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Abstract: An adverse intrauterine environment, induced by a chromium-restricted diet, is a potential
cause of metabolic disease in adult life. Up to now, the relative mechanism has not been clear. C57BL
female mice were time-mated and fed either a control diet (CD), or a chromium-restricted diet (CR)
throughout pregnancy and the lactation period. After weaning, some offspring continued the diet
diagram (CD-CD or CR-CR), while other offspring were transferred to another diet diagram (CD-CR
or CR-CD). At 32 weeks of age, glucose metabolism parameters were measured, and the liver from
CR-CD group and CD-CD group was analyzed using a gene array. Quantitative real-time polymerase
chain reaction (qPCR) and Western blot were used to verify the result of the gene array. A maternal
chromium-restricted diet resulted in obesity, hyperglycemia, hyperinsulinemia, increased area under
the curve (AUC) of glucose in oral glucose tolerance testing and homeostasis model assessment of
insulin resistance (HOMA-IR). There were 463 genes that differed significantly (>1.5-fold change,
p < 0.05) between CR-CD offspring (264 up-regulated genes, 199 down-regulated genes) and control
offspring. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) analysis revealed that the insulin signaling
pathway and Wnt signaling pathway were in the center of the gene network. Our study provides the
first evidence that maternal chromium deficiency influences glucose metabolism in pups through the
regulation of insulin signaling and Wnt signaling pathways.

Keywords: development programming; gene expression; glucose metabolism; insulin signaling
pathway; Wnt pathway

1. Introduction

Diet has important health effects at any stage of life, but nutrition during fetal and early postnatal
life is particularly important for later life, even throughout the whole life. Increasing evidence suggests
that the occurrence of diabetes is related to nutrition status in fetus period [1–4]. Growing evidence
proves that under-nutrition in early life is an important risk of metabolic disease in later life [5,6].
The nutrition status of mothers will affect children’s health for a long period. Malnutrition in this
sensitive window may lead the occurrence of metabolic disorder in later life [7,8]. Offspring gene
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changes in this sensitive window are a long-term effect, as they remain in adult life even when dietetic
recovery occurs [9]. Damage during this sensitive time will disturb gene expression for a long time.

Besides proteins, fats, and carbohydrates, micronutrients also are necessary for the human body.
Although we just need them in trace or tiny amounts daily, some micronutrients (zinc, chromium,
magnesium, copper, iron, and potassium) are proven to have an important role in mediation of glucose
metabolism. [10]. Chromium can reduce fasting blood glucose levels in diabetic patients and diabetic
rodent models [11], and enhance insulin action, including activation of insulin receptor sites [12].
Diabetic animals [13] and patients [14,15] have lower chromium levels than that of controls. Chromium
deficiency is common among our population. Chromium levels decrease with advancing age, both
in type 2 diabetic patients and normal subjects [16]. A recent study reported that Wistar of National
Institute of Nutrition (WNIN) rats born from chromium restriction dams showed insulin resistance
and glucose intolerance. Increased oxidative stress was one underlying mechanism [16].

However, no genome-wide study has been conducted to look for key genes and pathways which
are affected by maternal chromium restriction in the whole genome. Therefore, we employed the
whole genomic microarray to quantify all gene expression in adult mice livers that had maternal
exposure to chromium restriction. We hypothesized that there might be some key genes/pathways in
the liver which are affected by maternal chromium restriction. The aim of this research is to identify
the key genes/pathways in the liver, which are responsible for generating programmed glucose
metabolism disorder.

2. Results

2.1. Dams

At weaning, body weight (22.1 ± 2.5 g vs. 22.8 ± 3.1 g, n = 8 per group) and fasting blood
glucose (5.9 ± 0.8 mmol/L vs. 6.1 ± 1.2 mmol/L, n = 8 per group) in mother mice were not affected
by chromium restriction. However, serum chromium concentrations were lower (p < 0.01) in the CR
(chromium-restricted diet) group (0.33 ± 0.04 ng/mL, n = 8 per group) than that in CD (control diet)
group (0.75 ± 0.12 ng/mL, n = 8 per group).

