage tracing (Tamplin et al., 2015). This
indicates the contribution of HSC embryonic niche engraftment
to increasing the adult stem cell pool size, and highlights the
importance of fully understanding the cytokines expressed by
ECs that expand HSCs.

Direct physical contacts between HSCs and ECs have been
described in the mouse embryo, similarly to the zebrafish CHT
(Tamplin et al., 2015), and may be mediated by E-selectin and
VCAM1 (Schweitzer et al., 1996; Wittig et al., 2010). Murine
FL-HSCs express the endothelial protein C receptor that can
bind the activated protein C. This induces protease-activated
receptor 1 signaling which inhibits apoptosis and maintains self-
renewal activity (Iwasaki et al., 2010). In contrast to murine
HSCs, human HSCs express endothelial protein C receptor in the
FL, but lose its expression once they have migrated to the BM
(Subramaniam et al., 2018).

Fetal liver ECs also support hematopoiesis ex vivo and
promote HSC differentiation (Ohneda and Bautch, 1997; Wittig
et al., 2010). FL ECs support hematopoiesis through the
expression SCF/KitL that is normally membrane-bound. The
conversion of this cytokine to its soluble form occurs under the
control of MMP9, which transcription is regulated by Ezh2, a
transcriptional repressor expressed by FL ECs. This process was
only described in the context of erythropoiesis (Neo et al., 2018)
but might be relevant for HSC expansion.

These studies underscore the importance of ECs in expanding
HSCs in the zebrafish CHT and the FL in mammals.
However, many other cell types support HSC expansion
during embryogenesis.

HSC Regulation by Their Hematopoietic
Progeny
Regulation of HSC expansion by their progeny has been
described in the drosophila lymph gland. PDGF and VEGF-
related factor- 1 (Pvf1) is produced by the PSC and activates
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its receptor (PVR) on differentiated cells in the cortical
zone. This activates JAK/STAT signaling and consequently
controls the expression and secretion of adenosine deaminase
Growth Factor-A (Adgf-A) from differentiated cells. This
enzyme converts adenosine into inosine that promotes
progenitor maintenance, through the PKA intracellular
pathway (Mondal et al., 2011). Similarly in mammals, the
placental microenvironment supports hematopoiesis through
PDGF-B expression to overall inhibit HSC differentiation
(Chhabra et al., 2012). Drosophila bip1 (bric-à-brac interacting
protein 1) and Nucleoporin 98 (Nup98) are additional genes
identified in controlling blood progenitor proliferation
that control PVR expression (Mondal et al., 2014). The
negative feedback of differentiated cells into HSCs has been
evidenced in the adult mouse BM, but remains undocumented
in the FL.

Mammalian Hepatocytes
Hepatocytes contribute to most of the liver mass and therefore
also play a role in the HSC niche. The analysis of human FL
samples has revealed the presence of E-selectin positive bipotent
FL hepatoblasts, capable of differentiating into hepatic or biliary
epithelial cells (Terrace et al., 2007). Murine hepatoblasts have
been characterized by their expression of Protein delta homolog
1 (DLK-1) and a range of important hematopoietic cytokines,
such as Epo, Thpo, Il6, SCF, and Flt3l. Hepatoblasts also
express high levels of ECM molecules, including vitronectin,
fibronectin and tenascin C that are expressed under the control
of TBGβ1 signaling (Sugiyama et al., 2013). The importance of
hepatocytes in expanding HSCs was demonstrated by the co-
culture of hepatocyte cell lines with FL cells, which resulted
in a large increase in the number of HSCs (Aiuti et al.,
1998). Their importance was further underscored by the
analysis of Map2k4-mutant mouse embryos, lacking hepatoblasts,
where hematopoiesis was strongly affected following a decrease
in cytokines expression in the FL, such as EPO and SCF.
Accordingly, these embryos displayed a strong decrease in the
number of HSCs (Sugiyama et al., 2011).

