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Small-cell lung cancer (SCLC) is a highly proliferative, invasive lung cancer with poor
prognosis. Chemotherapy is still the standard first-line treatment for SCLC, but many
patients relapse due to chemoresistance. Along with advances in immunology, it is
essential to investigate potential indicators of the immune response and the prognosis
of SCLC. Using bioinformatics analysis, we identified 313 differentially expressed genes
(DEGs) in SCLC and normal lung samples, and we found that four upregulated genes
(TOP2A, CDKN2A, BIRC5, and MSHZ2) were associated with platinum resistance, while
immune-related genes (HLA family genes) were downregulated in SCLC. Then, a
prognostic prediction model was constructed for SCLC based on those genes.
Immune cell infiltration analysis showed that antigen presentation was weak in SCLC,
and TOP2A expression was negatively correlated with CD8+ T cells, while HLA-ABC
expression was positively correlated with M1 macrophages, memory B cells, and CD8+
T cells. We also found that TOP2A was related to poor prognosis and inversely correlated
with HLA-ABC, which was verified with immunohistochemical staining in 151 SCLC
specimens. Our study findings indicated that TOP2A may be a potential prognosis
indicator and a target to reverse the immunosuppressive tumor microenvironment
of SCLC.
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INTRODUCTION

SCLC is a lethal type of lung cancer with poor prognosis and represents approximately 15% of all
lung cancers. It is highly aggressive and has a propensity to metastasize early (Gazdar et al., 2017;
Blackhall et al., 2018). For more than 30 years, platinum (cisplatin or carboplatin) and etoposide
chemotherapy has been administered as the standard first-line treatment for this disease; however,
most cases are observed to relapse within 1 year of initial therapy due to chemoresistance (Waqar and
Morgensztern, 2017). Recent advances in immunotherapy (e.g., PD-1, PD-L1, and CTLA-4
therapies) have shown promising results for patients with SCLC. Chemotherapy is combined
with immunotherapy for SCLC treatment because the disease has a high tumor mutational
burden; thus, chemotherapy can stimulate tumoral antigens and increase activation of T cells,
thereby enhancing immunogenicity and priming the tumor for the response to immune checkpoint
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inhibitor treatment (Mak et al, 2019; Hiddinga et al., 2021).
IMPOWER-133, a phase III trial, demonstrated that
immunotherapy (atezolizumab or durvalumab) combined with
platinum-etoposide chemotherapy achieved longer progression-
free survival (PFS) (6.3 vs. 5.6 months) and patient overall
survival (OS) (33.5 vs. 20.4% long-term survivors for control)
compared with chemotherapy alone (Horn et al., 2018). Several
other phase III studies (e.g., the CASPIAN trial and KEYNOTE-
604 study) found that compared with treatment by chemotherapy
alone, PFS and OS were significantly prolonged when
immunotherapy and platinum-based front-line chemotherapy
were combined (Paz-Ares et al, 2019; Rudin et al., 2020).
However, results for maintenance immunotherapy after
discontinuing first-line chemotherapy in the CheckMate-451
trial were unsatisfactory (Ready et al., 2016). Similarly, results
for the CheckMate-331 trial showed that nivolumab as second-
line therapy did not improve outcomes compared with the use of
topotecan or amrubicin (Reck et al., 2018). Therefore, identifying
biomarkers that could potentially identify patients who would
benefit from immunotherapy is essential.

SCLC was previously classified into two subgroups, namely,
classic and variant (Gazdar et al., 1985), and later, it was grouped
into neuroendocrine and non-neuroendocrine categories (Zhang
etal., 2018). At present, SCLC is grouped into four subtypes based
on specific transcription factors: ASCL1 (SCLC-A), NEUROD1
(SCLC-N), POU2F3 (SCLC-P), and YAP1 (SCLC-Y) (Borromeo
et al,, 2016; Huang et al., 2018; Rudin et al., 2019). However, a
newly proposed SCLC subtype “SCLC-I,” which is characterized
by high expression of immune checkpoints or human leukocyte
antigens (HLAs), has been noted to be correlated with cisplatin
resistance and shows improved benefits from treatment using
chemotherapy combined with immunotherapy (Gay et al., 2021).
Of note, a subtype of SCLC has been noted to switch to another
subtype under specific conditions, for example, cisplatin
treatment of xenografts developed from patients with SCLC-A
(MDA-SC68 model) enables SCLC-A to switch to SCLC-I, which
suggests that targeting subtype transformations could be a means
of regulating the mechanisms of the immune response and
acquired platinum resistance (Gay et al., 2021). However, these
classifications are controversial and require further investigation
(Baine et al, 2020). A better understanding of antitumor
immunity is also essential in order to elucidate the underlying
mechanism of cancer immunosuppression and encourage
biomarker development.