2.2. Pups

2.2.1. Serum Chromium Concentration

As expected, CD-CR (pups born from control diet dams were fed with chromium restriction diet
from weaning) and CR-CR (pups born from chromium restriction dams were fed with chromium
restriction diet from weaning) pups had lower serum chromium concentrations than controls (p < 0.01,
Figure 1a), whereas CR-CD (pups born from chromium restriction dams were fed with control diet
from weaning) pups caught up with controls at 32 weeks of age (Figure 1a).
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Figure 1. Serum chromium level (a) at week 32; body weight on birth day (b); week 3 (c); and week 
32 (d); food intake (e); fasting blood glucose (FBG) at week 3 (f) and week 32 (g); and blood glucose 
in oral glucose tolerance test (OGTT) (h) and blood glucose area under the curve (AUC) (i) in OGTT, 
fasting insulin (j) and homeostasis model assessment of insulin resistance (HOMA-IR) (k) at week 32 
in male offspring. CD, control diet; CR: chromium restriction. Each bar represents the mean ± SD. For 
(a,d,e,g–j), n = 8 per group; for (b,c,f), n = 16 per group. * p < 0.05, ** p < 0.01 

2.2.2. Body Weight and Food Intake 

Despite the birth weight and weaning weight being comparable in different groups, at 32 weeks 
of age, male offspring body weight in CD-CR, CR-CD, and CR-CR groups was higher than the  
CD-CD (pups born from control diet dams were fed with control diet from weaning) group (p < 0.05, 
Figure 1b–d). However, food intake was comparable among the four groups at 32 weeks of age 
(Figure 1e). 

Figure 1. Serum chromium level (a) at week 32; body weight on birth day (b); week 3 (c); and week
32 (d); food intake (e); fasting blood glucose (FBG) at week 3 (f) and week 32 (g); and blood glucose
in oral glucose tolerance test (OGTT) (h) and blood glucose area under the curve (AUC) (i) in OGTT,
fasting insulin (j) and homeostasis model assessment of insulin resistance (HOMA-IR) (k) at week 32
in male offspring. CD, control diet; CR: chromium restriction. Each bar represents the mean ± SD.
For (a,d,e,g–j), n = 8 per group; for (b,c,f), n = 16 per group. * p < 0.05, ** p < 0.01.

2.2.2. Body Weight and Food Intake

Despite the birth weight and weaning weight being comparable in different groups, at 32 weeks
of age, male offspring body weight in CD-CR, CR-CD, and CR-CR groups was higher than the
CD-CD (pups born from control diet dams were fed with control diet from weaning) group (p < 0.05,
Figure 1b–d). However, food intake was comparable among the four groups at 32 weeks of age
(Figure 1e).
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2.2.3. Fasting Blood Glucose and Glucose Tolerance

In postnatal week 3, fasting blood glucose level was comparable between CR and CD groups
(Figure 1f). In postnatal week 32, male CR-CR offspring had significantly higher fasting blood glucose
(p < 0.05, Figure 1g). The CR-CD regimen could not correct fasting blood glucose to normal levels
(p < 0.05, Figure 1g). Glucose tolerance was assessed by an oral glucose tolerance test in the offspring
at 32 weeks of age. Blood glucose was higher in the CR-CR group and in the CD-CR group before
and 30, 60, and 120 min after oral glucose gavage than that in the CD-CD group (p < 0.05 or p < 0.01,
Figure 1h). In the CR-CD group, blood glucose was higher than the CD-CD group before and 60 and
120 min after oral glucose gavage (p < 0.05 or p < 0.01, Figure 1h). Blood glucose area under the curve
(AUC) was higher in CR-CR, CR-CD, and CD-CR groups than the CD-CD group (p < 0.05, Figure 1i).

2.2.4. Fasting Insulin and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)

Fasting insulin and HOMA-IR were higher in the CR-CD group and the CR-CR group than that
in the CD-CD group (p < 0.05, Figure 1j,k).

