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A B S T R A C T   

Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, envi
ronment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting 
chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus 
(T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the 
progression of some chronic complications of DM. This paper reviews relevant epidemiological, in 
vivo, and in vitro studies to better understand BPA’s potential risk associations and pathological 
mechanisms in several chronic diabetic complications.   

1. Introduction 

Diabetes mellitus (DM) is a chronic disease severely threatening human health. According to the International Diabetes Federa
tion’s latest Global Diabetes Map, in 2021, the global number of adults with diabetes was estimated at 537 million (aged 20–79 years). 
This number will increase to about 643 million by 2030 and 783 million by 2045 [1]. DM is divided into three types based on its 
etiology: type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and other specific types. T2DM is the most common type of 
clinical DM, accounting for 90–95% of diabetic patients [2]. Long-term, uncontrolled blood glucose levels can damage various organ 
tissues, including the heart, kidneys, brain, feet, and eyes, leading to chronic diabetic complications [3]. The most critical chronic 
diabetic complications are coronary heart disease, peripheral vascular disease, end-stage renal disease, retinopathy and neuropathy. 
These chronic diabetic complications are all major burdens for people with DM [4]. Traditionally, obesity, physical inactivity, 
advanced age, and an unhealthy diet have been considered significant risk factors for DM [5–7]. In recent years, there has been 
increasing evidence that endocrine-disrupting chemicals (EDCs) are emerging as additional risk factors for the development of dia
betes, including T1DM and T2DM [8]. 

Bisphenol A (BPA) is an organic compound found in a variety of consumer products, including polycarbonate plastics, epoxy resins 
and thermal receipt paper [9]. Due to its widespread use, BPA has been found in soil and surface water [10]. External BPA can enter the 
body through the gastrointestinal, respiratory and dermal tracts. Due to its endocrine-disrupting effects, it can cause damage to the 
reproductive, immune and neuroendocrine systems (Fig. 1) [11]. Recently, increasing evidence suggests that BPA exposure is an 
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independent environmental risk factor for DM that is separate from traditional risk factors [12]. BPA promotes the key pathogenesis of 
T2DM, including insulin resistance, impaired insulin and glucagon secretion, and pancreatic β-cell dysfunction and injury [13–16]. 
BPA increases the metabolic stress of high glucose, accelerating cellular senescence and apoptosis, which in turn promotes the pro
gression of DM [17]. BPA exposure is positively associated with obesity, another significant risk factor for the progression of diabetes 
[18]. By promoting obesity-related disturbances in lipid metabolism and insulin resistance, BPA indirectly exacerbates the progression 
of DM [19,20]. Furthermore, several studies have identified a possible link between the mechanisms of BPA-induced organ damage 
and the pathogenesis of diabetic complications in these organs [21,22]. BPA exposure may promote the development and progression 
of some chronic diabetic complications. However, to our knowledge, no comprehensive review summarises the potential effects and 
mechanisms of BPA on some common chronic diabetic complications. Therefore, after a brief overview of the sources and hazards of 
BPA, we review the risk associations and potential mechanisms of action of BPA on diabetic nephropathy, diabetic cognitive 
dysfunction, diabetic retinopathy, and diabetic cardiopathy (Fig. 2). 

2. BPA: sources and hazards 

BPA (C15H16O2) is an organic compound that can dissolve in fats and oils. It has a symmetrical chemical structure of two phenolic 
rings linked by a methyl bridge. BPA is one of the world’s most commonly manufactured and used chemicals. It is commonly used to 
make epoxy resins and polycarbonate (PC) plastics. These materials can be found in everyday products such as water pipes, electronic 
devices, thermal paper and toys [23]. Due to the high volume of BPA production and use, BPA has been found in air, soil and surface 
water [10]. In particular, a meta-analysis of 15 studies involving 28,353 participants found BPA in the urine of more than 90% of 
participants. Despite their differences, the studies highlight the widespread exposure of the population to BPA [24]. People are more 
likely to get BPA from food and water stored in plastic containers than from BPA in the environment. BPA is found in cups, bottles, 
packaging, can coatings and other items used as raw materials for food contact materials [25]. Canned food contains higher levels of 
BPA. The main routes of BPA into the environment and food include migration from PCs, cans and coatings [26]. PC material is 

