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provide a unifi ed framework to answer a diverse set of daunting 
problems (see Table 1 in Supplementary Material).

The indirect evidence for the tight relationship between AP 
timing and SMO derives from observations of high correlation 
between extracellular APs and LFP. High coherency between APs 
and LFP oscillations is predominant at the gamma and theta fre-
quency bands in the awake brain (Bragin et al., 1995; Chrobak and 
Buzsaki, 1998; Kamondi et al., 1998; Womelsdorf et al., 2007), and 
phase lock between APs and high frequency LFP occurs during 
slow wave sleep (Buzsaki et al., 1992; Chrobak and Buzsaki, 1996; 
Cisse et al., 2007). Gamma and theta oscillations also phase lock 
in the hippocampus and in the entorhinal cortex during active 
exploration of the environment and processing of sensory input 
(Chrobak and Buzsaki, 1998; Robbe et al., 2006). At the same time, 
APs phase lock with gamma oscillations (Chrobak and Buzsaki, 
1998). Moreover, gamma band LFP and AP coherence has been 
found to be sensitive to motor task (Mehring et al., 2003) and pre-
paratory activity during working memory (Pesaran et al., 2002) 
and related to selective visual attention (Fries et al., 2008). The 
autocorrelogram of multiunit activity in visual cortical areas of 
the cat is strongly modulated at 40–60 Hz and correlates with the 
gamma LFP, suggesting a functional link between AP generation 
and gamma oscillations (Gray and Singer, 1989). The multiunit–
multiunit and the multiunit–LFP coherences are both increased 
during visual stimulation in the gamma (Womelsdorf et al., 2007) 
and during decision making in the beta frequency bands (Pesaran 
et al., 2008). Although AP-LFP phase coherency has been observed 
within the low-frequency LFP bands in the primary visual cortex 
of anesthetized primates (Montemurro et al., 2008), the feature-
dependence of AP-LFP coherency in primary sensory areas is yet 
to be investigated. Notably, APs phase lock to 20–40 Hz LFP in the 
primate somatosensory cortex (Murthy and Fetz, 1996). The major-
ity of pyramidal cells fi re at the trough of the theta cycle and align to 
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INTRODUCTION
Whatever code neurons use for encoding, transferring, and  decoding 
sensory information in the central nervous system (CNS) must 
be robust to a number of compromising factors. The integrity of 
the information transferred in massively parallel pathways of the 
brain is highly sensitive to distortions from different conduction 
delays (Rockland et al., 1997) and from intrinsic correlations due 
to the divergence and convergence of axonal projections (de la 
Rocha et al., 2007). Nevertheless, neuronal responses are increas-
ingly specifi c to objects and progressively invariant with respect 
to incidental physical features, the times of occurrences, and the 
spatial locations of stimuli as we follow the activation from the 
sensory neurons through the primary sensory and ultimately to 
associational cortical areas. The high specifi city of neuronal rep-
resentations in higher cortical and associational areas relies on an 
unknown mechanism that enables the generation of action poten-
tials (APs) in the same neuron consistently and independent of its 
neighbors (“sparse coding”) (Quiroga et al., 2005). This requires 
precise coincidences of membrane depolarization with the arrival 
of excitatory postsynaptic potentials (EPSPs) at the level of indi-
vidual neurons (Abeles, 1982). I investigated through numerical 
simulations whether the phase of APs relative to the intrinsic sub-
threshold membrane potential oscillations (SMOs) could encode 
and retain information with high spatial and temporal selectivity. 
Our model relied on two basic assumptions: fi rst, that the timing of 
AP initiation is dependent on the phase of the SMO (Llinas et al., 
1991); and second, that SMO is nearly synchronized with a phase 
gradient across a local population of neurons (Benucci et al., 2007; 
Bringuier et al., 1999; Grinvald et al., 1994; Prechtl et al., 2000). To 
relate the second assumption to empirical data, we further assumed 
that the SMO correlates with local fi eld potentials (LFP, Buzsáki 
et al., 2003; Lagier et al., 2004; Leung and Yim, 1986). The results 
derived from the model are consistent with empirical data, and they 
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the gamma (Bragin et al., 1995), and specifi c types of  interneurons 
also phase lock to gamma (Tukker et al., 2007). Moreover, pyrami-
dal cell fi ring in the hippocampus and entorhinal cortex of rodents 
also express a progressive theta phase precession consistent with 
the animal’s position relative to the place fi eld (O’Keefe and Recce, 
1993) leading to the proposal that the AP phase relative to theta may 
encode the precise location of the animal (O’Keefe and Burgess, 
2005; O’Keefe and Recce, 1993; Skaggs et al., 1996). All previous 
models of hippocampal phase coding assumed that phase preces-
sion is generated inside of the hippocampus as a result of inter-
action between two slightly different frequency theta oscillations 
(Blair et al., 2008; Lengyel et al., 2003; O’Keefe and Burgess, 2005); 
phase precession originating from the phase-coded sensory input 
and imposed on the hippocampus by the entorhinal cortex has not 
yet been proposed. Likewise, oscillatory interference models, relying 
on multiple oscillators, were proposed to explain grid cell behav-
ior in the entorhinal cortex (Burgess, 2008; Burgess et al., 2007). 
However, as we show, coincidences of phase-modulated sensory 
input with a single propagating oscillation fi eld are able to generate 
grid topography without further assumptions.

The mechanism by which local SMOs synchronize and gener-
ate coherent LFP relies on inhibitory interneurons (Lagier et al., 
2004; Soltesz and Deschenes, 1993; Traub et al., 1996). To simplify 
terminology, we refer to LFP as the extracellular indicator of SMO; 
however, the performance of the model does not depend on the 
equivalence of LFP and SMO.

The aim of this study is twofold. First, we present a model that 
explains how feature-dependent phase coding may be employed in 
sensory information processing. Second, we investigate potential 
benefi ts of phase coding through examples, including generaliza-
tion of 1-D phase coding to 2-D fi elds, information compression, 
selective reconstruction from combined representations, retaining 
stimulus invariants, and spatio-temporal transformations.

MATERIALS AND METHODS
COMPUTATIONAL MODEL
The core computational model consists of three layers, an input 
layer, a transformation layer, and an output layer. Each layer con-
tains n neurons arranged in a 1-D array or a 2-D grid structure. 
The sensory input (1-D or 2-D) maps to the fi rst layer. The fi rst two 
layers are connected through n one-to-one unidirectional connec-
tions. In contrast, the second and third layers are connected through 
a single channel. Thus, the complete architecture is an n-to-n to 
one-to-n feed-forward network. For the sake of simplicity, we fi rst 
consider a 1-D array of neurons to introduce the basic operations, 
and then we demonstrate that these operations are applicable to 
a 2-D grid as well.

I modeled neurons as deterministic state machines with binary 
AP or non-AP states and a real-valued baseline function ϕ(t) repre-
senting the voltage of the SMO. The state of each neuron is defi ned 
by the combination of these two parameters. Although time is a 
continuous variable in the model, for numerical simulations we 
applied a discrete timescale ∼0.2 ms (Tγ = 0.01).

We denote ϕ
i
(t) as a wave function with frequency γ and 

period T = 1/γ corresponding to each neuron’s SMO. We assume 
that ϕ

i
(t) is coherent among the neurons of a given layer with a 

constant phase offset d
i
ΔΦ proportional to the distance of the 

 neurons from the origin of the oscillation (d
i
), like a  propagating 

wave

ϕ
i
(t) = ϕ

0
(t + d

i
ΔΦ), (1)

where ΔΦ has units of time/distance. For an n-dimensional grid 
of neurons (n = 1, 2, 3), this phase gradient causes the neurons to 
express a coherent but phase-shifted n-dimensional oscillation fi eld, 
where the phase difference between grid points is proportional to 
the difference between their distances from the center of oscillation 
(Figure 2E). At grid points where the phase difference reaches 2π, 
neurons have a zero phase-lag difference. The phase gradient starts 
to increase from homogeneously distributed centers and attenuates 
at the edges where spreading oscillations derived from adjacent 
centers meet (Benucci et al., 2007; Rubino et al., 2006).

The sequence of events from encoding to decoding are as 
follows:

(1) Encoding phase (layer 1): First we generate a 1-D input pat-
tern S, a stimulus vector of length n representing the intensity 
of the stimulus acting on each of the respective n neurons 
(Figure 1 stage 1). We now defi ne A as the pattern of APs 
induced by S. A is an n × n binary matrix with elements a

i,t
, 

representing the time t at which each neuron i receives an 
input, that is computed by converting the intensity vector S 
to a latency vector such that a higher intensity input induces 
a shorter latency AP (Figure 1 stage 2) (Hopfi eld, 1995).

a
i,t

 = f(s
i
) (2)

 The function f assigns each input value s
i
 to a time t

i
, 

where

t
si

i

n=
⋅γ

 (3)

and γ is the frequency of SMO. The role of n is to scale the AP 
times to encompass multiple SMO periods. Importantly, the 
exact function in Eq. 2 does not matter as long as the latency 
is a monotonic function of the s

i
 input. Moreover, it does not 

matter whether the input is sensory or it was derived from 
another brain region; the model is only concerned with the 
pattern of APs that is induced by S.