2.2.5. Screening of Differentially-Expressed Genes

The CR-CD group was fed with a chromium-restricted diet only before weaning. To show
the effect of maternal chromium restriction on the gene expression in pup livers, we performed
a gene array in the CR-CD and CD-CD groups. Figure 2 shows the gene expression results in
the CR-CD group vs. the CD-CD group from the gene array (GEO database: GSE82028, http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=qrqlkmmqztejvqb&acc=GSE82028). We identified
463 significantly differentially-expressed genes, 264 up-regulated genes, and 199 down-regulated
genes in the CR-CD group, compared with the CD-CD group (fold change ≥ 1.5, p < 0.05). By using
hierarchical cluster analysis, differentially expressed genes were clustered into two groups (CR-CD
group and CD-CD group). This result suggested that gene expression showed a significant difference
between different groups.
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2.2.6. Pathway and Gene Ontologies (GO) Analysis

To systematically identify biological connections of differentially-expressed genes and identify
new pathways associated with maternal chromium restriction effects on offspring liver, we performed
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Data were categorized
into three independent gene ontology terms: Biological Process, Cellular Components, and Molecular
Function. In the Biological Process ontology, the major GO terms affected in the CR-CD offspring
compared with control offspring (p < 0.001) were transcription, regulation of transcription, and RNA
metabolic process (Table S1). KEGG pathway analysis comparing the CR-CD group against the CD-CD
group revealed eight pathways (p < 0.001). They are the Wnt signaling pathway, prostate cancer,
adherent’s junction, insulin signaling pathway, type 2 diabetes mellitus, endometrial cancer, pathways
in cancer, and thyroid cancer (Table S2). Differential expression genes in Wnt signaling and insulin
signaling pathway are shown in Figures S1 and S2.

2.2.7. Networks Analysis

By using String online software, 463 differentially expressed genes were mapped in one network
(Confidence Score = 400). In this network figure, 269 nodes with 737 joint-edges were included.
Forty-six nodes with more than ten joint-edges were considered as important functional molecules in
offspring liver affected by maternal chromium restriction (Figures S3 and S4), because they accounted
for 87.5% of function in all genes. Of these 46 genes, thymoma viral proto-oncogene 1 (Akt1), CREB
binding protein (Crebbp), catenin beta 1 (Ctnnb1), insulin 1 (Ins1), cadherin 1 (Cdh1), forkhead box O1
(FoxO1), androgen receptor (Ar), phosphatidylinositol 3-kinase, catalytic, alpha polypeptide (Pik3ca),
and jun D proto-oncogene (Jund) were ranked in the top 10.

2.2.8. Results of Real-Time PCR Verification

Since network analysis showed the insulin signaling pathway and Wnt signaling pathway were
in the center of all 463 differentially-expressed genes in the CR-CD group compared with the CD-CD
group, thirteen differentially-expressed genes in the insulin signaling pathway and Wnt pathway were
selected to perform real-time PCR. Real-time PCR results showed that trends in change of expression
for the selected 13 genes were consistent with the microarray results. Socs2, Tcf7l2, Wnt5a, Ctnnb1
(catenin, beta1), G6pc, Pck2 (Pepck), FoxO1, and Ptpn1 (Ptp1b) showed higher expression levels, and
lower expression in Akt1, Irs2, Pik3ca, Slc2a4 (Glut4), and Ins1 in the CR-CD, CD-CR, and CR-CR groups
than that in the CD-CD group (Figure 3, p < 0.01).
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Figure 3. Validation of differentially-expressed genes by real-time PCR. Socs2: suppressor of cytokine
signaling 2; Akt1: thymoma viral proto-oncogene 1; Irs2: insulin receptor substrate 2; Pik3ca:
phosphatidylinositol 3-kinase, catalytic, alpha polypeptide; Tcf7l2: transcription factor 7 like 2; Wnt5a:
wingless-type MMTV integration site family, member 5A; Ctnnb1 (catenin, beta 1): catenin (cadherin
associated protein), beta 1; FoxO1: forkhead box O1; G6pc: glucose-6-phosphatase, catalytic, Ins1:
insulin 1; Pck2 (Pepck): phosphoenolpyruvate carboxykinase 2; Slc2a4 (Glut4): solute carrier family
2 member 4; Ptpn1 (Ptp1b): protein tyrosine phosphatase, non-receptor type 1. CD, control diet;
CR: chromium restriction. n = 8 per group, ** p < 0.01.
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2.2.9. Western Blot

