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Abstract: Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established
as the primary etiological agent for the development of cervical cancer. Decades of research have
elucidated HPV’s primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly,
wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient
attachment and infection of HPV in vivo. Sulfation patterns on HSPG’s become modified at the
site of wounds as they serve an important role promoting tissue healing, cell proliferation and
neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification
patterns can be found on tumor cells as they too require the aforementioned processes to grow and
metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV
to target and treat tumors has only been realized in recent years. The work herein describes how
decades of basic HPV research has culminated in the rational design of an HPV-based virus-like
infrared light activated dye conjugate for the treatment of choroidal melanoma.

Keywords: human papillomavirus; heparan-sulfate proteoglycans; tumor therapy; photodynamic
therapy; tumor immunotherapy

1. Introduction

There is a long and varied literature on the relationship of virus infection and cancer.
Prominent examples include the determination of specific viruses as etiologic agents in
specific cancers, the development of prophylactic vaccines to prevent these cancers, the
initial identification and characterization of cellular oncoproteins and tumor suppressor
proteins from studies of viral gene products, and the development of oncolytic virus-based
cancer therapies. In this article we review a rather unique example of a virus/cancer
relationship in which the characterization of the unusual early events in the HPV infection
process involving tissue-associated and cellular proteoglycans have led to the finding of an
unexpected tumor-specific tropism for the virus, and the exploitation of this knowledge to
develop a potent and potentially broadly applicable treatment for cancers.

2. HPV Background

Papillomaviruses (PV) are small double-stranded DNA (dsDNA) viruses with a family
with nearly 200 distinct types identified to date [1]. Papillomaviruses are not unique to
humans having been found in over 50 animal species. The viral structure is composed of
two proteins, L1 and L2, and it encapsidates a small ~8 kb genome encoding six “early”
genes and the two “late” capsid genes. HPVs targets both cutaneous and mucosal basal
epithelium and are regarded as the most prevalent sexually transmitted virus, although
most infections are asymptomatic. HPVs are the primary etiological agent for several
cancers, including almost all cervical cancers, and a substantial subset of anal, penile,
vulvar, vaginal, and oropharyngeal tumors [2]. HPVs are grouped into “low risk” (LR) and
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“high risk” (HR) types loosely based on their presence in benign versus malignant disease.
LR-HPV types such as types 1, 2, 6 and 11 can often be found in warts (common, genital,
flat, verrucas, myrmecia), recurrent respiratory papillomatosis and lesions in individuals
with epidermodysplasia verrucformis, though HR types have also been associated with
these diseases in some cases [3–6]. A small group of 14 HPV types (16, 18, 31, 33, 35,
45, 51, 52, 56, 58, 59, 66 and 68) are classified as “high risk” based on their detection in
HPV-associated cancers [2]. The viral oncoproteins E6 and E7 are the primary drivers of
HPVs oncogenicity as they bind and effectively disable the tumor suppressor genes p53
and Rb, respectively [7–9]. Further, in addition to cancer, some studies have reported that
HR-HPV infection can be detected in polyps (nasal and antrochoanal) and may impact both
male and female fertility, though further exploration of these topics is warranted [10–18].

The study of HPV’s life cycle has met with roadblocks such as difficulty in producing
native virions in cultured cells and establishing model systems to interrogate the HPV
life cycle. However, advances in recombinant protein expression systems have greatly
improved the tools available to PV researchers. When expressed as recombinant proteins,
the L1 and L2 capsid proteins self-assemble into empty virus-like particles (VLPs). Im-
portantly, L1 can self-assemble in the absence of L2, and this discovery was the basis for
the current L1-based HPV prophylactic vaccines, Cervarix (16, 18), Gardasil (6, 11, 16, 18),
Gardasil 9 (6, 11, 16, 18, 31, 33, 45, 52, 58), and Cecolin (16, 18) [19–22]. The advancement
of VLP technology also afforded researchers the ability to study the early events of HPV
binding and entry, however, it was the development of pseudovirus (PsV) technology
that greatly facilitated the study of HPV intracellular trafficking followed by nuclear gene
delivery. PsV are composed of both the L1 and L2 structural proteins encapsidating a
plasmid mimicking the size of the dsDNA viral genome referred to as a “pseudogenome”.
In the most frequently employed method, they are generated in monolayer cultured cells by
co-transfection of plasmid DNA expressing the L1 and L2 capsid proteins that is too large to
self-package, along with a smaller 6–8 kb plasmid, often encoding a reporter gene such as
red fluorescent protein or luciferase, using a mammalian 293TT cell production system [23].
As the capsid proteins are made, they self-assemble and preferentially package the reporter
plasmid as it mimics the size of the viral genome [24]. The final product allows for not
only the study of the early binding and entry events of the virus, but also intracellular
trafficking followed by nuclear delivery of the encapsidated plasmid and gene expression
as a surrogate for the initial stage of infection.