Topoisomerase Il (TOP2A) is a protein that is strongly expressed
in proliferating cells, and it plays vital roles in regulating DNA
replication, gene transcription, and mitosis (Tsai-Pflugfelder et al.,
1988; Ali and Abd Hamid, 2016). Many studies have shown that
TOP2A has the capacity to predict the sensitivity of breast cancer to
anthracyclines. In addition, tumor cells with p53 mutations may
exhibit high levels of TOP2A and may be more sensitive to TOP2A
inhibitors (Liu et al., 2002); about 90% of patients with SCLC have
p53 mutations (Delgado et al.,, 2005). High expression of TOP2A was
reported to be associated with poor prognosis of NSCLC (Kou et al.,
2020). However, only a few studies have investigated the clinical value
of TOP2A expression in SCLC. Therefore, it is necessary to analyze
the data of small-cell lung cancer obtained from existing databases to
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ascertain the clinical role of TOP2A in predicting survival outcome
and immune response.

In this study, four GSE datasets [GSE6044 (Rohrbeck et al.,
2008), GSE43346 (Sato et al., 2013), GSE60052 (Jiang et al., 2016),
and GSE149507 (Cai et al., 2021)] were obtained from the GEO
database to perform SCLC-related DEG analysis. A total number
of 313 DEGs were identified in our study. Additionally, pathway
enrichment and protein—protein interaction network (PPI) were
conducted on the DEGs to select hub genes. Thereafter, a risk
prediction score model was constructed. In addition, the clinical
outcomes of different groups and correlations between genes in
the model and immune-related cells were further investigated.
Finally, immunohistochemistry analysis was performed to verify
bioinformatics results. The study design is shown in Figure 1.

MATERIALS AND METHODS

Small-Cell Lung Cancer Gene Expression

Data Collection and Preprocessing

Four microarray expression profiles (i.e., GSE6044, GSE43346,
GSE60052, and GSE149507) were obtained from the GEO
database. The selected expression datasets satisfied the
following criteria: 1) Studies were of human small-cell lung
cancer tissues and corresponding para-cancerous tissues/
normal lung tissues, 2) the number of samples included in
each dataset was at least greater than 10, 3) the SCLC patients
were naive (untreated), and 4) the dataset search was limited to
those studies written in English. The characteristics of the four
selected datasets are shown in Table 1. For microarray data not
shown in the form of log2-transformed values, log2 conversion
was performed. If the data were not quantile-normalized, then the
normalizeBetweenArrays method in the limma package of R was
used for quantile normalization. The expression data were
averaged for cases where multiple probes were mapped to one
gene. Four GSE datasets were used to perform DEG
identification, functional enrichment analysis, PPI network,
and immune infiltration analysis in SCLC and normal lung tissue.

Identification of Small-Cell Lung Cancer

Differentially Expressed Genes

DEGs were identified using the limma package (version 3.42.2) with
the empirical Bayes method (Ritchie et al., 2015). Key parameters
that selected DEGs conformed to the following criteria: |log2 fold
change (FC)|>1 and adjusted p < 0.05. The RobustRankAggreg
package (version 1.1) was used to integrate DEGs from four selected
gene profiles. Heatmaps (package: pheatmap, version 1.0.12) and
volcano plots (package: ggpubr, version 0.4.0) were used to visualize
gene expression patterns. The common DEGs among these four
datasets were obtained by using “Venn Diagram.”

Functional Enrichment Analysis of

Differentially Expressed Genes
A GO analysis including biological process (BP), cellular
component (CC), and molecular function (MF) was performed
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TABLE 1 | Basic characteristics of four GSE datasets.

Dataset Platform Normal Tumor Reference
GSEB044 GPL201 5 9 Rohrbeck et al. (2008)
GSE43346 GPL570 1 23 Sato et al. (2013)
GSEB0052 GPL11154 7 79 Jiang et al. (2016)
GSE149507 GPL23270 18 18 Cai et al. (2021)

to better explore potential biological function of DEGs. In
addition, KEGG analyses were performed on the up- and
downregulated genes using the Bioconductor package
“clusterProfiler” (version 3.14.3). Notably, q value (adjusted p
value) < 0.05 was used as a cutoff, and only GO terms and signal
pathways passing this threshold were considered significant.

Protein-Protein Interaction Network and
Module Analysis

To better decipher the connections between the identified DEGs,
the STRING biological database was utilized to construct the
original PPI network. Only those DEGs with interaction scores
>0.9 could be mapped into the network (Szklarczyk et al., 2019).
Cytoscape 3.8.1 was utilized for the generation and visualization
of the PPI network (Smoot et al., 2011). The top thirty genes with
the maximum interactions were defined as hub genes using the
cytoHubba plug-in of Cytoscape software (Chin et al., 2014). In

addition, the highly interconnected clusters were extracted from
the PPI network using another plug-in, MCODE.