Total protein expression of IRS2 and SLC2A2 (GLUT2) was down-regulated, while WNT5A was
up-regulated more significantly in the CR-CD, CD-CR, and CR-CR groups than in the CD-CD group
(p < 0.01, Figure 4).
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3. Discussion

In this study, a chromium-restricted diet excluded 90% of chromium potassium sulfate from
the control diet (0.14 mg chromium/kg diet). The adequate intake for a human as recommended
by the National Research Council is 30 µg chromium/day. Although the dose we used is higher
than the human recommended minimum dose, this dose is the lowest chromium content in rodent
diets. Our results showed that a 29-week chromium-restricted diet (CD-CR group) led to obesity
and hyperglycemia in a mouse model. Previous studies revealed the key role of chromium as a
blood glucose and lipid regulator [17,18]. Both in a diabetic rodent model and patients, chromium
supplementation could improve glucose and lipid metabolism [11,19–21].

More importantly, we found that maternal chromium restriction (CR-CR group and CR-CD group)
did not change the birth weight of offspring. However, maternal chromium restriction increased
offspring body weight at 32 weeks of age. Even the body weight of CR-CD group, which was
converted to normal diet after weaning and had normal serum chromium levels, was higher than
the CD-CD group. These results demonstrated that a maternal chromium-restricted diet irreversibly
increased body weight. In other maternal undernutrition models, other scientists found similar results.
Kumar et al. found that offspring born to vitamin-B12 deficiency dams had a lower birth weight and
higher body weight from three months [22], and we found that the food intake among four groups were
comparable. This finding suggests that hyperphagia may not be the cause of obesity, but differences in
basal energy expenditure may contribute.

In addition, we found that maternal chromium restriction irreversibly led to glucose intolerance
in 32-week-old offspring. Inagadapa et al. also found that maternal chromium restriction increased
fasting plasma glucose (from nine months), and the area under the curve of glucose during oral glucose
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tolerance testing (from 15 months) in the offspring [16]. In our study, the mice from chromium-restricted
diet dams showed glucose metabolism disorder earlier than in Inagadapa’s results, which is partly due
to the lower chromium content that we used. Other maternal undernutrition diets, such as maternal
protein restriction, also leads offspring to impaired glucose tolerance [23].

Moreover, maternal chromium restriction irreversibly increased fasting insulin levels and
HOMA-IR. Previous study also found that maternal chromium restriction increased fasting insulin
(from 15 months) and HOMA-IR (from nine months). Rehabilitation could not correct this effect [16].
Other maternal mineral-restricted models also showed hyperinsulinemia and insulin resistance, such
as magnesium restriction. Moreover, pups which switched to the control diet from the magnesium
restriction diet after lactation or weaning had even higher serum insulin and higher HOMA-IR [24].
From our results, mice from maternal chromium restriction diets showed higher body weight and
insulin resistance. We cannot dismiss the contribution of obesity to insulin resistance. However, from
Inagadapa’s study, the early development of insulin resistance (from nine months) in male rats from
maternal chromium restriction could promote metabolic disorders that lead to increased adipose tissue
(from 18 months).