3. HPV Infection Mechanism

A lingering problem that had vexed researchers studying HPV infection in the labora-
tory was the observation that HPV was unable to infect the known target cells, primary
keratinocytes, in vitro, and virus binding and infection of intact epithelium in vivo proved
elusive [25–27]. However, cultured cell lines, as well as their extracellular matrix (ECM),
were capable of being bound by the virion. Over time, it was determined that the virus
preferentially recognized and attached to specific modifications on heparan sulfate proteo-
glycans (HSPG) expressed on the cell surface and within the ECM that are not present on
primary cells in culture [28–30]. These observations, coupled with the in vivo discovery that
wounding of the upper epithelial layer led to virus binding and infection [26,31], resulted
in the development of the model of the early events of HPV infection.

HPV cannot bind the apical surface of epithelial cells of intact tissues, instead it
first requires access and attachment to the acellular basement membrane (BM) situated
below the basal epithelial layer, a unique initial step in its infection process. Wounding
or physical disruption of the epithelium must occur to expose the BM, and only then
can the virus attach and initiate the early events of infection (Figure 1). The exposed BM
is home to several molecules engaged in a signaling and structural interplay within the
ECM, though most important for HPV, are HSPG and chondroitin sulfate proteoglycans
(CSPG) [32]. The sulfation patterns of the polysaccharide chains of these proteoglycans
undergo modifications promoting the various processes important during wound healing
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such as recruitment of growth factors, cell proliferation, and angiogenesis [33]. It is these
specific modifications which provide the “molecular address” recognized by HPV in the
context of a wound. Upon virus attachment to the BM-resident HSPG, the N-terminus of
the L2 capsid protein undergoes a proteolytic cleavage event by furin or a related proprotein
convertase [25,34,35]. This cleavage in turn alters the physical conformation of the viral
particle such that previously occluded regions of L1 become exposed, and the virus is
only then able to bind the cell surface of newly populating and dividing epithelial cells
as they encroach on the wounded area. The virus can then enter the cell by an ill-defined
L1-specific receptor and traffic to the nucleus leading to a productive infection, or in the
case of the PsV, release of the “pseudogenome” as a surrogate for the first stage of infection
indicating successful entry and DNA delivery to the nucleus (“pseudoinfection”) [35].
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Figure 1. Mechanism of HPV attachment and infection. (A) HPV attaches to HSPG on the exposed-
basement membrane (1). The L2 protein is then cleaved by furin (2) and the virion undergoes a
conformation change (3) before attaching to a cell surface receptor (4). (B) depicts heparin inhibi-
tion of VLP attachment to basement membrane HSPG and (C) illustrates heparinase cleavage of
glycosaminoglycan chains prevents HPV attachment. Human papillomavirus (HPV); heparan sulfate
proteoglycan (HSPG); basement membrane (BM).



Viruses 2022, 14, 1656 4 of 19

The use of HSPGs as part of its life cycle is not unique to HPV. Several other viruses,
bacteria, parasites, yeast and even prions have been reported to rely on HSPG as minor or
major factors in their binding and entry process (Table 1; reviewed in [36–38]. However,
unlike HPVs, these microbes primarily bind directly to cell surfaces in vivo. As such,
HSPGs are considered plausible targets in the prevention of infection and disease (e.g.,
heparin, heparin and HSPG mimetics and anti-syndecan 3; reviewed in Cagno et al. [37].

Table 1. Pathogens utilizing proteoglycans for host infection.