Fig. 1. Major sources of BPA, routes of human exposure and health effects.  
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commonly used to make cups. Studies have shown that BPA can migrate from PC into water. Increased temperature increases the 
hydrolysis of the polymer, which accelerates the migration of BPA [27]. As mentioned above, the coatings and paints on canned foods 
release BPA, so canned foods contain more than fresh foods. When canned foods are exposed to 100 ◦C, BPA is released up to 18 times 
faster [28]. 

As an EDC, BPA could disrupt hormone levels by binding to hormone receptors such as the estrogen receptor, androgen receptor, 
thyroid hormone receptor, glucocorticoid receptor and peroxisome proliferator-activated receptors, resulting in neuroendocrine 
disruption. These disruptive neuroendocrine effects cause damage to the reproductive, nervous, immune and metabolic systems [29]. 
Studies have shown that BPA affects hormones such as oestradiol, progesterone, testosterone, luteinising hormone and cortisol 
[30–33]. These hormone-altering effects play a role in developing conditions such as polycystic ovary syndrome, recurrent miscarriage 
and male infertility [34,35]. Moreover, there is increasing epidemiological evidence that BPA exposure is associated with several other 
human diseases. A longitudinal study found that BPA exposure was independently associated with prediabetes and impaired glucose 
homeostasis in middle-aged and older women [36]. A cross-sectional study of the National Health and Nutrition Examination Survey 
(NHANES) found that higher urinary BPA concentrations in the general adult population in the United States were associated with 
coronary heart disease [37]. BPA exposure was significantly associated with obesity in children and adolescents [38]. BPA may also 
affect immune function, linked to asthma, T1DM and other autoimmune diseases [39–41]. 

3. BPA and diabetic nephropathy 

Diabetic nephropathy is a significant complication of DM. It is a major cause of chronic and end-stage renal disease worldwide [42]. 
Diabetic nephropathy accelerates the decline in glomerular filtration rate, shortens the time to start late dialysis treatment, and in
creases patient mortality [43]. 

4. Epidemiological evidence linking BPA to diabetic nephropathy 

BPA is excreted from the body in the urine. It accumulates in the blood of patients with chronic kidney disease as renal excretion 
decreases [44]. In a 10-year prospective cohort study of older Chinese women, serum BPA levels were strongly associated with the risk 
of CKD in all subgroups of women except those with baseline glomerular filtration rates of 60–70 ml/min. The negative association 
with chronic kidney disease was stronger in women with high serum BPA levels than those with low serum BPA levels [45]. These 
findings suggest that BPA accumulation is a risk factor for chronic kidney disease in women and that as renal excretion of BPA de
creases, more accumulated BPA could worsen chronic kidney disease. In addition, a cross-sectional survey of Chinese adults found that 
BPA exposure was associated with an increased risk of low-grade albuminuria [46]. Subsequently, a cross-sectional study of US 
children showed consistent results for an association between BPA exposure and low-grade albuminuria [47]. The association of 
creatinine excretion and low-grade proteinuria with BPA indirectly suggests a potential renal adverse effect of BPA. Researchers have 

Fig. 2. Potential harmful effects of BPA on DM and various diabetic complications.  
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begun investigating the link between BPA and diabetic nephropathy (Table 1). A 6-year prospective cohort study by Hu et al. found 
that fasting glucose and serum BPA levels in T2DM patients were significantly and negatively associated with annual and percentage 
changes in estimated glomerular filtration rate [48]. In addition, people with T2DM who had higher serum BPA levels were about 
seven times more likely to develop chronic kidney disease than people with T2DM who had lower serum BPA levels [48]. BPA is 
associated with low-grade albuminuria, and low-grade albuminuria is a feature of early diabetic nephropathy. Therefore, BPA appears 
to be a risk indicator for the early stages of diabetic nephropathy. However, the relationship between low-grade proteinuria and BPA in 
DM patients has not been established. There is also a need to clarify the role of BPA in developing diabetic nephropathy. 