(2) Transformation phase (layer 2): Now, we defi ne A′ as the 
gamma-aligned pattern of APs in A. More precisely, A is 
transformed into A′ by delaying each AP until the neuron 
reaches the local maximum of its SMO. As a result, each i-th 
neuron generates an AP at a peak of ϕ

i
(t). We implement this 

delay by aligning each binary AP event to the peak of the 
respective neuron’s intrinsic oscillation ϕ

i
(t) (Eqs. 4 and 5).

′ =a ai i ti, ,τ  (4)

where

τ ϕ ϕi i i t= [ ]( )−1 max ( )  (5)

and max is defi ned as the next local maximum of ϕ
i
(t) after 

the time of the received input a
i,t

. Here ′ai i,τ  are the elements of 
A′, a matrix with binary elements, where columns correspond 
to 0.1 ms time bins and rows correspond to specifi c neurons. 
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  At the same step, C was “cloned” to n copies and fed into 
the next layer of n neurons.

c
j
 = C,  (7)

where j = {1,…,n}. The information in C is transferred from 
the input layer to the target layer. Since all the information 
from the input layer neurons is collapsed into a single channel 
(stage 3), this information is vulnerable to errors deriving from 
different conductivity delays. Therefore, a redistribution of C 
over multiple channels is necessary to increase redundancy 
for error correction.

(4) Reconstruction (layer 3): The fi nal step is reconstruction. 
Here the task is to create a matrix A″ by assigning each indi-
vidual AP in C to a neuron such that there is a topographic 
mapping between A and A″, consequently recovering the ori-
ginal spatio-temporal structure of APs from the compressed 
code. To do so, we simultaneously broadcast the c

j
 copies to 

each k-th neuron (k = {1,…,n}) in the target layer. Neurons in 
the target layer will only generate APs if the input c

jt
 coincides 

with a peak of their membrane oscillation ϕ
k
(t) within a pre-

cision of Δτ (Figure 1 stage 4 and Movie 1 in Supplementary 
Material). Given that the gamma phase gradients are iden-
tical between the source and the target (but see Figure 1 in 
Supplementary Material), these coincidences must occur in 
neurons at the same grid position within the target layer as 
the grid position of neurons stimulated in the input layer. 
Consequently, the topography and timing of the coinciden-
ces between the C and the SMO, which generates the APs at 
the target layer, will reproduce the topography and timing of 
the input APs. To implement this, we defi ne a matrix B with 
n × T/Δτ binary elements, where 1-s represent the positive 
peaks of SMO and 0-s represent all other voltage values, with 
a Δτ precision:

bi
it d

,

, ( , )

,τ

γ
=

=⎧
⎨
⎩

1 0

0

if mod 

otherwise,

+ ΔΦ
 (8)

where b
i,τ represents the binary state of the i-th the neuron at τ 

time. Since the input layer SMO is identical to the target layer 
SMO, it is necessary that the intersection A″ of B and C:

A″= B ∩ C (9)

will reproduce the original matrix A′ (Figure 1 stage 4). The 
output pattern A″ can be transferred as input to other target 
areas. Equation 9 will be referred to as the “interference opera-
tor”, and Equations 8 and 9 as the “interference principle”.

SELECTIVE RECONSTRUCTION FROM COMBINED PHASE CODES
Let us defi ne input images SA and SB and encode them separately 
as Aα and Aβ. Next, align Aα and Aβ to fi eld gradients ΔΦα and 
ΔΦβ, respectively, and compress the aligned A″α and A″β matrices 
into corresponding Cα and Cβ representations. Next, we combine 
the two compressed representations as Cγ by simply merging and 
sorting the AP times in ascending order:

Cγ = Cα ∪ Cβ. (10)

FIGURE 1 | Flow chart of information encoding and reconstruction. 

Stages are numbered at the left from 1 to 4. (1) Input: An intensity-modulated 
signal is presented to the input of the neurons and encoded as an AP latency 
vector (ai,t) (Gollisch and Meister, 2008). (2) Source Area: The latency encoding 
AP vector, when interacting with a propagating fi eld of local oscillations, 
becomes aligned to the nearest SMO peaks (a′i,t). (3) Projection: The SMO-
aligned AP vector is collapsed into a single AP stream via convergent 
connections. At the same stage, the AP vector is distributed via divergent 
connections (not shown), and identical AP trains are transferred to the next 
stage (ct) (Dan et al., 1998). (4) Target Area: this area receives identical copies 
of the AP vector through parallel pathways. When APs interfere with the local 
waves of SMO, a single input AP evokes a single output AP only in neurons 
where the input AP coincides with the peak of the local SMO. Provided that 
the SMOs have the same voltage gradient at the input and target areas, it is 
guaranteed that the coincidence pattern will reconstruct the original spatio-
temporal pattern of the input (a″i,t). Output: As a result, the output AP vector 
reliably reproduces the phase aligned input vector.

A “1” in position ′ai i,τ  represents an AP for neuron i at time t 
while a “0” represents the lack of AP (Figure 1 stage 3).

(3) Transfer (layer 2–3): Then A′ is collapsed into an array C by 
summing across all neurons for each time bin.

c at i
i

n

i
= ′

=
∑ ,τ

1

 (6)

Since the sum is a binary function, C contains the APs derived 
from all neurons with their original time stamps. Although the 
neuronal specifi city is lost in the sum, the precise timestamps of 
APs unambiguously relate the individual APs to specifi c loca-
tions through their phases. Thus, the spatial information is 
retained by the relative phases of APs (Figure 1 stage 3).
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Given that ϕα(t) has a phase gradient ΔΦα and ϕβ(t) has a 
phase gradient ΔΦβ, the two different SMO fi elds must be able 
to  selectively reconstruct the two AP patterns, A″α and A″β, both 
retaining the main features of A′α and A′β, respectively:

A″α = Bα ∩ Cγ (11)

and

A″β = Bβ ∩ Cγ. (12)

With simulations (Figure 5) we demonstrated that given 
ΔΦα ≠ ΔΦβ, A′α can be recovered from the interference of Bα and Cγ 
without confusion with A′β. Likewise, matrix A′β can be recovered 
from the interference of Bβ and Cγ without confusion with A′α.

This mechanism provides the capacity to combine information 
from different sources within the same target layer and selectively 
recall them by different SMOs.

NUMERICAL IMPLEMENTATION OF THE MODEL
Numerical simulations were implemented using Matlab (Mathworks 
Inc., Natick, MA, USA). For the numerical implementation, instead 
of simulating spiking neurons with incremental time, we computed 
the state of all neurons in time at once using matrix operations. 
We remark that it was unnecessary to introduce a spiking neuron 
model since all the state transitions were deterministic and the 
interactions were linear. Thus, the state changes of neurons, i.e., 
the AP times, at a given layer as a function of the state changes at the 
subordinate layer were analytically solvable. Therefore, numerical 
simulations were performed by computing the complete AP time 
vectors as a function of the AP time vectors in the previous layer 
instead of deriving the membrane voltage V

t
 at every time step 

recursively from V
t−1

.
Architecturally, the neuronal network consisted of three lay-

ers: input-layer, projection-layer and output-layer. The input layer 
contained n or n × n neurons, individually assigned to each pixel of 
the input image. We implemented the algorithm on feed-forward 
networks using three types of projections between layers: (i) A 1-D 
vector of n values (input vector) was projecting to a 1-D array of 
n input-layer neurons, which were connected through projection 
neurons to the same number of output-layer neurons. The connec-
tivity between the values of the input vector and input-layer neu-
rons was one-to-one; between the input-layer and projection-layer 
was n-to-one; between the projection-layer and output-layer was 
one-to-n. (ii) A 2-D input image, digitized as n × n pixels, projecting 
on a 1-D array of n2 input-layer neurons. The architecture from 
the input-layer to the output-layer was similar as in (i), however, 
the output was visualized in 2-D to compare the reconstructed 
pattern with the input image. (iii) A 2-D (n × n) input matrix was 
projecting on a 2-D grid of n × n input-layer neurons by emulating 
“receptive fi elds”. For this, the input matrix was partitioned into n 
subfi elds and the input-layer neurons were arranged into n non-
overlapping groups that processed the n input subfi elds separately. 
Likewise, the output-layer neurons were arranged into n number 
of groups, emulating a topographical projection from the sensory 
organ to a primary sensory cortical area. The precise connectivity 
pattern between the input matrix and input-layer group was repeat-
ing across the groups but it was varied from simulation to simula-
tion (see next paragraph). All neurons from a given group were 

 converging on a single projection neuron, which in turn,  terminated 
on all the neurons of a given output-layer group. Thus, each input-
layer group was interfacing with the corresponding output-layer 
group through a single projection neuron.

Operatively, the input was either a 1-D (n) or a 2-D (n × n) 
matrix mapped to the input-layer neurons. The correspondence 
between the input matrix elements and the input-layer neurons 
was one-to-one. The 1-D simulations always used random vec-
tors as input with the range of values from 0 to 2π and transferred 
to n neurons. As input to the 2-D simulations, we used a set of 
digitized images, including photos of people, animals, complex 
structures of rubber bands and grid patterns. They were selected 
to test the accuracy and geometric preservation of the recon-
struction. Images were digitized with 256 × 256 pixel resolution 
and converted to grayscale. We down-sampled them to fi t to the 
neuronal grid with a square geometry (16 × 16, 18 × 18, 32 × 32, 
36 × 36, 60 × 60) and input them to the neurons. The input layer 
contained n or n × n neurons, individually assigned to each pixel 
of the input image. As described earlier, the  projection-layer was 
different for the 1-D and 2-D network. For a 1-D solution, the 
projection-layer contained only one neuron (one channel). All 
the APs from the n input layer neurons were collapsed into a 
single channel, serving as a projection neuron. For the n × n 
solution, the projection layer contained n neurons (channels), 
thus the n × n grid of input layer was broken down into m sub-
fi elds (receptive fi elds) and the APs from all the input neuron 
of a given subfi eld were collapsed into a single channel. The 
combined m channels served as a projection pathway. All the 
neurons at a given subfi eld of the output layer received a common 
input from a single projection neuron, containing the combined 
activity from the input subfi eld. Different mappings between 
the input and input-layer neurons were implemented by con-
nection patterns, emulating different receptive fi eld geometries 
(for details on modeling different receptive fi eld architectures, 
see Supplementary Material).