Pathogen Ligand Reference

Viruses
Adenovirus (AdV) fiber [39,40]
Dengue virus envelope [41]
Hepatitis B virus (HBV) L-envelope [42,43]
Hepatitis C virus (HCV) E2 envelope [44,45]
Hepatitis E virus (HEV) ORF2 capsid protein [46]
Human immunodeficiency virus (HIV) gp120, Tat [47–50]
Human cytomegalovirus (HMCV) gB [51–53]
Human papillomavirus (HPV) L1 capsid potein [28,30,32]
Herpes simplex virus type 1 (HSV-1) gB, gC, gD [54–59]
Herpes simplex virus type 2 (HSV-2) gB, gC [54,59–61]
Merkel cell polyomavirus (MCPyV) VP1 [62,63]
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike [64,65]
Varicella zoster virus (VZV) gB [59,66]

Parasites
Giardia lamblia Alpha-1 giardin [67]
Plasmodium falciparum BAEBL, VAR2CSA, CS [68–70]

Toxoplasma gondii SAG3, ROP2, ROP4, GRA2,
SAG1 [71–74]

Trypanosoma cruzi Heparin binding proteins (HBP) [75–77]

Bacteria
Bordatella pertussis FHA [78]
Helicobacter pylori VacA [79,80]
Listeria monocytogenes ActA [81]
Mycobacterium tuberculosis HA [82]
Neisseria gonorrhoaea Opa [83,84]

Other
Candida albicans n.d. [85–87]
Malassezia spp. n.d. [87]
Prion PrP [88–91]

4. Proteoglycans

Proteoglycans (PG) are complex molecules found ubiquitously across species and
at their most basic are composed of a protein core with one or more covalently linked
glycosaminoglycan (GAG) chains. They are important meditators of cell growth and
tissue maintenance as they provide a scaffold to facilitate the local modulation and reten-
tion of growth factors, chemokines, cytokines and adhesion molecules, all key players in
wound healing. Common GAGs are heparan sulfate (HS), chondroitin sulfate (CS), keratin
sulfate (KS), dermatan sulfate (DS) and hyaluronic acid (HA). They have long polysaccha-
ride chains composed of repeating disaccharide units of hexuronic acid (e.g., glucuronic
acid (GlcA), iduronic acid (IdoA)) and hexosamine (e.g., N-acetyl glucosamine (GlcNAc))
(Figure 2A) [92–94]. The length, along with the sulfation and acetylation patterns on these
chains, can vary thereby dictating the binding activity of the GAG and providing a func-
tional “signature” of sorts. Remodeling of GAGs is dictated by environmental factors and
often relies on localized enzymatic activity, primarily by sheddases such as matrix metallo-
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proteinases (MMP), heparanase and sulfotransferases (Figure 2B) [95,96]. The modifications
stemming from the remodeling process can, for example, enrich for growth factors such
as basic fibroblast growth factor (FGF2) whose role in wound healing serves to activate
fibroblasts and vascular endothelial cells enabling wound closure [33].
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Figure 2. The structure and modifications of heparan sulfate proteoglycans (HSPG). (A) The general
structure of an HSPG made up of a protein core and branched polysaccharide chains. (B) Exam-
ples of HSPG modifications such as sulfation patterns as well as remodeling by cleavage of the
polysaccharide chains by heparinase or cleavage of the protein core by sheddases. N-sulfation (NS);
heparan sulfate (HS); N-deacetylase/N-sulfotransferase (NDST); glucuronic acid epimerase (GLCE);
O-sulfotransferases (HS2ST1, HS3ST, HS6ST); endosulfotransferases (SULF1, SULF2); heparanase
(HPSE); matrix metalloproteinase (MMP).
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Through the years, a detailed view of the specific interaction of HPV with HSPGs
has been elucidated, both in vitro and in vivo. HSPGs can exist as cell surface associated
molecules (glypicans and syndecans) or secreted (perlecans) and, though some may exist
on the cell surface, they can also be released following cleavage by heparanases and MMP
to regulate the microenvironment. Importantly, it is within the wound healing milieu of the
exposed BM that the modified HSPGs are present and provide the necessary recognition
patterns for HPV attachment. Interestingly, even the basolateral surfaces of keratinocytes in
wounded tissue are devoid of HPV-binding HSPGs stressing the importance of basement
membrane exposure as the initial requirement for HPV attachment [26].