Construction and Verification of a
Prognostic Model Based on

Platinum-Related and HLA Class | Genes

We procured SCLC RNA sequencing as well as corresponding
clinical data from the cBioPortal database for the construction of
a prognostic model; FPKM values were subsequently transformed
into TPM values. Samples were included when both mRNA-
sequencing data and corresponding survival data of an SCLC
patient were accessible (77 samples). For platinum-related genes
(that were obtained from functional enrichment analysis) and
HLA class I genes, we performed LASSO regression analysis (ten-
fold cross confirmation and p < 0.05) using R package glmnet
(version 4.1.1). Then, those selected genes were utilized to
generate a prognostic model for SCLC using multivariate
regression analysis (package: rms; version 6.2.0).

Next, we observed the survival differences between high- and
low-risk subgroups (the median value of risk score was used as a
cutoft) via Kaplan-Meier analysis by using the “survive” and
“survminer” R packages. Next, the 1-, 3-, and 5-year receiver
operating characteristic (ROC) curves of the proposed model for
SCLC in comparison to other clinicopathological factors were
drawn. Besides, univariate and multivariate Cox regression
analyses were implemented to show whether our proposed
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model had predictive value for the prognosis of SCLC. A
nomogram was generated to predict 1-, 3-, and 5-year OS of
SCLC patients.

In addition, a chi-square test was conducted to disclose
relationships between the model and other clinicopathological
characteristics by using the “ComplexHeatmap” R package
(version 2.2.0). Furthermore, a scatter diagram was used to
visualize the Wilcoxon signed-rank test analysis results, which
revealed differences in risk scores across distinct groups of
clinicopathological characteristics.

Survival Analysis of Genes Associated With

Platinum Resistance and HLA-B

To show the independent prognostic potential of platinum
resistance-related genes and genes in the proposed model
(i.e, MSH2, TOP2A, BIRC5, CDKN2A, and HLA-ABC), we
used survival and survminer packages to perform
Kaplan-Meier analysis. Patients were clustered into two
groups (high- or low-expression groups) based on the
corresponding optimal cutoff value for each gene.

Immune Infiltration Analysis

The immune infiltration analysis in SCLC and normal lung tissue
was performed by using CIBERSORT (https://cibersort.stanford.
edu), which could provide mRNA expression profiling of 22
immune cells. Notably, GSE6044 and GSE149507 only have 9 and
18 tumor samples, respectively. Given that analysis of few tumor
samples may provide unreliable outcomes, we integrated four
datasets to increase the total number of samples. The sva package
(version 3.20) in R software (version 3.6.3; 64-bit) was applied to
adjust potential batch effects. Besides, Spearman correlation
analysis of the expression of the key genes (i.e., TOP2A,
CDKN2A, BIRC5, MSH2, and HLA-ABC) and infiltrating
immune cells was conducted by using the “ggpubr” package in
the cBioPortal cohort.

Immunohistochemistry

Paraffin-embedded specimens were obtained from 151 patients
with primary SCLC confirmed by surgery or needle biopsy
between April 2013 and October 2019 at the Department of
Clinical Oncology, Shengjing Hospital of China Medical
University. In addition, none of patients had secondary
tumors or other severe diseases, nor did they receive
preoperative chemotherapy or radiotherapy. Overall survival
time of individuals was assessed from the surgery date to the
date of event occurrence (death or last follow-up). The last follow-
up was on 19 December 2021. All patients provided informed
consent before surgery.

The specific steps for the immunohistochemistry (IHC)
procedure were performed strictly according to the
instructions. Paraffin-embedded sections underwent xylol
dewaxing and rehydration routinely, and then endogenous
catalase was inactivated with 3% H,O, solution (15 min). For
better exposing antigenic sites, the sections were immersed in a
pre-heated citrate buffer (95-96°C, pH 6.1) for 20 min and then
blocked in 5% normal goat serum to avoid unspecific binding

A Prognostic Model for SCLC

(15 min). The sections were then incubated with anti-TOP2A
antibodies (1:100, Proteintech, United States) or anti-HLA-ABC
(1:5000, Proteintech, United States) antibodies at 4°C overnight
and then incubated with biotin-labeled goat anti-mouse/rabbit
IgG (Zhongshanjinqgiao, Beijing, China) at 37°C for 120 min.
DAB (Zhongshanjingiao, Beijing, China) was used for detection.