5. Potential pathological mechanisms of BPA-promoted diabetic nephropathy 

Diabetes-related glomerular pathology includes 1) diffuse glomerular thylakoid expansion and sclerosis, 2) changes in the endo
thelial glycocalyx, 3) thickening of the glomerular basement membrane and 4) a decrease in the number of podocytes [49]. In an in 
vivo test, the offspring of T2DM-prone mouse models exposed to BPA before birth had abnormal glomerular morphology and fewer 
glomeruli which were more pronounced in female offspring [50]. BPA exposure increased the cell cycle protein-dependent kinase 
inhibitors p27kip1, TGF-β and collagen IV, which are involved in glomerulosclerosis. In parallel, thylakoid expansion and reduced 
podocyte numbers were observed in mouse kidneys [51]. Interestingly, although BPA did not cause hyperglycemia in the animals, the 
renal changes were similar to the structural changes that occur in the early stages of diabetic nephropathy [51]. BPA exposure reduced 
podocyte density, size and function in mouse glomeruli by inducing downregulation of E-calmodulin, podocin and waveform proteins, 
resulting in residual podocyte stress hypertrophy and glomerular collapse [52]. The negative correlation between BPA and urinary 
protein may be explained by BPA-induced podocyte injury. In addition, podocyte injury in diabetic nephropathy has been associated 
with proteinuria in another study [53]. Based on these two lines of evidence, we hypothesize that BPA-induced podocyte injury may 
cause diabetic nephropathy. In addition, renal tubular interstitial lesions play a role in the progression of diabetic nephropathy [54]. 
BPA induces renal tubular injury by promoting autophagy dysregulation and oxidative stress, which may be another potential 
mechanism by which BPA exacerbates diabetic nephropathy [54]. BPA induces hyperuricemia via the xanthine oxidase pathway [55]. 
This alteration may also promote the progression of diabetic nephropathy. Furthermore, BPA accelerates renal-cardiac axis alterations 
in diabetic mouse models by over activating metabolic reconstitution, neuroendocrine disruption, and immune-inflammatory re
sponses via the MAPK pathway [56]. 

6. BPA and diabetic cognitive dysfunction 

Diabetic cognitive dysfunction is an essential complication of DM that progresses insidiously and severely affects the quality of life 
of older people with DM [57]. Epidemiological evidence suggests that up to 20% of T2DM patients over 60 will develop dementia [58]. 
As the population ages and the burden of DM increases, the global prevalence of diabetic cognitive dysfunction will continue to rise. 

Table 1 
Summary of epidemiological studies on renal damage caused by BPA exposure.  

Year Title Study design, study, country Number of 
participants 

Follow-up 
period 

Main findings Reference 

2007 Accumulation of bisphenol 
A in hemodialysis patients 

A cross-sectional study of BPA 
before and during dialysis in 

nephropathy, Japan. 

37 Not 
available 

In patients with nephropathy 
without hemodialysis, serum BPA 

concentration increased with 
worsening renal function, and there 
was a significant inverse correlation. 

[44] 

2021 Associations of serum 
bisphenol A levels with 
incident chronic kidney 

disease risk 

A prospective study aimed to 
evaluate the association between 

serum BPA levels and CKD in 
middle-aged and elderly Chinese 

population, China. 

1370 10 years Serum BPA level is negatively 
correlated with the risk of CKD. 

[45] 

2012 Exposure to bisphenol A is 
associated with low-grade 

albuminuria in Chinese 
adults 

A cross-sectional study examined 
the association between urinary 

protein and BPA in Shanghai 
adults over 40 years of age, China. 

3055 Not 
available 

There is an association between BPA 
exposure and low-grade 

albuminuria. 

[46] 

2013 Bisphenol A exposure is 
associated with low-grade 

urinary albumin excretion in 
children of the United States 

A cross-sectional study examined 
the association between urinary 
BPA and low protein levels in 

children from the 2009–10 
NHANES, USA. 