Another study showed that DLK1-positive hepatocyte
progenitors (or hepatoblasts) were the main contributor in
the FL niche, as they were the main source of SCF, IGF-2,
Cxcl12 as well as angptl2 and angptl3. Initially, these cells were
identified as T cells as they were stained with the anti-CD3
antibody (Chou and Lodish, 2010). Ex vivo co-culture of these
FL hepatoblasts with BM-HSCs leads to enhanced HSC long-
term repopulation and ex vivo expansion of HSCs (Zhang and
Lodish, 2004; Zhang et al., 2006). It was further suggested that
Angptl2 could mediate its effects through the LILRB2 receptor
(Deng et al., 2014).

Hypoxia and ROS
Hypoxia is an important maturation signal in the
microenvironment. In drosophila, low oxygen levels are
sensed by Sima, the ortholog of hypoxia-inducible factor 1-α
(Hif1-α) that induces crystal cell differentiation. Moderate
ROS levels are required for proliferation of early progenitors.
Fine-tuning levels of ROS is also required to balance progenitor

differentiation in the MZ by regulating E-cadherin levels
(Gao et al., 2014). Although ROS levels and hypoxia are well-
described cues relevant to the adult BM niche, very little is
known about their role during embryonic HSC expansion in
any other models.

Transcription Factors Controlling the
HSC Niche
Understanding the genetic network that controls the specification
and maintenance of the niche will allow building or reproducing
these niches in vitro. Transcription factors control many aspects
of the niche, from how the niche attracts HSCs to their nurturing
and release. As mentioned earlier, klf6a is a transcription factor
that controls the expression of ccl25b in cECs from the zebrafish
CHT. Therefore, in the absence of klf6a, HSCs cannot colonize
the CHT and do not expand (Xue et al., 2017).

In the zebrafish as well, we have shown the role of
tfec, a mitf family zinc finger transcription factor (Lister
et al., 2011), in HSC expansion. Tfec is highly expressed
in cECs of the CHT and controls the expression of several
CHT niche cytokines (such as kitlgb, thpo, csf1a, and csf3b)
(Mahony et al., 2016). These cytokines are known to promote
HSC proliferation and survival, resulting in their expansion.
Consequently, in tfec mutants, HSCs fail to mature, resulting in
severe anemia (Mahony et al., 2016). However, this phenotype
can be rescued by the overexpression of kitlgb (Mahony
et al., 2016). In addition, tfec also controls the expression
of oncostatin M (osm) from cECs that can synergistically
enhance the expansion of HSCs with kitlgb (Mahony et al.,
2018). Tfec is therefore a critical transcription factor required
for the proper role of the embryonic hematopoietic niche.
This role of tfec has probably been conserved in mammals.
Indeed, in rats, the comparison of liver sinusoidal ECs to
lung microvascular ECs revealed a specific combination of
transcription factors that controlled liver ECs function and
identity (Geraud et al., 2010). Tfec was identified as a
liver specific transcription factor, together with Gata4, Lmo3,
and Maf. Whereas the roles of Tfec, Lmo3, and Maf have
not yet been investigated during mouse fetal hematopoiesis,
Gata4 seems to be required for ECs to function as an HSC
niche (Geraud et al., 2017). Further studies demonstrated
that Gata4 is required for correct EC maturation in the
embryonic liver and correct HSPC colonization, as Gata4
allows the specification of a discontinuous endothelium that
allows HSC colonization. Therefore, when Gata4 was specifically
deleted in liver sinusoidal ECs during development, the FL
vasculature failed to develop normally and hematopoiesis
was not supported by the FL (Geraud et al., 2017). The
deletion of another transcription factor, activating transcription
factor 4 (ATF4) impaired the ability of both endothelial
and stromal cells to support FL HSC development. Further
analysis revealed that Atf4 directly regulates the expression
of Angptl3 to control the repopulating efficiency of HSCs
(Zhao et al., 2015). Of note, Atf4 is also required at the
cell-autonomous level for proper self-renewal of FL HSCs
(Rieger, 2015).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2019 | Volume 7 | Article 34