Using biochemical approaches, it was found that the HSPG modification patterns
that HPV preferentially targets involve N-sulfated glucosamine, followed by 6-O GalNAc
and 2-O GlcA/IdoA sulfation [30,32]. CSPG have also been implicated as an additional
attachment factor for HPV under certain binding conditions and this recognition also relies
upon 6-O sulfation of GalNAc [97]. Collectively these findings demonstrate the importance
of the specific modification patterns that HPV relies upon to initiate its infectious process.
HPV is not the only pathogen to rely on particular sulfation patterns for attachment and
infection, for example herpes simplex virus type 1 (HSV-1) gD protein preferentially binds
3-O HS [58]; the capsid protein, pORF2 of hepatitis E virus (HEV) relies on 6-O sulfated
syndecans for attachment to liver cells [46], and human cytomegalovirus (HCMV) associates
with long, heavily sulfated HS chains exhibiting a preference for 6-O and 2-O sulfation [53].

5. HSPGs and Cancer

The importance of HSPGs in cancer progression cannot be understated as they play
a profound role in all aspects of cancer biology from tumorigenesis to angiogenesis and
metastasis. Much like the wound healing roles of modified HSPGs, tumors too require
similar properties for growth factor recruitment and vascularization [98–100]. The sulfation
patterns and chain lengths of proteoglycans can be modified within the tumor milieu by N-
deacetylase/N-sulfotransferases (NDSTs), O-sulfotransferases (HS2ST1, HS3STs, HS6STs),
endosulfotransferases (SULF1 and SULF2), heparanases (HPSE), sheddases and sulfatases
(Figure 2B) [99]. Expression of these enzymes becomes aberrant in the tumor microenviron-
ment because they are key to promoting and sustaining a malignant state. N-sulfation and
2-O sulfation are important sulfation sites for FGF2 attachment and promotion of endothe-
lial proliferation and organization. 6-O sulfation, tightly regulated by the sulfotransferases,
SULF1 and SULF2, is key to the stabilization of the ternary ligand-receptor complexes for
both FGF2-FGFR1 and vascular endothelial growth factor (VEGF) and VEGFR, vital regula-
tors of proliferation and angiogenesis [101–106]. 3-O GlcN sulfation is a rarely observed
modification controlled by heparan sulfate 3-O sulfotransferase which has several isoforms.
3-O sulfation, and its associated sulfotransferase have been associated with increased
tumorgenicity in several cancer models such as lung, pancreatic and leukemia [107–109].

Heparanases play a significant role in the controlling the length of HSPG chains such
as those found on syndecan-1, freeing bound growth factors such as FGF2 and VEGF,
thereby converting autocrine growth factor signaling within the environment to a paracrine
one, promoting blood vessel formation and invasion [110,111]. Heparanase-mediated
remodeling has also been associated with the epithelial to mesenchymal transition, a key
feature in tumorigenesis and establishment of a pro-metastatic state attributed to increases
in FGF2 and TGF-β signaling [99,112,113]. Reduction in heparanase expression as well as
prevention of HSPG expression on tumor cells has been shown to reduce tumorgenicity in
vivo, highlighting their importance in retaining a malignant phenotype as well as making
them attractive targets for therapeutics [114–116].
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6. Proteoglycans as Targets for Tumor Therapy

As tumors are heavily dependent upon GAGs and their respective modifying enzymes,
these conserved molecules can serve as both therapeutic targets as well as biomarkers for
disease staging and progression. Highly active heparinases can lead to shedding and
release of GAGs along with their attached cargo, such as growth factors, resulting in
more aggressive tumor growth. Shed syndecans have been demonstrated to be plausible
biomarkers for predicting cancer progression in some studies, namely elevated serum levels
of syndecan-1 are associated with a poor prognosis in bladder cancer, cervical cancer, and
colon cancer, among others [117–121]. Kalscheuer et al. [122] demonstrated an association
with upregulated levels of perlecan and poor prognosis in triple-negative breast cancer.

The near ubiquitous use of varyingly modified proteoglycans by tumors affords re-
searchers a wealth of cancer specific therapeutic targets. The observation that soluble
heparin, which commonly serves as an anti-thrombotic drug, reduced tumor burden and
metastasis was the start of the exploitation of proteoglycans for tumor therapy [123]. Now,
heparin and heparan sulfate mimetics such as Muparfostat (heparinase competitor), Necu-
parinib (reduces MMP activity), and Roneparstat (heparinase competitor) are in various
stages of clinical development in an attempt to impact tumor growth and spread (Table 2).
GAG targeted peptides (e.g., Arginylglycylaspartic acid (RGD motif)), nanoparticles, anti-
bodies and modified pathogens carrying toxic payloads and more recently CAR-T cells, are
also in various stages of clinical development (Table 2) [124–126].