710 Not 
available 

There is an association between BPA 
exposure and low-grade 

albuminuria. 

[47] 

2015 Serum bisphenol A and 
progression of type 2 

diabetic nephropathy: a 6- 
year prospective study 

A prospective study investigated 
whether serum BPA 

concentration is a predictor of the 
progression of DN, China. 

121 6 years Serum BPA may be a predictor of 
CKD in T2D patients. 

[48] 

Annotation: BPA: Bisphenol A; CKD: Chronic Kidney Disease; DN: Diabetic Nephropathy; NHANES: National Health And Nutrition Examination 
Survey; T2D: Type 2 diabetes. 
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Table 2 
Summary of epidemiological and animal evidence on the potential damage of BPA to diabetic coronary heart disease.  

First author, Year study design study 
object 

Main findings Reference 

Avinash 
Soundararajan, 

cross-sectional 
study 

human In patients with T2DM, elevated BPA levels are associated with cellular senescence, proinflammation, poor glycemic control, insulin resistance, 
and telomere shortening. 

[13] 

Ziwei Chen, 2022 cross-sectional 
study 

human BPA was associated with CVD risk in a J-curve relationship. [72] 

Fanny Rancière, 
2015 

meta-analysis human Individuals with higher urinary BPA concentrations are more likely to develop diabetes, general/abdominal obesity, and hypertension than those 
with lower urinary BPA concentrations. 

[73] 

P Monica Lind, 2011 cross-sectional 
study 

human Phthalates and BPA have been linked to plaque echo. [74] 

Pei-Lun Chu, 2021 cross-sectional 
study 

human In the presence of elevated BPA levels, there is a higher risk of thicker CIMT associated with altered MPs. BPA exposure is associated with 
endothelial dysfunction and subclinical atherosclerosis in younger populations. 

[75] 

David Melzer, 2012 prospective study human The association between higher BPA exposure, as reflected by higher urinary concentrations, and CHD events over a follow-up period of more than 
ten years showed a similar trend to the cross-sectional findings reported previously for higher exposure NHANES respondents. 

[76] 

Chunyun Hu, 2019 nested case-control 
study 

human BPA exposure is positively associated with diabetes and coronary heart disease. [77] 

Alice Marmugi, 
2014 

animal experiment mice Chronic BPA exposure overexpresses genes critical for cholesterol biosynthesis, resulting in hypercholesterolemia in mice. [78] 

Yipeng Sui, 2014 animal experiment mice BPA exposure did not affect plasma lipid levels but increased CD36 expression and lipid accumulation in mouse macrophages. [79] 

Annotation: BPA: Bisphenol A; CHD: Coronary Heart Disease; CIMT: Carotid artery Intima-Media Thickness; CVD: Cardiovascular Disease; MPs: Microparticles; NHANES: National Health And Nutrition 
Examination Survey; PXR: Pregnane X Receptor; T2DM: Type 2 diabetes mellitus. 
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7. Potential pathological mechanisms of BPA-promoted diabetic cognitive dysfunction 