The SMO was modeled by sinusoids. The phase gradient was 
either linear, emulating a propagating wave with a constant time lag 
of SMO between neighbor neurons, or non-linear, emulating oscil-
lations deriving from randomly dispersed sources (for details on 
constructing non-linear SMO fi elds, see Supplementary Material 
below). APs were modeled as binary events. The duration of these 
events was the smallest time unit of the simulation (Δτ), defi ned as 
a constant fraction of π, the half period of the SMO. Alignment to 
the nearest SMO peak was implemented by reassigning each AP to 
the nearest subsequent peak of SMO. Combining before transfer-
ring APs via the projection neurons was done by concatenating 
the AP time series. Coincidences at the output layer were detected 
when the latency difference between the incoming AP pulse and 
the peak of local SMO is < Δτ. APs were assigned to neurons of 
the network where coincidences occurred. The output was the 
temporal pattern of APs on the grid of n × n neurons, converted 
to an image by an inverse of the image conversion applied to the 
image when it was converted to a temporal pattern. To quantify 
the effi ciency reconstruction, we computed Pearson’s correlation 
coeffi cients on the AP times between the input patterns and output 
patterns, neuron-to-neuron, as well as between the SMO-aligned 
input patterns and the output patterns. The implementation 
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of the algorithm for numerical simulations is described in the 
Supplemental Computational Methods. Demo codes written in 
Matlab are available at the following URL: http://www.vis.caltech.
edu/∼zoltan/mcodes/phasecode.tgz

ALGORITHM AND BIOLOGICAL MOTIVATIONS
The model that we introduce explains how oscillations might be 
used in the brain to coordinate APs to encode and reconstruct 
information between distant cortical areas. First, we distinguish 
four information processing stages and corresponding neuronal 
layers representing the results of each stage (Figure 1): (1) Input 
layer: latency encoding; (2) Source layer: gamma alignment; (3) 
Projection: compression and distribution, (4) Target area: recon-
struction. The output of the target area may serve as an input to a 
connected area. The input layer may represent a group of  sensory 
neurons or a group of cortical pyramidal cells. Postsynaptic to 
these neurons are neurons that encode the input and exhibit 
intrinsic SMO. Postsynaptic to encoding neurons are the pro-
jection neurons, such as sensory ganglia or long-range cortico-
cortical connections. Postsynaptic to projection neurons are the 
target neurons, such as cortical layer-4 granule cells or layer 2–3 
pyramidal neurons, which are the ultimate targets of sensory or 
cortico-cortical projections.

Each neuron was described by its grid location and layer, its 
connections, and its state. The state was defi ned by three vari-
ables: a continuous oscillating membrane potential implement-
ing the SMO of the soma, a binary input, and a binary output, 
corresponding to AP or no AP. The probability of generating an 
AP was dependent on the input state and the actual SMO, which 
determined how close the membrane potential was to the thresh-
old. In the absence of input, the membrane potential remained 
subthreshold, by defi nition. The SMO for each neuron was mod-
eled by a sinusoid, and the grid of neuronal SMOs formed a 2-D 
fi eld (SMO fi eld) with a common frequency and a uniform phase 
gradient between adjacent neurons. Thus, the SMOs of neighbor-
ing neurons were near-synchronized, with a distance dependent 
phase delay, mimicking a spreading wave (Benucci et al., 2007; 
Bringuier et al., 1999; Grinvald et al., 1994; Prechtl et al., 2000). 
Each neuron generated an AP when the input, received from a 
presynaptic neuron (i.e., from an earlier stage), coincided with the 
neuron’s own local SMO maximum, where the neuron’s membrane 
potential is nearest threshold. We implemented a task in which 
these neurons encode and reconstruct an image using exclusively 
a feed-forward architecture in four steps corresponding to the four 
stages. For the sake of simplicity, we fi rst illustrate these steps on a 
1-D example, after which we extend it to 2-D examples using real 
images (see Section “Results”).

Encoding
First we generate a 1-D input pattern S that represents intensity 
values of an image (Figures 2 and 3A). Each element of the S vector 
is assigned to the input of a neuron. Next, we compute the neuronal 
responses to S. We employ a latency encoding scheme (Gollisch 
and Meister, 2008; Hopfi eld, 1995), which converts the intensity 
values to AP latencies, inversely proportional to the intensity of 
stimulus component, generating a spatio-temporal activity vector A 
(Eqs. 2 and 3).

Gamma alignment
The latency-encoded pattern A is transferred to the next layer of 
neurons exhibiting a coherent fi eld of SMOs. The SMO fi eld con-
sists of local oscillations spreading through the grid of neurons 
as a linear or radial wave with a neuron-specifi c phase gradient 
(Eq. 1). A neuron of this layer generates APs only when the sus-
tained input from a neuron at the previous layer coincides with its 
own next SMO maximum. As a result, the temporal pattern of A is 
transformed in an SMO aligned pattern A′ (Eqs. 4 and 5). Since we 
considered gamma oscillation as one of the main frequency com-
ponents of local SMOs, we refer to this operation as “gamma align-
ment” (Figures 1 and 2B), though phase coding does not depend 
on the frequency of SMO. Note, that with gamma alignment this 
model is critically different from synfi re chain (Abeles, 1991) and 
AP-latency encoding (Hopfi eld, 1995). Gamma alignment is pos-
sible through rapid spike-time-dependent-plasticity (Bi and Poo, 
1998; Cassenaer and Laurent, 2007; Markram et al., 1997).

Compression
A′ is then collapsed across all neurons into one AP sequence C by 
eliminating the neuronal identity (Figures 1 and 2C, and Eq. 6). 
This AP sequence represents all the APs pooled across all of the 
neurons. Pooling can be implemented by convergent feed-forward 
synaptic connections on a single neuron. Although neuronal identi-
ties are seemingly lost by collapsing APs over neurons, the spatial 
origin of the AP is still referenced by the timing, which associates 
the AP with the original location of the neuron through the gamma 
alignment. A phase difference of the local SMO, to which the AP 
is aligned, is preserved by the small latency differences between 
APs after collapsing them. The resulting new sequence is “com-
pressed” because information from all neurons were collapsed 
into a single sequence of APs of the same duration, and “compact” 
because it contains all the information about A′, including time 
and location.

Distribution
At the same stage, the collapsed AP vector is copied over the same 
number of projection neurons as in A (Eq. 7). Compression and 
distribution are accomplished in a single step within a feed-for-
ward network by convergent and divergent synaptic connections, 
respectively. As a result, all APs from the original A′ pattern are 
represented in all the projection neurons by pattern C, with a 
redundancy (Figures 1 and 2C). These packets of C patterns can 
be broadcasted to many neurons simultaneously or exchanged 
between distant cortical areas. Since all projection neurons carry 
the same AP sequence, any of them is able to broadcast the complete 
information indiscriminately to any brain area. Notably, after com-
pression the information content is no longer sensitive to different 
conduction delays. Errors deriving from differential conduction 
delays are self-corrected by synchronization of APs in crossed-over 
feed-forward pathways, typical in thalamo-cortical, callosal and 
long-range associational projection systems.

Reconstruction
This is the fi nal stage where the original information A′ (the gamma-
aligned representation of A) is reconstructed from the pattern C 
as input to this layer. The parallel pathway of projection neurons 



Frontiers in Systems Neuroscience www.frontiersin.org July 2009 | Volume 3 | Article 6 | 6

Nadasdy Phase coding

broadcasts the complete C input to each neuron at the target layer, 
such as layer 4 of the cerebral cortex. The target layer neurons also 
express an SMO fi eld similar to the one at the input layer. Here, 
we apply a principle similar to the input layer, except a neuron 
only generates APs if the input coincides with the neuron’s SMO 
maxima within a Δτ time window (Figures 1 and 2D). Such coinci-
dences between the input and the local SMO occur only in selected 
neurons, which are located at the same grid positions as the active 
input-layer neurons (Movie 1 in Supplementary Material). Since 
the relative timing of AP is preserved, the coincidences reproduce 
the original A′ pattern due to the “interference principle” (Eqs. 8 
and 9). Therefore, to achieve a near perfect reconstruction, it is 
assumed that the SMOs at the input layer and the target layer share 
similar spatial and spectral properties, including the frequency and 
phase gradient topography (but see isomorphic reconstruction and 
Figure 1 in Supplementary Material). Since the interference occurs 
at selected neurons, the input pattern C will activate a sparse set of 
neurons, with topographic positions similar to the original neurons. 
Therefore, it is necessary that the reconstructed pattern A″ resemble 
closely to the gamma-aligned original pattern A′ and consequently, 
the original pattern A as well. The reconstructed pattern can be 
combined with patterns deriving from other input structures and a 
new cycle of encoding, gamma-alignment, compression and recon-
struction is initiated that propagates the now combined representa-
tion to a different brain area (Figure 5).