By using the STRING gene network and KEGG pathway analysis, we found that some genes
in the insulin signaling pathway were in the center of the gene function network. Real-time PCR
results showed that a maternal chromium restriction diet can inhibit the insulin signaling pathway,
such as insulin receptor substrate 2 (Irs2), phosphatidylinositol 3-kinase catalytic alpha polypeptide
(Pi3kca), and thymoma viral ptoto-oncogene (Akt1). Moreover, the total protein expression of IRS2 and
GLUT2 was also down-regulated by maternal chromium restriction. In the liver, insulin promotes
glucose uptake and suppresses hepatic glucose production by stimulating a cascade of signaling
processes initiated by the binding of insulin to extracellular α-subunit of the insulin receptor (IR)
on the cellular membrane. In the presence of insulin, IR phosphorylates insulin receptor substrate
(IRS), which are linked to the activation of the PI3K-Akt pathway, which is responsible for most of
the metabolic actions of insulin [25]. Ye et al. found hepatocytes in intrauterine growth restriction
(IUGR) rats with catch-up growth showing decreased Irs1 and Pi3k expression [26]. Chromium plays a
vital role in glucose regulation in vivo. Chromium picolinate can stimulate phosphorylation of IRS-1
and PI3K activity in the skeletal muscle of an insulin-resistant rat model, JCR: LA-corpulent rat [27].
Chromium (D-Pheylalanine)3 enhances insulin-stimulated phosphorylation of Akt in a time- and
concentration-dependent manner in adipocytes of ob/ob mice [28]. Our previous study also shows
chromium-containing drugs can improve blood glucose through activating insulin signaling [29].

Otherwise, we found maternal chromium restriction could activate the expression of G6pc, Pck2
(Pepck), and FoxO1 in offspring liver. FoxO1 can be phosphorylated through the activation of Akt.
Phosphorylated FoxO1 became inactivated. Thus, the phosphorylation of FoxO1 by Akt reduces its
entry into the nucleus. In the nucleus, FoxO1 could regulate the expression of G6pc and Pck2, which
are two key enzymes in hepatic gluconeogenesis [30]. In our study, maternal chromium restriction
impaired PI3K-Akt signaling, thus activating FoxO1, resulting in excess hepatic glucose production.
A maternal high-fat diet increased FOXO1 in islets of adult mice offspring [31]. A maternal vitamin
D-restricted diet activated FoxO1 in offspring islets [32]. Thus, our study showed that maternal
chromium restriction could stimulate hepatic glucose production in the livers of pups, contributing to
the fasting hyperglycemia.

Another interesting finding is that a maternal chromium restriction diet could increase the
suppressor of cytokine signaling 2 (Socs2) expression in the liver. The SOCS family can inhibit
cytokine-induced signaling pathway. They can also be a part of classical negative feedback loop [33].
The expression of SOCSs are upregulated in liver, skeletal muscle, and adipose tissue in insulin
resistance animal model [34,35]. More importantly, SOCSs can regulate insulin signaling through
mediating several molecules, such as IR and IRS [36]. Transferring Socs3 siRNA in hepatocytes from
IUGR rats with catch-up growth might mediate insulin signaling disorder [26].
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Moreover, in KEGG pathway analysis, Wnt signaling is at the topmost rank. We found that
mRNA expression of Ctnnb1 (β-catenin), Tcf7l2, and Wnt5a, and the total protein expression of
WNT5A, is up-regulated by maternal chromium restriction. The Wnt/β-catenin pathway has a
key role in embryonic development, cellular fate and migration, tumorigenesis, and organogenesis [37].
Wnt ligands can activate β-catenin through binding to membrane receptors. Activated β-catenin
transfers into nucleus. In the nucleus, β-catenin binds to T cell factor (TCF) to regulate the gene
expression. One cohort study in Japanese population found a single nucleotide polymorphism (SNP)
site in Wnt5b gene is correlative with risk of diabetes [38]. Transcription factor 7-like 2 (Tcf7l2) is
a unique gene which is a type 2 diabetes candidate gene in the TCF family [39]. More and more
studies highlight the role of the Wnt pathway in regulating glucose metabolism in several different
models. Wnt signaling may alter the activity of the kinase of Akt, thereby modulating insulin signal
transduction [40]. Liu et al. found that acute liver-specific deletion of β-catenin resulted in lower
fasting plasma glucose concentrations and improved glucose tolerance in high-fat diet mice [41]. Thus,
maternal chromium restriction could activate Wnt signaling in the livers of offspring to disturb the
glucose metabolism.