There are no evidence-based or mechanistic studies on the relationship between BPA exposure and diabetic cognitive dysfunction 
in human adults. However, several studies in rodents and non-human primates suggest that BPA exposure impairs learning and 
memory [59]. BPA, through its effects on brain insulin signaling pathways, neurotoxicity, and neurotransmitter induction, may in
fluence the progression of diabetic cognitive dysfunction. Li and colleagues found that administering a low dose of BPA to adult male 
mice decreased insulin sensitivity, decreased expression of GLUT1 and GLUT3 in the brain, and hyperactivation of the IR/IR
S/AKT/GSK3 axis [60]. Another in vitro study found that the neurotoxic effects of BPA were similar to those of Alzheimer’s disease 
(AD) when tested on SH-SY5Y cells (a tri-clonal subline of the neuroblastoma cell lines SK-N-SH) [61]. This BPA-induced neurotoxicity 
was associated with disruption of IR, IRS-1, and Akt signaling and activation of downstream GSK3β [61]. In addition, BPA exposure 
increased the expression of pathological proteins associated with neurotoxicity, such as amyloid precursor protein, beta-site amyloid 
precursor protein cleavage-1 (BACE1), β-amyloid (Aβ) 1–42 and hyperphosphorylated microtubule-associated protein (p-tau) [58]. 
Notably, BPA-induced AD-like neurotoxicity implicates pathways consistent with those that induce T2DM [61]. Ni et al. found that 
BPA-mediated neuroinflammation and blood-brain barrier impairment impaired learning and memory function in male mice. 
Mechanistically, BPA affects cognitive function in mice by inducing changes in neurotransmitters such as tryptophan, 5-hydroxytryp
tamine, and 5-hydroxy indole acetic acid via the gut-brain axis [62]. The mechanism of diabetic cognitive dysfunction is not well 
understood. However, the above studies have shown that brain insulin resistance and impaired insulin signaling pathways are essential 
in diabetic cognitive dysfunction [63]. Based on the above evidence, BPA-induced brain insulin resistance and disruption of the insulin 
signaling pathway in the brain may be underlying causes of diabetic cognitive dysfunction. 

8. BPA and diabetic retinopathy 

Diabetic retinopathy is the most common microvascular complication of DM. It is the leading cause of blindness in adults 
worldwide. There were reportedly 96 million people with diabetic retinopathy worldwide in 2012 [64]. BPA can cause abnormal 
retinal development and visual impairment [65]. A cross-sectional study of 100 children with T1DM found an association between BPA 
and diabetic retinopathy [66]. However, evidence from retrospective studies is limited, and a causal relationship between BPA and 
diabetic retinopathy has not yet been established. 

9. Potential pathological mechanisms of BPA-promoted diabetic retinopathy 

The retina is more susceptible to reactive oxygen species (ROS) due to its high concentration of polyunsaturated fatty acids [67]. 
The reactive oxygen species (ROS) produced by hyperglycemia cause changes in the retinal vasculature, resulting in cellular damage. 
In an animal study, Ola found that hyperglycemia-induced non-mitochondrial sources may be the primary source of ROS production in 
diabetic retinopathy rather than hyperglycemia itself [68]. BPA exposure may increase oxidative stress. In vitro, BPA exposure 
increased ROS, decreased glutathione (GSH) levels, caused lipid peroxidation, and altered the enzymatic activities of superoxide 
dismutase and catalase [69]. Chronic BPA exposure may be an additional source of oxidative stress in diabetic retinopathy, distinct 
from hyperglycemia-mediated oxidative stress. In addition, another study found that BPA degrades the antioxidants superoxide dis
mutase and catalase downstream of nuclear factor erythroid 2-related factor 2 by inhibiting the expression of heme oxygenase-1 and 
nuclear factor erythroid 2-related factor 2 [70]. Increased oxidative stress via BPA can induce apoptosis of the retinal pigment 
epithelium (ARPE-19 cell) [70]. Unfortunately, no studies have directly investigated the effects and mechanisms of BPA-induced 
additional oxidative stress on ex vivo models of diabetic retinopathy. Future research should focus on the potential role of the nu
clear factor erythroid 2-related factor 2/oxygenase-1 pathway and downstream components of the oxidative and antioxidant systems 
in BPA-induced diabetic retinopathy. 

10. BPA and diabetic cardiopathy 

Diabetic cardiopathy is the leading cause of death in people with DM [71]. Diabetic cardiopathy mainly includes coronary artery 
disease and diabetic cardiomyopathy. We discuss the epidemiological evidence linking BPA exposure to diabetic coronary artery 
disease and the possible pathological mechanisms (Table 2). We also summarize the possible pathological mechanisms by which BPA 
exposure promotes diabetic cardiomyopathy. 