Three random images of each SCLC section were taken at
high-power fields (x200), and Image-Pro Plus (version 6.0) was
used to measure the average optical density (IOD/area). Thus, the
staining index of SCLC tissues was quantified. For HLA-ABC
analysis, the assessment was primarily based on the presence of
membranous staining, while TOP2A staining was mainly based
on intracytoplasmic or intranuclear staining. A time-dependent
ROC curve was used to better ascertain the cutoff value of TOP2A
and HLA-ABC (package: survivalROC, version 1.0.3).

Statistical Analysis

The y* test was utilized to disclose associations between TOP2A,
HLA-ABC, and categorical variables (SPSS, Chicago, IL,
United States, version 3.6.3). Survival data of patients with
SCLC were analyzed using the Kaplan-Meier method, and
comparison of different survival times between groups was
drawn using the log-rank test (package: survminer, version
0.4.8). Correlation analysis between TOP2A and HLA was
conducted using the Pearson method (SPSS) in datasets
obtained from GSE datasets and the cBioPortal website, while
Spearman rank correlation was used in our own cohort (two-
sided p values and p < 0.05 was considered statistically
significant).

RESULTS

Identification of Differentially Expressed

Genes

Four microarray datasets (GSE6044, GSE43346, GSE60052, and
GSE149507) were used to analyze DEGs, and volcano plots of
DEGs for each dataset are presented in Figures 2A-D. The
overlap of these DEGs was examined using a Venn diagram
(Figure 2E). Then, these DEGs were integrated using the robust
rank aggregation algorithm of the RobustRankAggreg package to
obtain 313 DEGs (tumor vs. normal; 133 upregulated DEGs and
180 downregulated DEGs, respectively). A heatmap of the DEGs
is shown in Figure 2F. The top 10 upregulated genes were
CDC20, NOL4, INSMI1, INA, NUSAPI, BIRC5, UCHLI,
MAD?2LI1, TOP2A, and RRM2, while the top 10 downregulated
genes were AQP1, MSLN, SLP1, SFTPD, SFTPC, PTGDS, FOLRI,
CYP4BI1, ADHIB, and SCGBIAI.

Function and Pathway Enrichment Analyses

of Differentially Expressed Genes

To shed light on the biological roles of DEGs in patients with
SCLC, we performed GO and KEGG enrichment analyses for
both upregulated and downregulated genes. Results of the GO
analysis revealed that upregulated DEGs mainly focused on the
cell mitosis process and microtubule motor activity (Figure 3A),
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FIGURE 2 | Identification of DEGs in four microarray datasets from GEQO. (A-D) Volcano plots of differential expression analysis for GSE6044, GSE43346,
GSEB0052, and GSE149507. Plots in red, blue, and gray represent upregulated, downregulated, and non-significant genes, respectively. (E) Venn diagram of the
overlapped differential expressed genes in four GSE datasets. (F) Expression heatmap of top 10 up- and down-regulated genes, each column in the table represents a
Log2FC value calculated for each gene.
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enrichment analysis of up- and down-regulated genes.

and the KEGG analysis revealed that those genes were primarily
mapped to the process related to cell cycle, DNA replication, p53
pathway, and platinum drug resistance (Figure 3C). In contrast,
among the downregulated DEGs, GO terms showed significant
enrichment in neutrophil-mediated immunity (Figure 3B), while
KEGG analysis also showed enrichment in cytokine-cytokine
receptor interaction and activation of transcription and the
interleukin-17 signaling pathway (Figure 3D).

Protein-Protein Interaction Network and

Hub Genes

As depicted in Figure 4. 313 nodes and 1,548 edges were
involved in the PPI network. The top 30 hub genes were
screened on the basis of connectivity degree in this network
(Figure 4F). The MCODE plug-in was then optimized to
identify clusters in the network; four clusters were identified
using k-core = 2 (Figures 4B-E). Cluster 1 had 32 nodes and 453
edges; it was the highest scoring cluster among those identified
(Figure 4B). Core genes were also screened based on functional

enrichment analysis and candidate hub genes. Our KEGG
analysis further investigated four platinum resistance-related
genes, that is, TOP2A, CDKN2A, BIRC5, and MSH2. Among
these, TOP2A and BIRC5 were included in module 1 and with 37
and 35 connections, respectively, suggesting that they
potentially play critical roles in SCLC. Notably, HLA-DMA
was downregulated in SCLC tissues in contrast with its
expression in normal tissues (logFC = -1.7849; p = 0.018).
HLA genes are known to have an important function in immune
response; therefore, to further investigate the expression of HLA
family genes in SCLC, we searched each GEO dataset to find
neglected information. We found that HLA-E was
downregulated in GSE6044; HLA-E, HLA-DQBI, HLA-DPBI,
and HLA-DMA were downregulated in GSE149507; and HLA-B,
HLA-DQBI1, HLA-DQB2, HLA-E, HLA-DMA, HLA-DPAI,
HLA-DPB1, HLA-DRA, HLA-DRBI, HLA-DRB6, and HLA-
DOA were downregulated in GSE60052; in contrast, HLA-
related DEGs were not found in GSE43346. In summary,
TOP2A and BIRC5 were upregulated in SCLC, whereas HLA
family genes were possibly downregulated in SCLC.
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Construction and Verification of a
Prognostic Panel by
Chemotherapy-Related Genes and HLA-I