RESULTS
For the sake of simplicity and algorithmic clarity, we fi rst used a 
1-D encoding and reconstruction example. A vector containing 
16 random real numbers from 0 to 1 was used as the input to the 
network. Next, this input was converted to latencies within the 
range of eight SMO cycles (Figure 2A). This pattern was aligned to 
the neurons’ own SMO which slightly altered the precise temporal 
pattern of APs relative to the original latency code (Figure 2B). 
This spatio-temporal pattern was collapsed into a single AP train 
by removal of the spatial dimension. At the same time the result-
ing AP string was distributed over 16 neurons which transferred 
the code from one brain structure to another with redundancy 
(Figure 2C). One of these AP strings was applied as input to a 
target network, consisting of 16 neurons. In addition to the input, 
we rendered each neuron with an SMO that shared the same phase 
gradient and frequency as the SMO fi eld at the input layer. Although 
each individual neuron received the same AP sequence as input, 
due to the interference principle (Eqs. 8 and 9) only those APs that 
“precisely” coincided with the neuron’s own SMO were effective in 
generating output APs (Figure 2D). We quantify the precision of 
coincidence later. As a result the ouput-layer neurons reproduced 
the spatio-temporal pattern of the original gamma-aligned input 
with high fi delity.

To demonstrate the algorithm in 2-D we used a set of gray-
scale images sampled at neuron resolution and projected them 
on the input-layer neurons so that each neuron processed one 
pixel, allowing no interactions between neurons of the same layer 
(Figure 3). By varying the precise projection between the image 
pixels and neurons we were able to test different receptive fi eld 
confi gurations (see Supplementary Material on modeling differ-
ent receptive fi eld architectures). Each set of input-layer neuron 

processed the  receptive fi eld independently throughout the four 
stages, and at the end, the reconstructed patterns were combined 
from each set. Finally, AP latencies were converted to grayscale 
values (Figures 3A,E). The close resemblance of the output image 
to the original implies that most of the information encoded from 
the input were correctly recovered from the phase of APs alone, 
thus phase coding is effi cient.

BIOLOGICAL SIGNIFICANCE OF MODEL PARAMETERS
The effi ciency of reconstruction was sensitive to a number of param-
eters, including the connectivity, the input size, the density of neu-
rons, the SMO oscillation, and the time window of coincidence. The 
operative range of these parameters must be consistent with that 
measured in the living brain in order for the model to be biologi-
cally relevant. To understand how these parameters infl uence the 
reconstruction effi ciency, we performed simulations. The independ-
ent variables were the number of neurons, the number of gamma 
cycles (i.e., the duration of reconstruction), the temporal resolution 
Δτ (equivalent to the time window of coincidence), the phase gra-
dient ΔΦ of gamma oscillation, the connectivity pattern, and the 
complexity of receptive fi elds (the number of pixels covered). The 
dependent variable was the reconstruction effi ciency, quantifi ed as 
the pixel-to-pixel Pearson’s correlation coeffi cients either between 
the original image A and the reconstructed image A″ (r = r

A, A″) or 
between the gamma-aligned image A′ A″ (r′ = r

A′, A″).
First, r and r′ were tested against combinations of number of 

neurons and number of gamma cycles. The reconstruction effi -
ciency is expected to inversely scale with the number of neurons 
since the more neurons’ APs are combined in a single projection 
neuron, the more confusion occurs due to spurious interferences 
(aliasing errors). A few gamma cycles were expected to be suf-
fi cient to reconstruct the most of the information and certainly 
less gamma cycles than neurons are necessary. The steep expo-
nential function [f(x) = 22.45 × x0.3 − 13.83; R2 = 0.99; root mean 
square = 0.78] of the signifi cant correlations (six cycles over the 
increase of 800 neurons) suggests that as few as 64 neurons and 
three to four gamma cycles (75∼100 ms) were suffi cient to retain 
the information with r > 0.9 (Figure 4A); consistent with the reac-
tion time across species.

Second, we systematically varied the temporal resolution Δτ 
between 0.1 and 2.5 ms and the phase gradient ΔΦ between adja-
cent neurons from 0.012 to 5 ms. Since the reconstruction effi -
ciency relies on the neuronal specifi city recovered from the AP 
phases, the temporal resolution of phase, i.e., the precision of APs, 
is critical. This resolution determines whether neurons at the target 
area are able to discern the close succession of input APs and detect 
coincidences between APs and gamma peaks selectively. Likewise, 
the gamma phase gradient between adjacent neurons determines 
the specifi city of AP-gamma coincidences with respect to the neu-
ron’s position and with respect to the wavelength of the spreading 
oscillation. Since Δτ and ΔΦ are independent parameters of the 
model while both contributing to the precision of coincidences, 
we expected a tight relationship between them. Our simulations 
confi rmed a monotonic relationship between temporal resolu-
tion and reconstruction effi ciency from 0.1 to 1.5 ms and uncov-
ered a surprising non-linear relationship between the gamma 
phase gradient and coding effi cacy. At Δτ > 1.5 ms no  precise 
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FIGURE 2 | Stages of information encoding, transfer, and reconstruction 

illustrated on a 16-neuron simulation. (A) INPUT: Neurons at the input layer 
convert the stimulus, represented by an analog intensity vector (left), to a 
latency vector where the delay of AP (red markers) is inversely proportional to 
the intensity of input. Oscillations in adjacent neurons are phase shifted by a 
constant 0.1 π relative to each other (green ticks mark oscillation peaks). (B) 
GAMMA ALIGNMENT: AP generation is most likely when the input pattern 
coincides with the maxima of the ongoing SMO (blue markers). Time is shifted 
one period at each stage. (C) TRANSFER: All APs from all neurons are collapsed 
into a single sequence of APs, and this sequence is distributed over an array of 
projection neurons (red markers). (D) OUTPUT: When one of the AP sequences 
is transferred to the target layer, it provides the same input to each neuron 

(dashed lines). However, only those APs that coincide with at least one neuron’s 
membrane oscillation maximum are effective in generating AP (red markers). 
Given that the membrane oscillations at the output layer share the same spatial 
gradient as that of the input layer, the topography and timing of the output layer 
interferences will reproduce the topography and timing of input layer APs (B). 
(E) The scheme of the spatio-temporal distribution of SMOs in a grid of neurons 
(fi lled circles). Each neuron’s membrane potential is affected by a radial spread of 
SMO φi(t) that has a constant spatial voltage gradient, causing a ΔΦ phase lag 
between the SMO peaks of adjacent neurons (red and orange neurons and 
corresponding traces of SMO). Examples in (A–D) related to a linear array of 
neurons (within the dark gray rectangle) sorted according to phase, but the 
same algorithm can be generalized to a 2-D grid (light gray area).

reconstruction was possible, thus setting a boundary for precise 
information processing consistent with empirical data (Shmiel 
et al., 2005). The lowest temporal resolution, or the largest time 
window of coincidence, which allowed a near perfect reconstruc-
tion (r > 0.9) was <0.72 ms, as precise as the duration of an AP. 

The fi rst peak of the corresponding gamma phase gradient was 
ΔΦ = 0.4 ± 0.1 ms, followed by a series of subharmonics from 0.6 
to 1.59 ms (Figures 4B,C). Given that the average pyramidal cell 
density in layer 4 of the cerebral cortex is near 2.4 × 104 (Holmgren 
et al., 2003) and 2.5 × 104 cells/mm3 (Peters and Yilmaz, 1993), 
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FIGURE 3 | Topographic preservation of reconstruction. (A) The original digital 
grayscale image (left panel) was downsampled to an 18 × 18 matrix and 
partitioned into 18 sub-regions mimicking receptive fi elds (RFs) (second panel, 
only four receptive fi elds are shown). The total of 18 RFs were projecting on 
18 groups of neurons of the input layer, each consisting of 18 neurons. The 
inputs from the RFs (covering 3 × 6 pixels; color coded on the second panel) 
were vectorized and mapped on separate arrays of neurons (color coded 
rectangles on the third panel). The reconstruction using the “interference 
operator” (Eq. 9) retained most of the information from the input (forth panel). 
(B) Examples of encoding the input by four RFs [color bars relate the codes to 
corresponding RFs on (A)]. The gray levels within RFs were converted to AP 
latency vectors in the corresponding neurons (red markers). (C) APs were 

aligned to the nearest subsequent maxima of the local SMO oscillation (blue 
markers). (D) The spatiotemporal pattern of APs from each group was collapsed 
into a single sequence and combined in 18 AP sequences (red markers) to 
transfer through projection neurons. The sinusoid traces correspond to the fi rst 
neuron’s SMO of a given receptive fi eld in (C). The fi rst four traces correspond to 
the RFs on (A). (E) Reconstruction of the information from the compressed 
code in (D). The interference between the input and the neuron’s intrinsic SMO 
peaks generated patterns (red markers) that reproduced the original gamma-
aligned patterns. To compare the reconstruction with the original input, we 
converted the AP latencies from all the neurons to gray level pixels (A; fourth 
panel). Note that the reconstruction of the original phase relationship between 
the APs and local SMO is near perfect (C,E and A fourth panel).

the average nearest cell-to-cell distance derived by Monte Carlo 
 simulations was Δx = 42 µm (for details on computing neuron-
to-neuron distance, see Supplementary Material), and that the 
optimal phase gradient was 0.4 ± 0.1 ms between adjacent neurons, 

we estimated the speed of SMO  propagation (v) and the  diameter 
(d) of the cortical cylinder that would be covered by a radial wave 
of a single SMO cycle of f frequency and v speed. Assuming that 
f

gamma
 ≈ 40 Hz and Tπ ≈ 12.5 ms, and applying v = Δx/ΔΦ we 
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neurons, gamma cycles, temporal resolution and phase gradient. 