4. Materials and Methods

4.1. Study Design and Animals

All procedures were performed with the approval of the Animal Care Committee of the Peking
Union Medical Hospital Animal Ethics Committee (Project identification code: MC-07-6004, 15 March
2013), and all efforts were made to minimize suffering. Seven-week-old female and male C57BL mice
(18.4 ± 1.3 g) were purchased from the Institute of Laboratory Animal Science, Chinese Academy
of Medical Sciences and Peking Union Medical College (Beijing, China, SCXK-2013-0107). All mice
were maintained in individual cages in a room at 24 ± 1 ◦C with lights on from 6:00 a.m. to 6:00 p.m.
Mating was performed by housing females with adult males overnight, and pregnancy was confirmed
by examining vaginal smears for the presence of sperm. After mating, the females were randomly
divided into two groups and fed either the control diet (CD, casein-based diet based on the American
Institute of Nutrition AIN-93G diet, containing 1.19 mg chromium/kg diet) or a chromium-restricted
diet (CR, only reduced by 90 percent of chromium potassium sulfate from the control diet, containing
0.14 mg chromium/kg diet). The concentration of chromium in the diet was analyzed by an atomic
absorption spectrometer (TAS986, Beijing Persee General Corperation, Beijing, China). All diets were
produced by Research Diets (New Brunswick, NJ, USA). Mice were fed with this diet during the
pregnancy and lactation periods. After the birth of the offspring, the litter size in each cage was
randomly adjusted to six pups (three males, three females, if possible) to ensure equal nutrition until
the pups were weaned.

After weaning, offspring were separated into four groups: CD-CD group, CD-CR group, CR-CD
group, and CR-CR group. Only male offspring were used for the present study to avoid sex differences
on the effect of maternal nutrition on glucose metabolism [42]. At the end of the experimental period
(32 weeks of age), male mice (n = 8 per group) were sacrificed. A blood sample was collected from
the intraorbital retrobulbar plexus from the anesthetized mice (10 h fasted, ketamine 100 mg/kg i.p.,
Pharmacia and Upjohn Ltd., Crawley, UK). Livers of the offspring were quickly removed and stored at
−80 ◦C for further analysis. Figure 5 shows the feeding protocol.

4.2. Measurement of the Serum Chromium Level

Serum was obtained from the dams (n = 8 per group) at weaning and offspring (n = 8 per group)
at eight months of age for chromium analysis. The blood samples were collected in serum-separated
tubes to obtain serum. The coagulated blood was left to clot at room temperature for 30 min and
then centrifuged for 15 min at 2000 rpm at 4 ◦C. The supernatant fluid was then separated and stored
frozen (−80 ◦C) for analysis. For chromium determination, serum was diluted at a ratio of 1:4 in
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0.1% Triton-X 100 and 0.01 mol/L nitric acid. All laboratory glassware was soaked by nitric acid and
rinsed with deionized water to avoid metal contamination. The serum chromium concentration was
measured by an atomic absorption spectrometer (Atomic Absorption Spectrophotometer, Hitachi,
Japan). Chromium standard solution for the calibration curve (0, 0.1, 0.2, 0.5, 1, 2 ng/mL Cr) was
freshly prepared by serial dilution of the stock solution (100 ng/mL Cr) with 0.01 mol/L nitric acid.
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4.3. Measurements of Body Weight and Food Intake

Body weight of dams were measured at weaning. At birth, weaning and age of 32 weeks, all of the
pups were weighed. At 32 weeks of age, food intake was determined for each group by weighing the
total amount of food given at the start of the week and then subtracting the amount of food remaining
at the end of the week. The average food consumed per mouse was then obtained by dividing by the
number of mice.