The tumor ECM can serve as a sink or barrier inhibiting translocation of oncolytic
viruses or other viruses targeting tumors thereby preventing broader tumor distribution.
To overcome this, tumor targeting viruses can be engineered to express genes for ECM
degrading enzymes such as hyaluronidase, chondroitinase and MMPs which can facilitate
the localized breakdown of tumor ECM resulting in enhanced spread of the oncolytic
virus [127,128]. For these aforementioned reasons, targeting the GAG modifying enzymes
or the tumor associated proteoglycans is a burgeoning field of tumor therapy.

Table 2. Proteoglycan targeted tumor therapies.

Name Target/Mechanism Reference

Antibodies
HN3 PE38, PE24 conjugates targeting glypican-3 [129,130]
GC33 ADCC; targeting glypican-3 [131,132]

YP7 PE38, Duocarmycin, IRdye700DX conjugates;
pyrrolobenzodiazepine dimer; targeting glypican-3 [129,133–135]

32A9 PE24 conjugates targeting glypican-3 [136]
ERY974 bi-specific antibody agains glypican-3 and CD3 [137]
D4 (camel) PE38-conjugated camelid nanobody targeting glypican-1 [138]
LH7 PE38-conjugated human single domain anti-glypican-2 [139]
CAR-T
GC33 Glypican-3 [140,141]
hYP7 Glypican-3 [142]
32A9 Glypican-3 [136]
Y035 Glypican-3 [143]
LH7 Glypican-2 [139]
Small molecule/peptide mimics/false substrates
Guanidinylated neomycin (Gneo) LMW HS binding peptide carrying saporin [144]

Synstatin (SSTN)92–119
Peptide blocks syndecan-1/IGF1R complex-blocks integrin

signaling and VEGFR2 activation [145]

RGWRGEKIGN peptide HS binding peptide blocks FGF2/HS binding [146]

NT4 General heparin, HSPG, CSPG mimetic (tetra-branched
polypeptide); interferes with cell migration; delivers paclitaxel [147–149]

OKN-007 Sulfatase-2 inhibitor [150]

PI-88 (muparfostat)
Heparanase inhibitor (heparin mimetic); interferes with VEGF,
FGF1, FGF2 leading to reduction in angiogenesis and sulf1 and

sulf2 activity
[151,152]
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Table 2. Cont.

Name Target/Mechanism Reference

Suramin analogs Heparanse inhibition; inhibits degradation of ECM and blocks
angiogenic events by preventing release of FGF from ECM HS [153]

PG545 HS mimetic; blocks heparanase activity; prevents growth factor
release and activation [154–156]

M402 (neuparanib) HS mimetic; inhibits HS interactions and activity of VEGF, FGF2,
SDF-1α, P-selectin, and heparanase [157]

SST0001 (roneparstat) Split heparin; inhibits heparanase, downregulates HGF, VEGF, and
MMP-9 expression and suppresses angiogenesis [158]

Xylosides Blocks GAG biosynthesis [159,160]
Nanoparticles/Pathogens
Ad5 Fiber modified to bind HSPG (bypass CAR) [161]

hyaluronic acid micelle nanocarrier Hyaluronic acid nanocarrier targeting CD44; incorporate
doxorubicin and cisplatin [162]

rVAR2CSA Targets oncofetal CS (CD44, CDPG4; syndecan-1); conjugated with
diptheria toxin or hemiasterlin [163,164]

liposomes Composed of glypican-3 targeting peptide incorporating sorafenib;
GAG binding peptide incorporating doxorubicin [165,166]

metal conjugates

HSPG targeted peptide and glypican-3 antibody delivering Fe3O4
for imaging; Gold nanocluster with gadolinum conjugated to
anti-glypican-1; Gold nanocages incorporating gemcetabine

conjugated to anti-glypican-1 for theranostics

[167–170]