(A) Average correlation coeffi cients (r) between original and reconstructed 
images (grayscale) as a function of number of gamma cycles (abscissa) and 
number of neurons (ordinate). The right side of the exponential curve 
represents combinations of number of neurons and gamma cycles that enabled 
precise reconstructions (P < 0.001). (B-C) Average r as a function of temporal 
resolution (DT) and gamma phase gradient between adjacent neurons (ΔΦ). 
Unit is [ms/Δx] where Δx is the average nearest neighbor distance between 
pyramidal cells (D). (C) A higher resolution simulation within parameter ranges 

of ΔΦ = 0–0.8 and Δτ = 0.01–1.52 ms [the rectangular area in (B)] revealed the 
optimum phase gradient ΔΦ = 0.4. The contour line represents the P = 0.001 
confi dence limit. (D) Estimating the cortical area of precise reconstruction. Given 
Δx ≈ 42 µm average nearest-neuron distance and ΔΦ ≈ 0.4 ms at gamma 
frequency (from B–C), we extrapolate d ≈ 1,250 µm as the diameter of a 
cylindrical cortical volume comprising a neuron population necessary and 
suffi cient to reconstruct the complete information transferred within a single 
gamma cycle. Filled triangles represent neurons, cosine functions represent 
phases of a spreading gamma wave and arrows represent radial propagation of 
gamma waves.

 calculated v = 0.1 mm/ms as the speed of propagation, which is 
consistent with the 0.09–0.4 mm/ms expansion speeds of SMO 
measured from various species, cortical and allocortical areas 
(Benucci et al., 2007; Bringuier et al., 1999; Grinvald et al., 1994; 
Prechtl et al., 2000). To estimate d, we extrapolated how far a single 
radial oscillation period (T) would propagate as λ = T × v. Given 
that T = f −1 ≈ 25 ms and v ≈ 0.1 mm/ms the estimated diam-
eter range of integrative cortical units are d = λ/2 ≈ 1,250 µm 
(Figure 4D), consistent with the 900–1,000 µm center-to-center 
distance of iso-orientation columns in the cat V1 (Lowel et al., 
1988; Peters and Payne, 1993). Considering that the reconstruction 

effi ciency is near perfect at as low as ΔΦ = 0.1 ms and does not 
improve beyond ΔΦ = 0.8 ms, a broader range of spatial domains 
(578 µm < d < 4.6 mm) could satisfy gamma frequency integra-
tion. This range is consistent with the 590 µm center-to-center 
distance of cytochrome oxidase blobs (Murphy et al., 1998), 
the 430 ± 139 µm center-to-center distance of cortical biocytin 
patches in primate V1 and 600 µm in cat V1 (Lund et al., 1993) 
and 1.5–2.7 mm, the space constant (d = 2 × space constant) of the 
radial spread of stimulus induced transmembrane voltage change 
(Grinvald et al., 1994). The estimated d was also consistent with the 
reported range of cortical columns 600–900 µm (Jones, 2000) and 
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FIGURE 5 | Reconstruction of individual images from combined 

representations. (A,C) Two different images were digitally sampled at 18 × 18 
pixel resolution and grayscales were encoded by AP phases relative to SMO 
fi eld by using slightly different phase gradients ΔΦA for image A and ΔΦB for 
image B. The third panel represents the projection of input on a non-
topographically organized array of neurons. The fourth panel is the reconstruction 
when only image A was applied. The receptive fi eld was a 3 × 6 rectangle. 
Turquoise rectangles highlight the projection of a receptive fi eld on the neurons. 
(B) APs collected from a single receptive fi eld were collapsed into a single 
stream and processed by one of the 18 projection neurons. The left panel 

represents the phase code of APs derived from image A projected on the SMO 
fi eld. The middle panel represents the same, derived from image B. The right 
panel represents the result after combining the two codes into one. This 
compressed AP sequence is transferred to the site of reconstruction. The last 
two images on (C) represent the reconstruction from the combined code with 
using ΔΦA vs. ΔΦB. (D) Correlations between: input image B and its 
reconstruction from the combined code; input image B and SMO aligned pattern 
B′; the SMO aligned pattern B′ and reconstruction of image B from the 
combined code; and the SMO aligned pattern A′ and reconstruction of image A 
from the combined code.

350–400 µm (Favorov et al., 1987), and the 400–500 µm projection 
fi eld of layer 2/3 and layer 4 neurons in the rat barrel cortex (Lubke 
et al., 2003). Notably, the relationship between oscillation λ and 
column diameter is further supported by the observation that the 
dominant LFP in the primate motor cortex (area 4) is 20–25 Hz 
(Rubino et al., 2006), half of that of V1, while the center-to-center 
distance of cortical biocytin patches is twice of that of V1 (Lund 
et al., 1993). In summary, the operative ranges of model parameters 
satisfy the dynamic and structural constraints of the brain.

INFORMATION RECONSTRUCTION FROM COMBINED CODES
We thought it would substantially increase the performance of 
phase coding if neuronal architectures were able to combine codes 
of independent inputs into one compressed stream of APs and 
selectively reconstruct these representations at the target location 
by the same pool of neurons. Therefore, we asked whether the inter-
ference operator (Eq. 9) is able to recover multiple representations 
from a superimposed phase code of different input patterns. We 
used two different images, image Sα and image Sβ and two slightly 
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 different fi eld gradients, ΔΦα and ΔΦβ (Figures 5A–C). First, 
processing image Sα generated the Aα latency code, transformed 
into A′α by gamma alignment to a fi eld with gradient ΔΦα. The 
pattern A′α was collapsed into Cα and reconstructed S′α at the target 
using ΔΦα (Figure 5A). Likewise, we processed image Sβ with the 
fi eld gradient ΔΦβ and computed A′β and Cβ (Figures 5B,C). Next, 
before the reconstruction, we combined the two compressed codes 
C α ∪ C β = Cγ, so that APs encoding image Sβ were interleaved with 
APs encoding image Sα (Eq. 10). The combined code included both 
sequences of APs, derived from two different input images, with-
out labeling them according to the neuron of origin (Figure 5B). 
Next, we transferred the combined code Cγ to the target, where the 
postsynaptic neurons successfully recovered image S′α and image 
S′β from the mixed code by applying fi eld gradients ΔΦα and ΔΦβ, 
respectively (Eqs. 11 and 12, Figure 5C). The reconstruction effi -
ciency, quantifi ed as the correlation between the gamma-aligned 
input and the recovered image, was near perfect (r′ > 0.9, P < 0.001) 
when compared with the original input (Figure 5D). Since the vari-
ance of the correlation between the original and the gamma-aligned 
input was the same as the variance of the correlation between the 
original and reconstructed image, most of the differences between 
the original and reconstructed images were attributed to the gamma 
alignment rather than to the reconstruction.

The reconstruction from the combined phase code has intrinsic 
limitations. If the difference between the oscillation fi eld gradients 
is small, the delay by which the two oscillation peaks reach adjacent 
neurons may be smaller than Δτ, causing the neurons to confuse 
the input APs originating from different images. Spurious phase 
coincidences of the two fi elds may also occur if the two fi eld gra-
dients are very different. In order to avoid this, for a given phase 
gradients ΔΦα the second phase gradient ΔΦβ should be less than 
ΔΦα/(n × Δτ). Since n is relatively small (<9), especially when the 
architecture is partitioned into small receptive fi elds, this condition 
is easy to meet and does not compromise reconstruction.

Storing and retrieving multiple representations from the same 
pool of neurons by cueing them with slightly different SMO oscilla-
tions can be utilized as a very effi cient mechanism for storing long-
term memories. For the sake of algorithmic clarity, we postulated 
the independence of APs and SMO. However, in living tissue, large 
synchronized EPSPs and IPSPs may reset the fi eld of SMOs, thus 
allowing selective cueing of information.