Genes

We screened out five genes (i.e, TOP2A, BIRC5, CDKN2A,
MSH2, and HLA-ABC) for further LASSO regression in light
of the above findings. According to the optimal value of A, the
three-gene-based signature had superior predictive value
(Figure 5B), and coefficients for each gene are presented in
Figure 5A. Finally, a prognostic prediction panel was
established. For each patient, the risk score was computed as
follows:

(ie, HLA-B, TOP2A, MSH2, BIRC5, and CDKN2A) and
prognosis (Figures 5G-K). Patients with high expression of
HLA-B, MSH2, and CDKNZ2A expression had better survival.
Although p value for TOP2A was greater than 0.05, it can be seen
from Figure 5G that the long-term survival of patients with high
expression of TOP2A was worse than those with lower
expression. Furthermore, results showed that a high risk score
denoted worse prognosis, and this proposed model was predictive
of outcomes in SCLC (Figure 5L).

Clinical Evaluation of the Model
Correlations between the model and various clinicopathological
characteristics were further investigated by using the chi-square

Risk score = TPM value of TOP2A x 0.002566 — TPM value of HLA test; however, results indicated that the risk score was not

—B x 0.00022 — TPM value of MSH2 x 0.0154

According to the median levels of risk score, patients were
dichotomized into high- and low-risk groups. As shown in
Figure 5C, patients with higher risk had significantly worse
survival. Besides, our model outperformed other variables
including patient age, gender, smoking, and metastasis status
(Figures 5D-F), with an AUC = 0.851, 0.824, and 0.752 for 1, 3,
and 5 vyears, respectively. In addition, survival analysis was
employed to analyze platinum resistance-related genes

significantly ~ associated ~with  clinicopathological factors
(Figure 6A). Then, the Wilcoxon signed-rank test was
performed to analyze possible discrepancy in risk score among
subgroups stratified by clinicopathological characteristics. As
indicated in Figures 6B-D, stage IV had a higher risk score
than stage I-III. Similarity, NO-2 also showed no differences, but
they had a much lower risk score than N3. Besides, distant
metastasis was positively correlated with risk scores. A
nomogram based on the panel and other traditional
clinicopathological characteristics was constructed, as shown in
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Figure 7A. The calibration curve showed adequate fit of the A lollipop plot was drawn to show correlations between
proposed nomogram model in predicting 1-, 3-, and 5-year OSof ~ expression of those key genes (i.e., TOP2A, CDKN2A, BIRCS,
SCLC (Figures 7B-D). MSH?2, and HLA-ABC) and immune-related cells. As shown in

Figure 9A, TOP2A expression was negatively correlated with
Immune Infiltration Analysis CD8+ T cells; HLA-A, HLA-B, and HLA-C expression had

Given that the downregulated DEGs showed enrichment in  significant positive correlations with M1 macrophages,
immune-related pathways, immune infiltration analysis was  memory B cells, and CD8+ T cells. Besides, they all were
performed in SCLC and normal samples. Interestingly, we  inversely associated with M2 macrophages (Figures 9B-D).
found that SCLC tissues had a higher proportion of activated  In addition, both HLA-A and HLA-C expression were
memory CD4" T cells, T-follicular helper cells, regulatory T cells,  positively correlated with MO macrophages, while HLA-B
M1 macrophages, and resting dendritic cells than that detected in ~ expression was positively correlated with resting dendritic
normal lung tissues. In contrast, the proportion of monocytes,  cells. However, CDKN2A, BIRC5, and MSH2 expression
activated dendritic cells, resting mast cells, and neutrophils was ~ showed no correlations with immune cells (Supplementary
much lower in SCLC tissues (Figure 8). Tables S1-S3).
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FIGURE 8 | Violin plot of differences in immune cell infiltration between SCLC and normal lung tissues. Comparison of 22 infiltrated immune cells in tumor samples
and normal lung tissues based on four GSE datasets. Blue color represents normal lung tissue, while red represents tumor tissue.