11. Epidemiological evidence for the association of BPA with diabetic coronary artery disease 

A cross-sectional study using NHANES data from 2003 to 2012 found a J-shaped association between BPA and the risk of car
diovascular disease, including congestive heart failure, coronary heart disease, and angina pectoris [72]. A meta-analysis on the risk of 
cardiometabolic disorders and BPA exposure focused on cross-sectional studies. Rancière et al. found that urinary BPA concentrations 
were associated with an increased risk of developing diabetes, obesity and hypertension [73]. These metabolic disorders are important 
risk factors for cardiovascular disease. Atherosclerosis-related metabolites are mainly found in the coronary and carotid arteries [73]. 
Thus, carotid atherosclerosis may indirectly reflect coronary atherosclerosis. Lind et al. found that high serum BPA levels were 
associated with carotid atheroma in a cross-sectional study of older adults in Uppsala [74]. In another cross-sectional study of a young 
population in Taiwan, BPA exposure was associated with endothelial dysfunction and subclinical atherosclerosis. There was also an 
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increased risk of carotid intima-media thickness associated with altered extracellular microparticles in elevated BPA levels [75]. A 
10.8-year prospective cohort study found that increased urinary BPA was associated with incident coronary heart disease in a healthy 
population (aged 40–74 years without coronary heart disease, stroke, or diabetes) [76]. This study suggests that the risk of coronary 
heart disease from BPA exposure is independent of the risk from conventional exposure. Hu et al. found that urinary BPA was 
significantly associated with myocardial infarction in T2DM patients (OR = 1.97; 95% CI = 1.05–3.70, p = 0.04) in a nested 
case-control study in two European cohorts [77]. This study found, for the first time, an association between BPA exposure and diabetic 
coronary heart disease. However, the association needs to be validated by further prospective cohort studies with large samples. 

12. Potential pathological mechanisms of BPA-promoted diabetic coronary artery disease 

The pathology of DM that promotes the development of atherosclerosis includes dyslipidemia with elevated LDL levels, hyper
glycemia, oxidative stress and increased inflammation [80]. Chronic exposure to BPA causes overexpression of genes essential for 
cholesterol biosynthesis, leading to hypercholesterolemia in mice [78]. Another animal study found that BPA increased the athero
sclerotic area in the aorta and cephalic brachial artery of pregnane X receptor (PXR) humanized (ApoE) ApoE-deficient mice by 
activating human PXR [79]. Interestingly, BPA exposure did not affect plasma lipid concentrations but increased lipid accumulation in 
mouse macrophages [79]. In addition, BPA was associated with poor glycaemic control and insulin resistance in T2DM patients [13]. 

BPA is a cardiovascular-independent risk factor, suggesting that there may be other mechanisms by which BPA exposure damages 
the cardiovascular system and alters glucose and lipid metabolism. BPA may increase the risk of cardiovascular disease through 
increased stimulation of IκB kinase by estrogen receptors, which promotes the expression of pro-inflammatory genes associated with 
CRP secretion [81]. In addition, BPA may cause cardiovascular damage through the nuclear factor erythroid 2-related factor 2/NF-κB 
pathway by inducing oxidative stress and inflammation in the cardiovascular system [82]. 

13. Potential pathological mechanisms of BPA-promoted diabetic cardiomyopathy 

The hormone-disrupting effects of BPA may affect the myocardial structure. A cross-sectional study found that serum BPA levels 
were significantly higher in the dilated cardiomyopathy group than in the healthy group, with increased total testosterone, sex 
hormone-binding globulin, and free androgen index [83]. It is reasonable to speculate that the hormonal disruption caused by BPA 
exposure may act as a non-diabetic pathological mechanism for promoting diabetic cardiomyopathy. 