7. HPV Capsids as a Tumor Therapeutic

The similarity between the HSPG modifications found on tumors and those on exposed
basement membranes makes HPV and attractive tool for tumor-directed therapy. HPV
capsids were found to bind a wide variety of human tumor types in a screen of the
NCI-60 panel of human tumor cell lines, particularly epithelial derived cancers such as
ovarian, lung and breast [171]. Using biochemical assays to decipher HPVs tumor binding
characteristics in vitro, it was noted that heparinase treatment of tumor cells abrogated
HPVs binding ability and the same basement membrane-associated HSPG N-, 6-O and
2-O sulfation patterns were responsible for HPV tumor targeting. This HSPG targeting
was verified in vivo using i-carrageenan, a heavily sulfated polysaccharide, to inhibit
HPVs binding and infection of human tumor cells. Importantly, the HPV capsids did not
detectably bind the apical surfaces of a wide variety of intact tissues [171]. In considering
the use of HPV as a cancer therapeutic, it is important to note that the VLP can be easily
modified to carry a “payload” such as a dye without altering its tumor targeting ability. In
addition to modifications to the VLP itself, using pseudovirus technology, the virus can
specifically deliver nucleic acids to tumor cells resulting in locally expressed genes within
the tumor microenvironment minimizing off-target or systemic effects [171–173].

In addition to their tumor specific HSPG targeting capability, the 55 nm HPV VLP fits
into a particular niche of nano sized particles that preferentially collect in tumors due to
leaky vasculature. As tumors grow, their interior becomes hypoxic forcing the tumor to
undergo neovascularization, but in most cases, these newly generated blood vessels are
disorganized and porous, allowing for preferential extravasation of particles of 40–120 nm to
passively accumulate within the tumor, an observation referred to as the EPR effect (enhanced
permeabilization and retention) [174,175]. With its size and tropism for tumors, the HPV VLP
is a natural vehicle for cancer therapeutics that may be exploited in many ways.
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7.1. Gene Delivery

While the HPV PsV has proven a useful tool for studying the early stages of HPV bind-
ing, it also affords researchers a useful vector for gene delivery to tumors. In initial studies
involving intravenous delivery of HPV PsV packaging reporter plasmids, spontaneous and
orthotopically implanted tumors in syngeneic and xenograft murine models of bladder,
ovarian, and lung cancer were specifically transduced [171–173]. Importantly, there were
no off-target gene transduction events detected, indicating that the tumor targeting was
specific. In the human NCI-H460 non-small cell lung cancer orthotopic tumor model, PsV
infection (as noted by transduction of the firefly luciferase gene) was observed in a subset of
animals in regions other than the lungs. Upon microscopic assessment, it was determined
that intravenous delivery of HPV PsV had targeted metastatic tumors in lymph nodes, kid-
neys, and ovaries [171]. Using HPV PsV to target orthotopic ovarian and bladder tumors,
Hung et al. [172] and Hojeij et al. [173] demonstrated delivery of a gene for thymidine
kinase (TK), a commonly used “suicide” gene that activates the prodrug ganciclovir. Both
groups reported an impact on tumor growth and tumor burden specific to the animals
receiving the TK gene delivered by HPV PsV followed by ganciclovir treatment. However,
a potential limitation of this approach is that HPVs complete their infectious process only in
actively dividing cells, and tumors generally have a subpopulation of quiescent cells. This
constraint might be less critical if the PsV were used in an adjuvant capacity, for example
to deliver immune modulatory genes to a tumor or to express cytokines and chemokines
to generate a chemoattracting gradient to enhance recruitment of immune cells to the
tumor milieu.

7.2. HPV Virus-like Particles as Drug Conjugates

A second general strategy to overcome the infection limitation of HPVs is to deliver
drugs that only require capsid binding, which occurs similarly in dividing and nondi-
viding tumor cells. The most advance example of this approach is AU-011 (belzupacap
sarotalocan), a virus-like drug conjugate (VDC) composed of a modified HPV16 VLP
(L1 and L2 capsid proteins) conjugated with the phthalocyanine photosensitizing dye,
IRDye700DX [176,177]. The L1 amino acid sequence has been modified to reduce inter-
action with pre-existing neutralizing antibodies, but this modification has no impact on
the tumor associated HSPG targeting. When bound to tumor cells and photoactivated by
689–690 nm near-infrared (NIR) light, AU-011 releases reactive oxygen species and causes
physical disruption of the tumor cell membrane resulting in rapid and acute, necrotic cell
death (Figure 3). Using in vitro mixed cell assays in which human tumor cells were com-
bined with HSPG deficient cells (pGSA-745) and exposed to AU-011 followed by NIR light
treatment, extensive cytotoxicity for the tumor cells was observed, while simultaneously
sparing the HSPG negative cells. AU-011 mediated tumor cytotoxicity also leads to the
release of tumor neoantigens, and damage associated molecular patterns (DAMPs), such
as ATP, cell-free DNA, HMGB-1, and the subcellular re-localization of ER proteins HSP70
and calreticulin to the surface of the cell, resulting in a potently immunogenic tumor milieu
capable of stimulating cell-mediated anti-tumor immunity (Figure 3) [178].