Correlations Between TOP2A and HLA-I

Expression in Small-Cell Lung Cancer

To investigate the association between TOP2A and HLA-ABC,
Pearson correlation analysis was applied in GEO datasets and the
cBioPortal cohort. Of note, the correlation coefficients of TOP2A
with HLA-ABC were all negative (Table 2). However, statistically
significant results were only found in GSE60052, which may have
happened because of the large sample size of this dataset
(Table 2). Notably, in our cohort, TOP2A expression was
significantly inversely correlated with HLA (Table 3).

Survival Analysis of TOP2A and HLA-ABC
Expression for Small-Cell Lung Cancer

Patients

The patient group (n = 151) comprised 105 males and 46 females,
ranging in age from 37 to 79 years (mean + SD, 61.27 + 8.323 years
old). Additionally, there were 109 patients (72.19%) who had lymph
node metastases (LNM) and 104 patients (68.87%) had distant
metastasis. TOP2A and HLA-ABC expression levels were analyzed
semiquantitatively using the average optical density viewed in
Image-Pro  Plus  after  immunohistochemical  staining.
Representative pictures of IHC staining of SCLC are shown in
Figure 10A, and more immunohistochemical pictures are shown in
Supplementary Figure S1. Time-dependent ROC curves showed
that the best critical cutoff values for TOP2A and HLA-ABC were
0.00498 and 0.00731, respectively (Figures 10C,D). The reciprocal
of HLA-ABC (1/HLA-ABC) was used to improve the comparability
of the ROC curves because this gene was downregulated in SCLC
and may therefore be a protective factor. Thus, according to
expression levels of TOP2A and HLA-ABC, patients were
classified into high- or low-expression groups. Fifty-four percent
of the patients had high TOP2A expression levels, while 46% of
patients had low levels of TOP2A; in contrast, high and low
expression of HLA-ABC was found in 32.5 and 67.5% patients,

respectively. Correlations between TOP2A/HLA-ABC expression
and clinicopathological characteristics of 151 patients with SCLC
are shown in Table 4. However, there was no appreciable difference
in age, sex, history of smoking, or lymph node metastasis between
TOP2A/HLA-ABC high- and low-expression groups (p > 0.05).

Additionally, low expression of TOP2A and high expression of
HLA-ABC predicted longer OS as indicated in Figures 10E,F.
Univariate Cox analysis showed that LNM (HR = 3.000; p < 0.05),
distant metastasis (HR = 4.500; p < 0.05), and high expression of
TOP2A (HR = 1.800; p < 0.05) portended a poor prognosis, while
high expression of HLA-ABC denoted a favorable prognosis.
Multivariate Cox analysis showed that the risk of death was
2.1 times higher in patients with LNM than those without LNM
and 3.5 times higher for patients with M1 stage than those with
MO stage. Patients with high expression of TOP2A had 1.5-fold
higher mortality risk than patients with low expression, while
patients with high HLA-ABC expression harbored a 0.66-fold
lower risk of death. Therefore, TOP2A, HLA-ABC, lymph node
metastasis, and distance can be regarded as independent
prognostic factors of SCLC (Figure 10B).

DISCUSSION

Tumor typing of solid tumors (from the initial location distinction to
the pathological type distinction as well as the recent molecular
classification distinction) is known to be an effective method for
cancer treatment. SCLC is a malignant type of cancer with obvious
genetic characteristics, but targeting SCLC treatment remains
challenging. Notably, the neuroendocrine types of SCLC
(ie., SCLC-A and SCLC-N) can be regarded as cold tumors,
which are characterized by the infiltration of immune cells into
the tumor center and the invasive margin; in contrast, non-
neuroendocrine types (ie, SCLC-Y, SCLC-P, and SCLC-I)
manifest a phenotype that is more inflamed (Galon and Bruni,
2019; Haryono et al, 2019; Gay et al, 2021). Transformability
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FIGURE 9 | Correlations of gene expression and infiltrating immune cells. (A-D) Correlations between TOP2A, HLA-A, HLA-B, and HLA-C expression and
infiltrating immune cells.

TABLE 2 | Correlation between TOP2A expression and HLA-ABC expression in
four GSE datasets and the cBioPortal website.

Dataset (TOP2A) HLA-A HLA-B HLA-C
R P R P R p

GSE6044 -0.55 0.12 -0.57 0.11 -0.36 0.33
GSE43346 -0.32 0.14 -0.12 0.34 -0.36 0.087
GSE60052 -0.22  0.049 -0.19 0.086 -0.19 0.096
GSE149507 —-0.31 0.21 NA NA -0.3 0.22
cBioPortal -0.22 005 -0.127 0273 -0.209  0.068
Bold font indicates statistically significant p value (<0.05).

between different subtypes may provide new treatment

opportunities for patients with SCLC who respond poorly to
immunotherapy (Lim et al., 2017; Ireland et al.,, 2020). Therefore,
bioinformatics analysis was performed in this study to investigate

TABLE 3 | Correlation between TOP2A expression and HLA-ABC expression in
our own cohort.