4.4. Fasting Blood Glucose, Oral Glucose Tolerance Test (OGTT)

Blood glucose measurements from tail blood were recorded using a blood glucose analyzer (Bayer
Contour TS glucometer, Bayer, Hamburg, Germany). Oral glucose tolerance test was performed after
fasting of the mice overnight (32 weeks old). After collection of fasting sample (time 0), 2.0 g of
glucose/body weight was administered, and tail blood samples were collected at 30, 60, and 120 min
after glucose administration. The area under the curve (AUC) was calculated for blood glucose (BG)
during the OGTT using the following equation:

AUC = 0.5 × BG0 + BG30
2

+ 0.5 × BG30 + BG60
2

+ 1 × BG60 + BG120
2

4.5. Measurement of Serum Insulin and HOMA-IR

Mice were food-deprived overnight and serum was obtained to analyze insulin (ELISA,
Mouse insulin kit, Millipore, Bellerica, MA, USA) concentration according to the manufacturer’s
protocols. Insulin resistance was assessed from fasting plasma glucose and insulin concentrations by
computing the homeostasis model assessment of insulin resistance (HOMA-IR) values, according to
the following formula:

HOMA − IR =
Fasting insulin (µIU/mL) × Fasting glucose (mmol/L)

22.5
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4.6. RNA Extraction from Liver and Whole Liver Genome Expression Profiling

RNA was extracted from 250 mg of mice livers using an RNA Isolation Kit (mirVanaTM, Ambion,
San Paulo, Brazil). RNA quantity and quality were assessed by Nanodrop ND-1000 (Nanodrop,
Wilmington, DE, USA). The 260/280 ratios of all samples were between 1.95 and 2.10. The integrity
and quality of the RNA was assessed using the Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). All RNA integrity number (RIN) values were ≥7.3. To synthesize cDNA, 10 µL total RNA
was mixed with 4 µL Master Mix, 2 µL specific primers, and completed up to 20 µL with H2O.
The cycling conditions were: 25 ◦C for 5 min, 42 ◦C for 30 min, and 85 ◦C for 5 min. Then, the
Affymetrix GeneChip Mouse Gene 2.0 ST whole transcript-based array (Affymetrix, Santa Clara, CA,
USA) covering 26,515 genes, was used to analyze mRNA expression. Three microarrays each were
performed from the CD-CD group and the CR-CD group. All arrays were uploaded into Genespring
v 12.5 (Agilent Tchnologies, Palo Alto, CA, USA) for data normalization, quality control, and first-pass
analysis. Differentially-expressed genes were then identified through fold change, as well as p-value,
calculated with a t-test. The threshold set for up- and down-regulated genes was a fold change ≥1.5
and a p-value ≤0.05.

4.7. Pathway and Network Analysis

To clarify the function of differentially expressed genes and involved pathway, bioinformatics
analysis was performed. By using DAVID functional analysis tool (Database for Annotation,
Visualization, and Integrated Discovery [43], Leidos Biomedical Research Inc., Frederick, MD, USA),
differentially expressed genes were enriched into different gene ontologies (GO) [44] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [45]. Moreover, STRING Software (Biobyte
Solution, Heidelberg, Germany) [46] analyzed the connections among differentially expressed genes in
involved pathway.

4.8. Real-Time PCR Validation

Real-time PCR analysis of gene expression was performed in an ABI Prism 7500 system (Applied
Biosystems, Foster City, CA, USA). The primers used were obtained from Applied Biosystems (Table S3).
Target mRNA expression was normalized to CypA expression and expressed as a relative value using
the comparative threshold cycle (Ct) method (2−∆∆Ct) according to the manufacturer’s instructions.