Viruses 2022, 14, 1656 10 of 19Viruses 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 3. Mechanism of AU-011 (belzupacap sarotalocan) mediated tumor killing. AU-011 binds to 
the surface of tumor cells and is activated by near infrared light. The killed tumor cells release 
DAMPs and neoantigens into the local tumor milieu resulting in uptake by and activation of antigen 
presenting cells. Both CD4+ and CD8+ T cells are activated and are necessary for localized tumor 
control and long-term protection from tumor re-challenge. Virus-like drug conjugate (VDC); dam-
age associated molecular patterns (DAMPs); antigen presenting cells (APC); major histocompatibil-
ity complex (MHC); T cell receptor (TCR). 

In vivo murine syngeneic tumor models, TC-1 and MB49-luciferase have been used 
to better understand AU-011’s efficacy and its potential to generate anti-tumor immunity. 
A single intravenous administration followed by NIR exposure of the tumor resulted in 
>50% complete response rates with animals remaining tumor free up to 100 days post-
treatment. Tumor-free animals were re-challenged with corresponding tumor cells and 
again >50% were protected from tumor outgrowth indicating that a long-term anti-tumor 
immune response had been induced. When AU-011 was combined with checkpoint inhib-
itors, anti-CTLA-4 or anti-PD-1, tumor-free survival rates were increased to 100% and 
75%, respectively, and >70% of tumor-free animals were protected from tumor re-chal-
lenge after 100 days. Induction of both CD4+ and CD8+ anti-tumor T cells was a key con-
tributing factor to AU-011′s efficacy, both at the time of treatment, and for maintaining 
long-term protection [178].  

Inherent in their nature, VLPs will bind and be taken up by antigen presenting cells 
of the hosts immune system. In human peripheral blood lymphocytes, the VLPs avidly 
bind neutrophils, monocytes, macrophages, dendritic cells and B cells, but not T or NK 
cells [179]. Within a tumor resides suppressive populations of these cells, such as tumor 
associated macrophage (TAM) and myeloid-derived suppressor cells (MDSC), primarily 
serving to shield the tumor from host immune responses. AU-011 can bind and kill these 
cells within the tumor microenvironment, lending further credence to its ability to gener-
ate a potent immunogenic tumor microenvironment [178]. 

AU-011 is currently being assessed for it use as a first-line treatment for choroidal 
melanoma, a disease with minimal early interventions [180]. Pre-clinical data demon-
strated that intravitreal or suprachoroidal injection into the eyes of rabbits bearing cho-
roidal melanoma tumors resulted in AU-011 tumor distribution and dose dependent effi-
cacy upon NIR treatment (as measured by tumor necrosis and tumor control) 

Figure 3. Mechanism of AU-011 (belzupacap sarotalocan) mediated tumor killing. AU-011 binds
to the surface of tumor cells and is activated by near infrared light. The killed tumor cells release
DAMPs and neoantigens into the local tumor milieu resulting in uptake by and activation of antigen
presenting cells. Both CD4+ and CD8+ T cells are activated and are necessary for localized tumor
control and long-term protection from tumor re-challenge. Virus-like drug conjugate (VDC); damage
associated molecular patterns (DAMPs); antigen presenting cells (APC); major histocompatibility
complex (MHC); T cell receptor (TCR).

In vivo murine syngeneic tumor models, TC-1 and MB49-luciferase have been used to
better understand AU-011’s efficacy and its potential to generate anti-tumor immunity. A
single intravenous administration followed by NIR exposure of the tumor resulted in >50%
complete response rates with animals remaining tumor free up to 100 days post-treatment.
Tumor-free animals were re-challenged with corresponding tumor cells and again >50%
were protected from tumor outgrowth indicating that a long-term anti-tumor immune
response had been induced. When AU-011 was combined with checkpoint inhibitors,
anti-CTLA-4 or anti-PD-1, tumor-free survival rates were increased to 100% and 75%,
respectively, and >70% of tumor-free animals were protected from tumor re-challenge after
100 days. Induction of both CD4+ and CD8+ anti-tumor T cells was a key contributing
factor to AU-011’s efficacy, both at the time of treatment, and for maintaining long-term
protection [178].