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00034 March 8, 2019 Time: 17:25 # 6

Mahony and Bertrand The Embryonic HSC Niche

FIGURE 1 | Summary of vertebrate HSC expansion in the embryonic niche. Following their derivation from aortic endothelium, HSCs home to their embryonic niche
in response to several attractive cytokines, such as cxcl12 and ccl25b/Ccl21. HSCs are directed toward vascular cells by Mϕ (macrophages). The vascular cells in
the embryonic niche then remodel to accommodate the arriving HSCs. HSCs then become lodged in the fetal niche and undergo cell division to expand their initial
number. This expansion is in response to several cytokines released from many different cell types. Endothelial cells release kitlg and osm, under the control of tfec.
Stromal cells release cxcl12, under the control of atf4. Hepatoblasts release Kit-ligand and angiopoietins. After considerable expansion, the ECM is remodeled by
Mmp9 released from neutrophils and HSCs leave their fetal niche to migrate to their adult niche. Outlined here is an overview of the main cell types involved in fetal
HSC expansion along with some examples of important cytokines/signals that they secrete, although many others exist.

TABLE 2 | Summary of the important cells and tissues required to mediate HSC
expansion through evolution.

Drosophila
(Lymph
gland)

Zebrafish
(CHT)

Xenopus
(FL)

Chicken
(PAF +YS)

Mammals
(FL)

HSC Progeny Yes ? ? ? ?

Stromal cells Yes Yes Yes Yes Yes

Endothelial cells No Yes Yes Yes (YS) Yes

Hepatocytes No No ? No Yes

Nervous system ? ? ? ? ?

CHT, caudal hematopoietic tissue; FL, fetal liver; PAF, para-aortic foci; YS, yolk sac.

HSC RELEASE FROM THE EMBRYONIC
NICHE

The cellular processes governing mammalian HSC release from
the embryonic niche remain to be fully characterized. However, a
recent study has revealed that the FL-to-BM transition required
correct formation of the Wiskott–Aldrich syndrome verprolin-
homologous (WAVE) protein complex 2, mediated by Hem-1
(Shao et al., 2018). The disruption of this complex leads to a loss

of the survival signal c-Abl in FL-HSCs, premature death and
reduced BM colonization, highlighting a cell-intrinsic pathway
that is required for FL-to-BM transition.

The HSC migration from FL to the BM is mediated by
different cytokines, ECM signals and adhesion molecules (e.g.,
CXCL12, SCF, cadherins, integrins) (Ciriza et al., 2013). HSCs are
then maintained in a quiescent state in BM throughout adulthood
by many different signals and cells (Boulais and Frenette, 2015).

The mechanisms driving HSC release from the embryonic
niche are similarly elusive in zebrafish. However, live imaging
has revealed significant changes in the vascular architecture
that normally accommodates HSCs. At 4 dpf, the number of
HSCs present in the CHT decreases and they are no longer
embedded in the vascular network, but they are instead found
loosely associated to vascular cells (Tamplin et al., 2015; Mahony
et al., 2016). Further studies have indicated that mmp9 expression
in macrophages was required to modulate the accessibility of
HSCs to cxcl12. Indeed, the inhibition of mmp9 resulted in the
accumulation of HSCs in the CHT, which was rescued in cxcl12a-
morphants (Theodore et al., 2017). Therefore the modulation of
the vascular structure and the ECM by mmp9 is an important
feature to control retention and release of HSCs from the
embryonic niche.
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EVOLUTIONARY CONSERVED
ELEMENTS

Hematopoietic stem cell emergence and derivation from ECs is
a highly conserved process across chick, zebrafish, mouse and
humans (Jaffredo et al., 2000; Bollerot et al., 2005a,b; Zovein
et al., 2008; Chen et al., 2009; Bertrand et al., 2010; Boisset et al.,
2010). Even drosophila blood cells are found in close association
to the cardiac tube (Dey et al., 2016). Furthermore, the cell
autonomous expression of transcription factors (such as runx1
and gata2) required to achieve EHT is highly conserved. This
knowledge gained from the study of different animal models has
made it possible to generate inducible HSCs from ECs in vitro
(Gomes et al., 2018).