REAL-TIME MOTION PROCESSING WITH PHASE
Under natural conditions, images on the retina change rapidly 
either due to objects and the observer moving relative to each other 
or due to the observer’s eye movements. A sequence of images, when 
presented with a frame rate ≥16 frame × s−1, is perceived as motion, 
(Wertheimer, 1912) and motion percept does not improve beyond 
48 frame × s−1. This implies that under specifi c condition, single 
gamma cycles should be suffi cient to process information from 
individual frames to generate a motion percept. It also implies that 
the human visual system does not benefi t from a frame rate of higher 
than one frame per gamma cycle. We asked how phase coding would 
implement compression and reconstruction of a complete frame 
within a single gamma period with a rate of 40 frame × s−1, in order 
to remain consistent with human motion perception. According 
to our simulations, a single SMO cycle is capable of capturing 

and retaining signifi cant quality of the  original image (r = 0.87 
P < 0.01) and nearly complete representation of the gamma-aligned 
image (r = 0.92, Figure 6). In this simulation we used a 36 × 36 
neuron architecture with 6 × 6 receptive fi elds converging to 36 
projection neurons and reconstructed on a 36 × 36 neuron layer 
at the destination. For the SMO fi eld we used a predefi ned set of 
24 phase gradients. The SMO fi eld gradients were generated by 
three randomly dispersed gamma sources slowly drifting frame-
by-frame with Brownian motion. The input was a 24-frame segment 
extracted from an Eadweard Muybridge movie clip. Input frames 
were presented iteratively and each reconstruction was computed 
independently from the previous frame. The Δτ was 0.001, and a 
single gamma oscillation period was used for encoding. Because a 
faithful reconstruction of grayscale image requires n > 4 oscillation 
periods (Figure 4A), phase coding within a single oscillation period 
allowed to retain only the binary values per pixel (black-and-white) 
with no grayscale qualities processed (Figure 6A). Despite the 
black-and-white representation, the spatial reconstruction of the 
original frames was relatively good (r = 0.874, Figure 6C), which 
confi rmed that sampling continuous motion by single SMO cycles 
is necessary and suffi cient to encode a motion sequence. Notably, 
most differences between the original and the reconstructed image 
frames derived from the AP alignment (Figure 6C). The limited 
capacity to process textural details and motion at the same time is 
consistent with the anatomical and functional segregation of fast 
achromatic magno-cellular motion pathway and slow chromatic 
parvo-cellular pathway (Conley and Fitzpatrick, 1989; Fitzpatrick 
et al., 1985; Michael, 1988; Perry et al., 1984).

PHASE CODE GENERATES GRID REPRESENTATIONS
Since the discrimination time window is limited to one SMO cycle, 
the largest discriminative power is comprised in an area corre-
sponding to λ (the distance that SMO travels in one oscillation). 
Beyond that diameter, representations likely repeat because spuri-
ous interferences will activate neurons that share the same SMO 
phase as they are multiples of λ apart. If the same input pixel is 
reconstructed by multiple neurons, separated by λ distances, as our 
model predicts, then it is necessary that different inputs are recon-
structed by the same neuron, assuming fi nite input and neuron 
spaces. Consequently, individual neurons must endow multiple 
receptive fi elds, just like grid cells do in the medial entorhinal cor-
tex (MEC) of rodents (Hafting et al., 2005). To provoke multiple 
cortical representations by spurious interferences, we performed 
pattern reconstructions on an image, tracking a prolonged interval 
of 144 gamma cycles with increased phase gradient (ΔΦ = 0.1) 
(Figure 7). The reconstruction, as predicted, yielded multiple 
representations of the original image (Figure 7E). This was due 
to systematic reconstruction errors caused by spurious interfer-
ences that occurred at neurons near λ distances apart within the 
neuronal matrix. The confusion of AP times across neurons of 
the output layer is clearly seen as clusters offset of the identity 
line of the input–output AP latency correlogram (Figure 7F). The 
consequence of these errors is twofold: (i) they generate multiple 
cortical representations of the same spatial location, as seen in 
Figure 7E; and (ii) these errors must make a given output layer 
neuron active not only when the input image is at the original 
position, but also a number of other positions that are multiple 
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of a constant distance away from the original position. In order 
to test this hypothesis, we kept track of the activity of an arbitrar-
ily selected output-layer neuron (red arrow in Figure 7E) while 
circular shifting the original image matrix in 36 × 36 different 
positions. If the image on Figure 7A represents a square-shaped 
spatial environment from the rat’s point of view, then shifting the 
image emulates an exhaustive exploration of this environment in 
a rat-centered coordinate system. For example, moving the image 
by 5 pixels north and 6 pixels east is equivalent to the rat mov-
ing 5 units south and 6 units west, where the unit is  proportional 
to the rat’s size. Next we plotted the fi ring probability of this 

neuron according to the  positions of the rat in the environment 
(Figure 7G). Confi rming the prediction (ii), the fi ring probability 
revealed a multifold periodic receptive-fi eld architecture, where 
receptive fi elds were constant distance apart, reproducing false-
colored copies of the original image, evenly tessellating the space. 
This architecture is consistent with the periodic architecture of 
the spatial fi ring fi elds of MEC neurons (Hafting et al., 2005). 
Moreover, the model provides a physiological meaning to the 
constant spatial separation of the observed fi ring fi elds by relat-
ing it to the λ of SMO within the MEC. In addition to grid cells, 
according to (i), the model predicts that the actual spatial location 
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of two women (left), a 36 × 36 pixel down-sampled input (middle) and the 
reconstruction of the frame (right). (B) APs evoked by image at the input layer 
(left), after alignment to SMO (middle) and the reconstructed APs (right). Only 
one row of neurons is shown. Red markers represent the APs, and waves 

represent the ongoing SMO per neuron. Scale bar indicates one SMO period. 
(C) Correlations between the latency-encoded input and the reconstructed AP 
times (left); between the latency-encoded input and the aligned APs (middle); 
and between the aligned APs and reconstructed APs (right). Correlation values 
are shown on the top. Note that most of the variances derive from the 
alignment to SMO. Time units are relative to the length of an SMO cycle.
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FIGURE 7 | Construction of multiple cortical representations by spurious 

interferences. (A) A 36 × 36 grayscale image was used as input and partitioned 
into 36 non-overlapping receptive fi elds, which were mapped on a 36 × 36 input 
neuron matrix. (B) The activity pattern of a row of neurons [between arrowheads 
in (A)] that receives input from a single receptive fi eld. Blue-fi lled circles represent 
the APs by neurons (ordinate) after the gamma alignment, spreading through 108 
cycles (abscissa). Applying a relatively steep SMO gradient (ΔΦ = 0.1π) ensured 
that multiple neurons shared identical (< Δτ SMO phases, thus facilitating 
interferences of individual APs of the compressed code with multiple target 
neurons. (C) The activity of 1,296 neurons total was compressed into 36 channels 
(one receptive fi eld per neuron). APs are represented by red dots. (D) The spatio-
temporal pattern of APs (red-fi lled circles) after the reconstruction. Note the 
spatially periodic structure of the APs (a complete period is shown within the 

vertical bracket). (E) As a result of multiple interferences, the reconstructed image 
retains multiple representations of the original input. The original 36 × 36 
reconstruction (within the white square) was expanded to a 72 × 72 neuron 
architecture to make the multiple representations more apparent. (F) The 
interference that led to multiple reconstructions is evident from the correlation plot 
between the original input AP times and the reconstructed AP times. The dot 
clusters different from the diagonal are the results of spurious reconstructions, 
which led to the multiple representations on (E). The abscissa represents input AP 
times, the ordinate represents reconstructed AP times in SMO cycles. (G) Firing 
fi eld of a neuron (marked by a red arrow on E) in spatial coordinates. Colors 
represent the probability of APs generated while the neuron is exposed to a given 
image displacement. Construction of the plot is explained in the text. Note the 
grid-cell like periodic receptive fi eld architecture.

of the rat activates not one but multiple grid cells with shared 
 fi ring fi elds, and these neurons must be anatomically arranged in 
a grid-like periodic architecture over the entorhinal cortical sheet 
(Figure 7E) that mirrors the periodic receptive fi eld architecture 
of individual grid cells. Consistent with the proposed relationship 
between the grid cell geometry and phase coding, the frequency 
of SMO in MEC neurons, and thus λ, has been reported to scale 
with grid cell fi eld spacing (Giocomo et al., 2007). We remark 
that the periodic structure of reconstruction necessarily occurs in 
1-D but that the exact geometry in 2-D depends on the location 
of neurons where spurious interferences occur. Most likely, the 
spurious interferences generate confusions of different degrees. 
Neurons that are integer cycles apart share nearly identical SMO 
phases. Consequently, when APs are reconstructed from phases, 
these neurons generate confusions, which manifest in reproduc-
tion of the original image in nearly perfect copies. These neu-
rons represent the main-grid points of the output representation 
(seen as the multiple images of the photographer in Figures 7E,G). 

Other neurons generate only partial confusion. These neurons 
are usually half the distance of the main-grid points and they 
partially reproduce the original input (seen as phantom images 
of the photographer in the upper right and lower right corners of 
the area within the white frame in Figure 7E). Because the partial 
and complete confusion grids have the same period but with a 
half-period offset between them in both X and Y coordinates, the 
superposition of the two grid structures constitutes an elongated 
hexagonal grid topography (Figures 7E,G). Since there are also 
other ways of achieving a hexagonal structure, this may or may 
not be the mechanism by which the stereotypical grid cells in the 
MEC acquire precisely such geometry.