4.9. Western Blot

Protein samples were prepared with lysis buffer (1% Triton X-100, 150 mmol.L NaCl, 10 mmol/L
Tris-HCL, pH 7.4, 1 mmol/L EDTA, 1 mmol/L EGTA, pH 8.0, 0.2 mmol/L Na3VO4, 0.2 mmol/L
phenylmethysulfonyl fluoride, and 0.5% NP-40). Lysates were centrifuged (13,000 rpm, 4 ◦C
for 10 min), and protein was quantified using Bradford staining (Bio-Rad, Hercules, CA, USA).
Equal amounts (50 µg per sample) of protein from each sample was applied to 10% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electrotransferred to polyvinylidene
difluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA), and then blocked in 5% skimmed milk
dissolved in Tris-buffered saline buffer (TBS; 10 mmol/L Tris, pH 7.5, 100 mmol/L NaCl) overnight
at 4 ◦C with the primary antibodies. The expression levels of IRS2 (IRS2 rabbit antibody, 1:1000, Cell
Signaling Technology, Danvers, MA, USA), GLUT2 (GLUT2 rabbit antibody, 1:1000, Cell Signaling
Technology, Danvers, MA, USA), WNT5A (WNT5A rabbit antibody, 1:1000, Cell Signaling Technology,
Danvers, MA, USA), and β-actin (as internal control, β-actin rabbit antibody, 1:1000, Abcam, Cambidge,
MA, USA) were determined using specific antibodies. Appropriated secondary antibodies conjugated
to horseradish peroxidase (1:3000, Cell Signaling Technology, Danvers, MA, USA) were incubated with
respective membranes for 2 h at room temperature. This was followed by five intermittent washes
with 1× TBS buffer. Visualization was performed with the use of enhanced chemiluminescence (ECL;
Cell Signaling Technology, Danvers, MA, USA). The results were quantified by densitometric analysis
using Image-J software (NIH, National Institute of Health, Bethesda, MD, USA). The experiments were
replicated three times.
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4.10. Data Analysis

The data are expressed as the mean and the associated standard deviation of the mean. Differences
between the groups were analyzed using one of the following tests: unpaired Student’s t-test, or
one-way ANOVA followed by Tukey’s post hoc test. A p-value ≤0.05 was considered statistically
significant (Prism version 5.0 for Windows, GraphPad Software, San Diego, CA, USA).

5. Conclusions

In summary, our data shows that adult mice from chromium-restricted dams display obesity,
hyperglycemia, and insulin resistance. More importantly, the insulin signaling pathway and Wnt
signaling pathway may be the underlying mechanisms that lead to glucose metabolism disturbance
(Figure 6). These results are important for the understanding of the glucose metabolism disorder
caused by chromium restriction during the embryonic and suckling period. Our study points to
the need for prevention of diabetes and the consumption of chromium-restricted diets during this
important period for the development of the glucose metabolic balance in later life. Novel drugs
targeting insulin signaling and Wnt signaling pathways are expected to prevent and intervene in the
glucose metabolism disease programming to reduce the global burden of diabetes.
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Figure 6. Schematic representation of maternal chromium restriction on the insulin signaling
pathway and β-catenin-dependent Wnt pathway. In the Wnt pathway, maternal chromium restriction
activates offspring liver β-catenin through Wnt, resulting β-catenin enters the nucleus. In nucleus,
β-catenin binds to T cell factor/lymphoid enhancer factor (TCF/LEF) to activate target genes.
In the insulin signaling pathway, maternal chromium restriction inhibits insulin receptor substrate
(IRS)/phosphatidylinositol 3-kinase (PI3K)/Akt/protein kinase B (PKB) signaling pathway, enhancing
the expression of G6PC and PEPCK to increase hepatic glucose production. Black arrows show
the interaction of genes. T–bars show the inhibition of genes. Red arrows show upregulation
of genes. Green arrows show downregulation of genes. SOCS: suppressor of cytokine signaling;
Akt: thymoma viral proto-oncogene; IRS: insulin receptor substrate; PI3K: phosphatidylinositol
3-kinase; TCF/LEF: transcription factor/lymphoid enhancer factor; FOXO1: forkhead box O1; G6PC:
glucose-6-phosphatase, catalytic; GLUT2: glucose transporter 2; PTP1B: protein tyrosine phosphatase,
non-receptor type 1.
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