Inherent in their nature, VLPs will bind and be taken up by antigen presenting cells
of the hosts immune system. In human peripheral blood lymphocytes, the VLPs avidly
bind neutrophils, monocytes, macrophages, dendritic cells and B cells, but not T or NK
cells [179]. Within a tumor resides suppressive populations of these cells, such as tumor
associated macrophage (TAM) and myeloid-derived suppressor cells (MDSC), primarily
serving to shield the tumor from host immune responses. AU-011 can bind and kill these
cells within the tumor microenvironment, lending further credence to its ability to generate
a potent immunogenic tumor microenvironment [178].

AU-011 is currently being assessed for it use as a first-line treatment for choroidal
melanoma, a disease with minimal early interventions [180]. Pre-clinical data demonstrated
that intravitreal or suprachoroidal injection into the eyes of rabbits bearing choroidal
melanoma tumors resulted in AU-011 tumor distribution and dose dependent efficacy
upon NIR treatment (as measured by tumor necrosis and tumor control) [177,181,182]. A
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Phase 1/2b dose escalation study (Clinical Trial #NCT03052127) examining intravitreal
administration of AU-011 to patients with small primary choroidal melanomas resulted in
minimal adverse events, with inflammation and increases in intraocular pressure being
the most common, though not unexpected due to AU-011′s potent immune stimulatory
capabilities and mechanism of action. Importantly, there were no dose limiting toxicities
observed and, for those patients experiencing inflammation or intraocular pressure, symp-
toms could be managed with steroids and ocular hypertensives. Interim data suggests
≥55% tumor control across all dosing groups including a subtherapeutic dose and regimen
and ≥87% vision preservation at the time of interim analysis (12-month median follow-
up) [182]. Vision preservation is critical as current standard of care for choroidal melanoma
is typically radiotherapy such as plaque brachytherapy which often results in vision loss as
a result of complications such as retinopathy, cataracts and neovascular glaucoma [180].
An additional Phase 2 safety and efficacy trial is underway (Clinical Trial #NCT04417530)
to deliver AU-011 directly into the suprachoroidal space of the eye with the idea of directly
localizing the drug within the tumor compartment rather than relying on it to distribute
throughout the vitreous and cross the retina and retinal pigment epithelium (RPE) to bind
to the tumor after intravitreal injection. Future studies are planned to examine the use
of AU-011 to treat other cancers that metastasize to the choroid as well as to examine its
applicability for treatment of non-muscle invasive bladder cancer.

8. Conclusions

The use of viruses and nanocarriers is an expanding field in cancer therapy seeking to
deliver sensitizing drugs (phototherapy, thermotherapy, ultrasound), chemotherapeutics,
immune stimulators, or cytotoxic genes. While advances in targeted tumor therapies have
revolutionized cancer research in the past 20 years, many rely on personalized therapy
(T cells) or tumor-type restricted surface ligands (CAR-T, mAbs). Tumor associated modi-
fied proteoglycans provide a target that can be found on a breadth of cancer types. Unlike
HPV capsids that possess natural targeting capabilities, proteoglycan targeted nanoparticle
therapies require modifications with ligands, targeting peptides or scFv that recognizes the
particularly modified tumor proteoglycans to deliver their payload. The HPV capsid bind-
ing studies revealed an unanticipated commonality of HSPG-specific modifications across
many cancer types. Therefore, a clear advantage HPV has over many other supramolecular
candidates is that it does not require any modification to preferentially recognize tumors,
making it a broadly applicable biologic for cancer therapy, both in terms of the type of
payload it can deliver and the types of cancers it can target.

9. Patents

RCK-US Patent 9,855,347 B2 (issued) for virion-derived nanospheres for selective deliv-
ery of therapeutic and diagnostic agents to cancer cells; U.S. Patent 10,117,947 B2 (pending)
for virus-like particle conjugates for diagnosis and treatment of tumors; WO/2018/191363
(pending) for targeted combination therapy. JTS-US Patent 10,117,947 B2 (issued, licensed,
and with royalties paid from Aura Biosciences); US Patent 10,188,751 B2 (issued, licensed,
and with royalties paid from Aura Biosciences); US Patent 8,990,290 B2 (issued, licensed,
and with royalties paid from Aura Biosciences).
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