PHASE CODE EXHIBITS AP PHASE PRECESSION
Among the most prevalent evidence for the behavioral signifi -
cance of systematic phase variation is the phase precession of 
hippocampal pyramidal cell fi ring relative to the local theta oscil-
lation while a rat traverses through the place fi eld of the neuron 
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(O’Keefe and Recce, 1993). These pyramidal neurons also exhibit 
theta frequency SMO (Leung and Yim, 1986). Since our model 
requires nothing more than that AP timing be dependent on a 
coherent oscillatory drive (SMO) that propagates in space, we 
investigated whether phase precession can occur without further 
assumptions. We implemented the spatial navigation condition 
by defi ning a 16 × 16 matrix of topographically arranged place 
cells where neuron a

ij
 at the ith column and jth row was driven by 

the input corresponding to the rat being at the location defi ned 
by its X

i
 and Y

j
 coordinates. Thus, the place fi eld of the rat when 

moving through X
i
Y

j
 was modeled by neuron a

ij
 being exposed to 

a transient stimulus. Theoretically, this is equivalent to a transient 
stimulus, defi ned as a 2-D Gaussian, moving through the recep-
tive fi eld of a neuron (Figure 8A). This is similar to the real-time 
motion processing example in Figure 6, except that the SMO here 
represents theta instead of gamma. The complete path of the rat 
was modeled by a series of 20 frames consisting of 16 × 16-pix-
el-resolution  snapshots, in which the 2-D Gaussian advanced one 
pixel per frame. Since the diameter of the Gaussian was larger than 
the place fi eld of a neuron, the rat’s position evoked activity in 
adjacent place cells proportional to the amplitude of the Gaussian 
intersecting with their place fi elds. The square area outlined in 
Figure 8A covers the place fi elds of nine neurons. Multiple neurons 
were activated when the rat was crossing this area. The phase-coded 
APs of these neurons were combined into a compressed code and 
shared among the nine neurons before reconstruction. When we 
tracked the activity of these neurons while the location of the rat 
changed across frames, the compressed AP sequences displayed a 
systematic phase precession as a function of the distance from the 
center of the Gaussian, consistent with the empirical phase pre-
cession of hippocampal end entorhinal cortical neurons (Hafting 
et al., 2008; O’Keefe and Recce, 1993). We controlled only one 
parameter in these simulations, the phase gradient of the SMO 
fi eld. Figures 8B–E shows that the direction of phase precession 
depended on the geometry of the SMO fi eld applied to both input 
encoding and reconstruction. When unidirectional propagating 
waves (traveling waves) were applied, depending on the direc-
tion of propagation relative to the activation sequence of place 
cells, we observed different monotonic phase precession effects. 
Wave propagation in the direction opposite of the place cell acti-
vation sequence enabled progressive phase advancement, while 
wave propagation in the direction of place cell activation sequence 
enabled progressive phase delay (Figures 8B,D, respectively). By 
reducing the SMO phase gradient ten times decreased the slope 
of phase precession 10 times from 280° to 28° (Figures 8B,C). 
Furthermore, when a radial propagation of SMO fi eld was applied 
(from a single or from multiple sources) the precession started 
with increasing phase advancement until the animal, i.e., the center 
of the Gaussian, reached the center of the neuron’s place fi eld, 
followed by a progressive phase delay as the animal was leaving 
the center of place fi eld (Figure 8E). The dependency of phase 
precession angle on the SMO gradient relative to the activation 
sequence of the place cells suggests that hippocampal pyramidal 
neurons may be able to “read out” the rat’s heading direction from 
the phase precession, assuming that the local SMO fi eld gradi-
ent does not change rapidly over time (Huxter et al., 2008). In 
summary, phase precession derives naturally from phase coding, 

without making any additional assumptions, such as asymmetric 
synaptic potentiation (Mehta et al., 2000) or dual-oscillator drive 
(Blair et al., 2008; Burgess, 2008; Lengyel et al., 2003). Phase preces-
sion is controlled by a single parameter, the SMO fi eld gradient. 
Furthermore, consistent with experimental data, phase precession 
in our model does not require multiple trials to develop but it 
does require SMO (Hafting et al., 2008). Since object locations in 
the environment, according to this model, are originally encoded 
by phase, we propose that phase precession (phase advancement 
and phase delay) is expressed in all cortical and limbic structures, 
including the MEC (Hafting et al., 2008) and primary sensory areas 
of the neocortex where the spatial representations are continuously 
updated due to behavior.

MODELING STIMULUS INVARIANTS
In order to represent stable objects in a dynamic world, neurons 
must encode object features invariantly with respect to a few com-
mon transformations such as position, rotation and time. In order 
to address whether or not phase coding is able to retain some of 
these features in spite of spatial or temporal discontinuities, we 
modeled four different types of invariant stimulus conditions: (i) 
space-time invariant 1-D stimulus, (ii) 2-D stimulus embedded in 
random background noise, (iii) 2-D transposition-invariant stimu-
lus and (iv) character recognition. We classifi ed these invariants with 
respect to either temporal or spatial transformations. Among the 
invariants we tested, (i) and (ii) were time invariant, while (iii) and 
(iv) were invariant to spatial transformations. (Implementations 
of the ii, iii and iv types of invariant preservations are described in 
the Supplementary Material.)

For (i) we constructed a 1-D random vector R containing 
32 values [r

1
,…,r

32
]. Next we defi ned “frames” as the possible sub-

sets of this vector containing 16 adjacent values. We then began 
an iterative cycle, where fi rst we inputted the fi rst frame [r

1
,…,r

16
] 

to a network of 16 neurons [s
1
,…,s

16
] and performed all four 

phases of information processing from encoding to reconstruc-
tion. During each of the next 16 cycles, we incremented the frame 
position by one step [s

1
,…,s

16
] = [r

i
,…,r

i+15
], where i = {2,…,17}, 

and performed all four phases of information processing. Thus 
in each iteration, 15 out of 16 frame values remained identical to 
the values in the previous frame, but each of the 15 values was 
projected onto a different neuron at each exposure (Figure 9A). 
Presenting the neurons with only part of the complete pattern 
in each cycle, such that each neuron’s input value changes every 
cycle, allowed us to address how a constant (time-invariant) spatial 
pattern is represented by the phase code in the array of neurons 
over time (Figures 9B–E). When we superimposed the temporal 
patterns of APs of the compressed codes (transfer stage) from all 
of the 17 successive trials, we observed a marked conservation of 
AP latencies along with sudden transitions of gamma re-align-
ments (Figure 9D). The conservation of time-invariant patterns 
is refl ected by the temporal consistency of APs over time. This 
consistency was quantifi ed by correlating the AP times (wrapped 
around 3π) from one frame with the AP times of the next frame 
and comparing it to the correlation obtained when the stimulus 
frames were uncorrelated random patterns (i.e., when there was no 
overlap between successive frames). The return plots in Figure 9F 
summarize these correlations. As seen on the left return plot, 
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FIGURE 8 | Phase code exhibits phase precession. (A) The input to 
hippocampal place cells was modeled by generating a 20-frame translation of a 
2-D Gaussian representing the rat’s position (rendered with colors) relative to 
the environment (rectangle). The area was evenly tiled with place fi elds 
individually mapped on a 16 × 16 grid of input layer neurons. The size of the 
Gaussian was chosen such that 9–12 neurons were simultaneously exposed to 
the rat’s location, but the composition of neurons driven by a given input frame 
changed with the rat’s location. The four blue and red framed panels represent 
the four processing stages of the initial and terminal frames, respectively: (I) the 
rat’s location, represented by a 2-D Gaussian, (II) the discrete sampling of the 
input by the grid of neurons (input), (III) the input phases in grayscale after APs 
are aligned to the SMO, and (IV) the reconstructed activity pattern of neurons 
encoding the rat’s own location. The outlier pixels in both frames are 
reconstruction errors. (B–E) Effects of SMO fi eld topography on phase 
precession. Left panels represent the SMO ((B–D) in time-neuron and (E) in 
neuron space). Second and third panels represent snapshots of the activity of 
three projection neurons at different magnifi cations. These neurons in the model 
represent hippocampal pyramidal cells with adjacent place fi elds within the 

outlined area [dashed rectangle on (A)]. The APs evoked by consecutive frames 
are projected between the SMO waves of adjacent neurons and color-coded 
according to the input frame in (A) corresponding to the rat’s location. The 
abscissa represents the time of the APs. The forth panels represent the phase of 
APs during a single run as a function of the rat’s location. (B) When a traveling 
wave SMO fi eld gradient was applied the neurons expressed a monotonically 
advancing AP phase precession spanning 280° theta phase angle. (C) By 
reducing the phase gradient of SMO ten times the AP phase precession angle 
decreased proportionally to 28°. In both examples (B,C) the traveling direction of 
SMO was set to be the opposite to the place cell activation sequence. (D) We 
reversed the direction of phase precession relative to (B,C) from monotonically 
increasing advancements to monotonically increasing delays by changing the 
SMO phase gradient such that it traveled in the direction of the activation 
sequence of neurons. (E) A bidirectional AP phase precession was enabled by a 
radially propagating SMO fi eld, where the AP phases advanced continuously 
until the animal reached the place fi eld center [outlined area in (A)] and 
developed an increasing delay as the animal exited. Phase scale bars represent 
¼ π. Arrows signify the directions of phase precessions.
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 invariant stimulus frames evoke AP patterns in the compressed 
code that are highly correlated across frames, despite phase transi-
tions and despite the fact that each neuron receives a different input 
from each frame. In contrast, uncorrelated frames evoke APs that 
are uncorrelated across successive frames. This conservation of the 
AP pattern for an invariant stimulus has implications for visual 
information processing. For example, we predict that V1 projecting 
LGN neurons should generate self-similar and stimulus-dependent 
AP sequences for slowly moving images. These AP sequences are 

expected to be invariant of position shifts of the whole image on 
the retina within a certain range of eye movements.