BPA may also contribute to the progression of diabetic cardiomyopathy by participating in diabetes-related metabolic pathological 
mechanisms. BPA and a high-fat diet caused myocardial hypertrophy and aortic intimal thickening in female mice [84]. These ex
posures also affected their offspring, increasing cardiomyocyte cross-sectional area and blood pressure in second-generation maternal 
mice [84]. Prenatal exposure to BPA and a high-fat diet predispose mouse offspring to insulin resistance, obesity, impaired glucose 
tolerance, hypertension, and other metabolic abnormalities. Myocardial fibrosis is the predominant pathological manifestation of 
diabetic cardiopathy. In an animal study, El-Haleem et al. found a significant increase in the area percentage of collagen fibers in the 
myocardium of the BPA intervention group, similar to the pathological changes in diabetic cardiopathy [85]. The exact mechanism by 
which BPA promotes myocardial fibrosis in diabetic cardiopathy is unknown. It could be related to the role of BPA-induced myocardial 
insulin resistance and the potential activation of fibrotic pathways. Furthermore, as mentioned above, BPA accelerated renal-cardiac 
axis alterations in the diabetic mouse model via the MAPK pathway, causing structural remodeling of the heart [86]. 

14. Conclusion and future direction 

The above extensive evidence sheds light on the risk and underlying pathogenic mechanisms linking BPA exposure to several 
common chronic diabetic complications. By affecting the metabolism and directly damaging specific organs, BPA exposure may 
contribute to the progression of several chronic diabetic complications, including diabetic nephropathy, diabetic cognitive dysfunc
tion, diabetic retinopathy, and diabetic cardiopathy. 

Several cross-sectional and prospective cohort studies have found an association between BPA exposure and diabetic nephropathy. 
Of course, factors such as individual differences in BPA exposure and metabolism limit the generalisability of the findings. Therefore, 
more studies should provide more conclusive evidence, especially those with large sample sizes and multicentre prospective cohort 
studies. In addition, epidemiological evidence linking BPA exposure to diabetic cognitive dysfunction and diabetic retinopathy is 
currently lacking. Future epidemiological studies are needed to investigate this association. Some mechanistic studies have examined 
the potential mechanisms by which BPA may promote the diabetic complications mentioned above. Notably, these mechanisms are not 
limited to the effects of BPA exposure on diabetes; they also include direct damage to target organs from BPA exposure. For example, in 
animal models, BPA causes renal changes similar to the structural changes seen in the early stages of diabetic nephropathy without 
causing hyperglycemia [51]. However, few studies have focused directly on the pathogenetic effects of BPA on diabetic complications, 
while other relevant studies have focused on organ-specific damage caused by BPA. In addition, studies on the effects of BPA on 
diabetic neuropathy are scarce, although the neurotoxicity of BPA is well established. There is evidence that urinary levels of BPA are 
associated with the development of diabetic peripheral neuropathy [66]. Relevant epidemiologic and pathogenic studies are war
ranted as human exposure to BPA remains an ongoing concern. 

According to the findings of this review, BPA damage to specific organs may contribute to the progression of complications in these 
organs in DM. In the future, researchers must confirm the adverse effects of BPA in specific in vivo models of diabetic complications. 
Given that many mechanistic studies have reached their conclusions by studying rodent models, the validity of these mechanisms 
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needs to be verified in vitro in human cells and tissues using alternative techniques. Researchers should pay close attention to the 
potential role of BPA exposure in the progression of DM and its complications. 

Due to the harmful effects of BPA’s endocrine-disrupting properties and reproductive toxicity to humans, many countries and 
regions have imposed restrictions on the use of BPA. For instance, to prevent human exposure to BPA, the E.U., the U.S., and France, 
among others, have severely restricted the production and sale of containers, utensils, and food packaging containing BPA [87]. With 
the limited use of BPA in various applications, some of its alternatives, such as BPF (4,4′-methylene diphenyl), BPS (bis(4-hydrox
yphenyl)sulfone), and BPAF (2,2-bis(4-hydroxyphenyl)hexafluoropropane), gradually began to be used on a large scale [87]. How
ever, these substitutes may also risk human health, if not less than BPA. Therefore, we urge researchers to conduct more studies to 
determine the potential risks of BPA and its substitutes for various human diseases, including DM and its major complications. 
Accordingly, national regulatory agencies and policymakers should promptly adapt and develop relevant policies to reduce human 
exposure to these compounds. 
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