Across the species discussed in this review there are several
conserved processes but also many differences in how HSCs
expand in their fetal niche. Understanding the main similarities
and differences is crucial to fully understanding HSC expansion.
Here we will summarize the main conserved elements across
drosophila, zebrafish, mouse and human and how these have
progressed throughout evolution.

The drosophila PSC consists of stromal cells in the lymph
gland, and controls blood cell production and maturation
(Lebestky et al., 2003). These cells are responsible for the signaling
of a number of extrinsic factors to control HSC expansion
(Figure 1 and Table 2). Throughout evolution, the structure of
the embryonic niche has greatly changed. The vertebrate phylum
coincides with the emergence of a closed circulatory system,
dependent on vasculature. In the zebrafish, the role of vasculature
becomes very important for HSC expansion (Tamplin et al., 2015)
and remains so in higher vertebrate species (Table 2). In avian
embryos, HSCs expand in the yolk sac, a highly vascularized
structure (Guedes et al., 2014), and mouse HSCs are also closely
associated to the growing vasculature in the FL that support HSCs
(Ohneda and Bautch, 1997; Wittig et al., 2010; Tamplin et al.,
2015) (Figure 1 and Table 2).

From zebrafish to mammals, HSCs expand in an increasingly
more complex niche: whereas the CHT in teleosts is a transient
vascularized tissue (Tamplin et al., 2015), HSCs will colonize the
FL in mammals, a bona fide organ. With this, comes the addition
of a new cellular layer to the HSC niche, i.e., the hepatocytes. As
stromal and ECs, hepatoblasts will secrete similar survival and
proliferative signals, such as SCF and other cytokines (Sugiyama
et al., 2011, 2013) (Figure 1 and Table 2). It is interesting
to note that even if the structures have changed, the genetic
network seems to have been conserved. One such example is
the transcription factor Tfec that is specifically expressed in
the zebrafish CHT vasculature, as well as in sinusoidal ECs
of the fetal and adult liver in rodents (Geraud et al., 2010;
Mahony et al., 2016).

CLINICAL IMPLICATIONS

The recent use of drug screens has identified several promising
candidates to improve the clinical use of HSCs in regenerative
medicine. For example, StemRegenin-1 (SR1), an antagonist
of the aryl hydrocarbon receptor (AHR) enhances the ex vivo
expansion of CD34+ cells and improves long-term engraftment
in murine models (Boitano et al., 2010). Recently, early phase
clinical trials have further highlighted the effectiveness of this
compound in improving the expansion of CD34+ cells from
umbilical cord blood (Wagner et al., 2016). UM171, another
compound, improves human cord blood cell expansion and
engraftment, although the exact mechanism remains to be fully
characterized (Fares et al., 2014). Zebrafish high throughput
screens have also highlighted the role of dmPGE2 that confers
a competitive advantage to treated HSCs and has been successful
in subsequent clinical trials (North et al., 2007; Cutler et al., 2013;
Goessling and North, 2014). Identifying additional compounds
and combinations of cytokines will improve HSC expansion for
therapeutic use.

The importance in further understanding the niche has been
further underscored as it was shown that niche dysfunctions
(for example, induced by mesenchymal infections) could lead
to genotoxic stress and might sensitize HSCs to leukemia
development (Zambetti et al., 2016; Passaro et al., 2017). It
remains to be identified if aberrant cytokine signaling in the fetal
niche can sensitize HSCs to different disorders.

CONCLUSION

Understanding the complete genetic and molecular program
that controls HSC expansion in the embryonic niche remains
an important goal to improve current protocols of regenerative
medicine. The use of many animal models across phylogeny will
concur to this aim, as most of the mechanisms involved in the
control of HSC expansion by the embryonic niche appear to be
conserved through evolution (Figure 1 and Table 2).
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