TOP2A (high) TOP2A (low) Total
HLA-ABC (high) 20 (13.2) 29 (19.2) 49 (32.5)
HLA-ABC (low) 62 (41.1) 40 (26.5) 102 (67.5)
Total 82 (54.3) 69 (45.7) 151

R =-0.188. p = 0.021. Data are expressed as n (%).

underlying predictors of immunotherapy in SCLC. Data were
downloaded from the GEO database and the cBioPortal website.

We identified 133 and 180 upregulated and downregulated
DEGs, respectively, that were potentially associated with the
development of SCLC. Notably, four upregulated DEGs were
enriched in the platinum drug resistance pathway. In addition,
human leukocyte antigen class I and II (HLA-I and HLA-II) were
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FIGURE 10 | Verification of TOP2A and HLA-ABC expression by immunohistochemistry in our SCLC cohort. (A) Representative immunohistochemical pictures of
TOP2A and HLA-ABC in SCLC tissue sections. (B) Forest plot for univariate and multivariate Cox regression analysis. (C,D) Time-dependent receiver operating
characteristic curves of TOP2A and HLA-ABC. (E,F) Kaplan-Meier survival curve for 151 SCLC patients stratified by the cutoff values of TOP2A and HLA-ABC,
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TABLE 4 | Correlations between TOP2A/HLA-ABC expression and clinicopathological characteristics of 151 patients with SCLC.

N TOP2A HLA-ABC
Low (N = 69) High (N = 82) X2 p Low (N = 102) High (N = 49) X2 p

Gender

Male 105 44 61 1.996 0.158 70 35 0.726 0.123

Female 46 25 21 - - 32 14 - -
Age

<60 63 27 36 0.351 0.554 45 18 0.742 0.389

>60 88 42 46 — — 57 31 — —
Smoker

Yes 79 37 42 * 0.307 51 28 * 0.482

No 65 27 38 — — 45 20

Ever 7 5 2 - - 6 1
N stage

NO 42 21 21 0.434 0.510 24 18 2.875 0.09

N1-3 109 48 61 — — 78 31
M stage

MO 104 48 56 0.028 0.866 67 37 1.49 0.222

M1 47 21 26 — — 35 12

Note: “” means it is calculated using Fisher’s exact test.

downregulated in SCLC tissues compared with normal lung tissues.
According to enrichment analysis, the DEGs were enriched in DNA
replication, mitotic nuclear division, and chromosome segregation,
whereas downregulated genes were associated with neutrophil-
mediated immune response. CIBERSOET analysis was used to
delineate the immune infiltration landscape in SCLC tissues.
SCLC seemed to have a pauci-immune microenvironment that
was consistent with GO and KEGG analysis results. The lower
proportion of monocytes, activated dendritic cells, and neutrophils
in SCLC compared with that in normal lung tissues implied weak
antigen-presenting capacity in SCLC. These results suggest that
although SCLC had a high mutational burden, the efficacy of
immunotherapy was not always sufficient even when it was
combined with chemotherapy, and it is greatly affected by the
interplay of tumor cells and the immune system in the tumor
microenvironment. Thus, we used LASSO and multivariate Cox
regression to construct a prognostic index based on four
chemotherapy-related genes and HLA-ABC genes. Results showed
that this model was based on the TPM value of three genes: HLA-B,
MSH?2, and TOP2A. Notably, the coefficients were positive for HLA-
B and MSH2, whereas they were negative for TOP2A. Patients with
higher risk scores had less favorable outcomes.

TOP2A expression induces the formation of covalent complexes
with DNA, and produces transient double-stranded DNA breaks
(DSBs), which are crucial for DNA metabolism processes including
replication, chromosome condensation, and chromatid separation
during mitosis (Deweese and Osheroff, 2009; Jain et al, 2013).
Previous studies have suggested that TOP2A was upregulated and
indicative of poor prognosis in many malignancies including lung
adenocarcinoma (Kou et al., 2020), gastric cancer (Cao et al,, 2017),
breast cancer (Zheng et al.,, 2016), and prostate cancer (de Resende
et al, 2013), which is noteworthy. Generally, patients with SCLC
respond well to initial chemotherapy but show poor prognosis.
Patients with SCLC who experience a clinical relapse (ie., patients
who are drug resistant) rarely achieve an objective response rate
greater than 20% in their second-line treatment (von Pawel, 2003).

Indeed, combination treatment with immunotherapy is often
ineffective, especially after clinical trials of anti-PD-1 antibodies in
SCLC ended with failure. This seemingly contradictory situation may
actually stem from the inherent relationship between TOP2A and
HLA genes. When TOP2A is upregulated, HLA expression is usually
downregulated, and this was confirmed by immune infiltration results
that TOP2A expression was negatively correlated with CD8+ T cells.
Weakened antigen presentation leads to immune evasion and
metastasis of tumor cells, which in turn leads to multi-therapeutic
resistance. Inhibition of TOP2A expression alone or combined with
immunotherapy may be promising treatment options for SCLC.
MSH?2 is one of the DNA mismatch repair (MMR) genes,
which is upregulated in many cancers including SCLC (Fujii et al.,
2018). MSH2 mediates the removal of platinum-DNA adducts.
However, platinum agents induce apoptosis by generating
covalent platinum-DNA adducts that block DNA replication
and transcription (Barry et al, 1990). Emerging evidence
demonstrates that patients with MSH2 loss had a low response
rate to platinum-based therapies in many malignancies, including
glioma and ovarian cancer (Pabla et al., 2011; Goodspeed et al.,
2019). However, more studies are needed to explore whether
MSH?2 can be implicated in resistance to chemotherapy in SCLC.
HLA-I is composed of three classical antigens (HLA-A, -B, and
-C); it is present on the cell surface of every human cell and enables
peptides derived from tumor cells to be recognized by cytotoxic
T-lymphocytes (CTLs) while also playing a critical role in
antitumor immunity. Cancer cells downregulate HLA-I
expression by destroying the stability of [2-microglobulin,
which could cause the loss of heterozygosity (LOH) of HLA-I
(Challa-Malladi et al., 2011; Bernal et al., 2012). Loss of HLA-I
expression often occurs in many malignancies, including SCLG; it
results in resistance to the activity of HLA-restricted CTLs, which
leads to T-cell-mediated immune evasion and dissemination of
tumor cells (Doyle et al., 1985; Garrido et al., 2016). Chowell et al.
(Chowell et al., 2018) found that LOH of HLA-I in patients was
predictive of poor survival in comparison with patients without
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such LOH. Moreover, Rodig et al. (Rodig et al., 2018) demonstrated
that loss of HLA expression might influence immune checkpoint
blockade responses; specifically, the initial response to anti-CTLA-
4 required MHC-I-mediated antigen presentation, whereas intact
expression of tumor-specific MHC-II molecules was needed for the
anti-PD-1 response in melanoma. Thus, HLA expression was
positively associated with immune therapy effects.

Based on functions of TOP2A in malignant neoplasm
progression and platinum resistance, and HLA-ABC expression
in the immune response, the correlation between TOP2A and
HLA-I was investigated. Intriguingly, we found negative
correlations between TOP2A and HLA-I, and this was
confirmed by our immunohistochemistry experiments.
Furthermore, survival analysis based on SCLC data from the
cBioPortal website showed that HLA-B was an independent
indicator of good prognosis, while TOP2A might be associated
with poor long-term survival of patients. Interestingly, our study
indicated that low and high expression levels of TOP2A and HLA-
ABC, respectively, were significantly associated with increased OS
in patients with SCLC. Downregulation of TOP2A may have the
potential to turn the TOP2A-positive/ HLA-I-negative phenotype
into the HLA-ABC-positive/ TOP2A-negative phenotype, which
could promote the tumor immune response. In TOP2A-positive/
HLA-I-negative cases, patients with SCLC may have poor
prognosis; in contrast, in TOP2A-negative/HLA-I-positive
cases, patients may achieve increased survival and benefit from
immunotherapy, which is in accordance with coefficients of the
corresponding gene in our proposed model. Moreover, mutual
transformations could occur among the various subtypes found
in patients with SCLC. Gene therapy for TOP2A and HLA-ABC
may enable patients with recurrence and metastasis to become
treatment-sensitive and thereby benefit from chemotherapy with
or without immunotherapy. Moreover, specific genomic
characteristics of SCLC and corresponding individualized
treatments should be focused upon in order to ultimately
improve the current therapeutic landscape.

There are still some limitations to this study. First, we used
only one antibody that recognizes the non-polymorphic region of
HLA-I, which means that different HLA loci might be associated
with different clinical characteristics. Second, our sample
numbers are small due to the rarity of samples; more
multicenter and larger-scale studies are required to investigate
findings and the hypothesis in the current study.

CONCLUSION

Our results created a risk model based on chemotherapy-related
genes and immune-related genes for SCLC patients; this model
may be beneficial for evaluating SCLC patient prognosis. In
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