DISCUSSION
We presented theoretical support for phase coding in the CNS with 
the following two questions in focus: How can the precise spatio-
temporal structure of a stimulus be encoded by the phase of APs, 
and how then can it be recovered from the phase of APs? The model 
outlined above interprets phase locking as a mechanism by which 

FIGURE 9 | Phase coding is sensitive to stimulus invariance. (A) A 16-sample-
wide window (S) was applied to a stimulus vector (R) containing 32 intensity 
values and the result inputted to 16 neurons of the input layer. The window was 
slid across R, one sample at a time, to generate 17 successive frames. In this 
fi gure we illustrate only 5 of the 17 frames using different grayscales. The 
network processed each frame as an independent stimulus vector from the 
encoding to the reconstruction stage (B–E). (B) Superposition of the AP patterns 
induced by all 16 frames. The grayscale values of fi lled circles correspond to the 
frame in (A). (C) The temporal variability of APs is reduced after aligning them to 
gamma oscillations. (D) The compressed AP streams, superimposed across 
frames, show a preserved temporal pattern with sudden phase transitions (open 

arrows) at points where APs from a new frame are assigned to the next gamma 
cycle. (E) Superimposed traces of the reconstructed patterns. (F) Return plots 
represent the recurrence of AP-times from frame i to frame i + 1. The left return 
plot was calculated from the AP pattern in (D) when stimulus (A) was presented. 
The right return plot was calculated from an example where consecutive frames 
were uncorrelated. Although each neuron processed different input from every 
frame, the temporal patterns of APs across successive frames were highly 
correlated (left). In contrast, when input frames were random and independent 
from one another the AP patterns became uncorrelated (right). Both plots contain 
the same number of data points. AP latencies were wrapped around 3π. 
(The r and P values are shown above the plots.)
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from the n input layer neurons to a single channel and a 1-to-n 
dimensionality expansion by information reconstruction at the 
target layer. This extreme information compression was feasi-
ble within the parameter space specifi ed in Figure 4 (Section 
“Biological Signifi cance of Model Parameters”). However, con-
sidering parameters closer to the physiological condition, such 
as a large n with intrinsic noise in membrane potential affecting 
AP generation, combined with certain variance of oscillations, 
and heterogeneous axonal composition within the projection 
pathways, the n-to-1 reduction is neither necessary nor feasible. 
This has two consequences. First, a substantial saving in axonal 
volume can still be achieved with an n-to-m mapping, where 
n > m ≥ 1, which would not be possible without phase coding. 
Second, by clustering neurons into m groups, where instead of 
n a smaller n′ = n/m neurons converges on a single channel, the 
need for m projection neurons would still substantially improve 
the reconstruction  effi cacy, consistent with the known convergence 
of  sensory input on single neurons that constitutes for receptive 
fi elds (Figure 3).

Another limiting factor is the precision of neural code. The phase 
coding model requires neurons to resolve ∼1.5 ms  coincidences 
between input and intrinsic SMO under the assumption that SMO 
is 40 Hz. Whether or not the CNS is able to maintain this high preci-
sion has been argued (Shadlen and Newsome, 1998; Shmiel et al., 
2005). Since the ∼1.5 ms precision would guarantee that neighbor-
ing neurons do not confuse the origin of two input APs coinciding 
with their slightly different SMO, this precision is most likely to 
be verifi ed in the cross-correlograms of nearby neurons. Another 
factor of precision is the frequency of SMO. In structures where 
the predominant SMO has a less than 40 Hz frequency, such as the 
5–7 Hz in the entorhinal cortex (Giocomo et al., 2007), the required 
precision is proportionally less, only Δt < 12 ms. Thus ∼1.5 ms pre-
cision is the most extreme requirement for precision.

the phase of APs encodes the precise spatiotemporal structure of the 
visual input using gamma oscillations as a reference. Utilizing the 
phase the brain is able to keep different stimulus features separated 
within the same code (impossible with rate coding) until these fea-
tures are separated by individual neurons upstream, consistent with 
sparse coding (Figure 5). At the same time the phase code allows 
simultaneous information to be bound together by referencing 
them to the same gamma cycle, which allows a smooth tracking 
of sensory input, such as that illustrated on the example of motion 
processing at a physiological rate (Figure 6). Aside from the capabil-
ity of modeling thalamo-cortical and cortico-cortical information 
processing, phase coding demonstrates a remarkable fl exibility in 
reproducing known functional features of the allocortex, such as 
the grid cells of the entorhinal cortex and the phase precession 
of hippocampal pyramidal cells (Figures 8 and 9, respectively). 
Moreover, phase coding allows the extraction of stimulus features 
that are invariant with respect to spatial and temporal transforma-
tions (Figure 9 and Figure 2 in Supplementary Material).

Remarkably, phase coding does not contradict with rate cod-
ing. The two encoding schemes are compatible (Ahissar et al., 
2000), they may coexist (O’Keefe and Burgess, 2005) and/or may 
complement each other (Gollisch and Meister, 2008; Kayser et al., 
2009) simply because the likelihood of coincidences between the 
presynaptic AP and postsynaptic SMO scales with the frequency 
of APs. Moreover, modulation of fi ring rate is concomitant with 
changing the phase structure of APs (Margrie and Schaefer, 2003). 
Immediate predictions made based on phase coding are summa-
rized in Table 1.

Nevertheless, the robustness of the model depends on a number 
of limiting factors, which remain to be investigated. One is the 
dependency of phase coding on the need for compression before 
transmission. A key assumption we made for the sake of theoretical 
clarity in the 1-D model was the n-to-1 dimensionality  reduction 

Table 1 | Predictions based on the phase coding model. Phase coding, a common oscillatory reference with a fi eld gradient, and the AP-SMO coincidence 

are the three cornerstones of the model. They are also highly interdependent, which enables to make these predictions.

# Predictions

1  Gamma LFP must show a phase gradient (v = ∼0.1 mm/ms) between adjacent neurons within a cortical column. This can be conceived as 

propagating waves or radial spread of gamma activity from multiple generator foci.

2  The phase gradient is dependent on the wavelength of characteristic LFP at a given region, and this wavelength is proportional to the average 

columnar center-to-center distance (Giocomo et al., 2007; Lund et al., 1993). Thus, the radius of cortical columns must scale with the wavelength of 

dominant LFP oscillations. A supportive evidence is that grid cell spacing has been reported to scale with the theta frequency SMO in layer-II 

entorhinal cortical neurons (Giocomo et al., 2007).

3  Among simultaneously recorded neurons, those that are exposed to their preferred stimulus should exhibit a more precise phase lock of APs with the 

local gamma recorded from the same electrode than neurons exposed to a suboptimal stimulus.

4  The precision of AP to AP cross-correlation between excitatory neurons in the superfi cial cortical layers should be an order of magnitude higher 

(∼1.5 ms) than the precision of the autocorrelations (15–25 ms).

5  High magnitude of zero time-lag cross-correlations should be most expressed between layer-4 granule cells of the neocortex because they are the 

recipients of the compressed code. In contrast, supra granular layer pyramidal neurons should generate much smaller (but more precise; see Section 

“Discussion”) cross-correlations because their outputs represent the reconstructed sparse code. The average fi ring rate of these neurons is expected 

to be also lower than that of granule cells in layer-4.

6  Intervention of SMO propagation is expected to disrupt information reconstruction, thus altering perception. Similarly, disruption of spike timing 

relative to the gamma oscillation must perturb perception.

7  According to our simulations, an interval of four gamma cycles is suffi cient to retain more than 90% of the information, thus 100 ms processing time 

after the fi rst APs reaching V1 (∼60 ms) should be suffi cient to make complex perceptual decisions (Thorpe et al., 1996).
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The third limiting factor is the coherency of oscillations 
between the source and target area. Phase coding is extremely 
sensitive for the degree of coherence between source and tar-
get. A number of physiological mechanisms have been sug-
gested to maintain high cross-structural coherence, such as the 
 thalamo-cortical loop (Llinas and Ribary, 1993; Steriade et al., 
1996), entrainment of cortical gamma rhythms by hippocampal 
theta (Sirota et al., 2008), cortical theta reset (Rizzuto et al., 2003), 
and gap-junctions (Traub et al., 1996), but direct evidence for 
an overall synchronizing mechanism that would ensure precise 
coherence between sensory structures and corresponding cortical 
areas is lacking.

The fourth limiting factor is the noise tolerance of phase coding. 
We argued that the compression of the phase code before transfer-
ence through the projection pathways improves the noise tolerance, 
and we suggested that compression combined with a feed-forward 
parallel distribution would improve reliability by implementing an 
error correction mechanism.

The last limiting factor is the lack of direct evidence for phase-
shifted fi elds of SMO. This pre-assumption was made based on 
combining two sources of evidence. One is the direct observation 
of propagating membrane potential changes by intrinsic optical 
signal and voltage-dependent Ca2+ imaging (Benucci et al., 2007; 
Bringuier et al., 1999; Grinvald et al., 1994; Prechtl et al., 2000) and 
propagating LFP waves (Prechtl et al., 2000; Rubino et al., 2006). 
The other source of evidence derives from direct intracellular 
observations of single neuronal oscillations, such as subthresh-
old membrane oscillations (Giocomo et al., 2007; Hutcheon and 
Yarom, 2000; Llinas et al., 1991). Based on the high correlation 
between LFP and SMO of individual neurons, the conjecture of 
phase-shifted fi eld of SMO is plausible.

In conclusion, we demonstrated through various examples that 
the benefi t of encoding information by the phase of APs relative to 
the intrinsic neuronal oscillations is multifold:

 (i) Allows different types of sensory data to be converted 
to a common coding scheme in which information is 
referenced by the fi eld of local oscillations and decoded 
 independent of the neuronal distance from the original 
location and time in the brain, given that the reference 

oscillation fi eld has the same spectral properties as at the 
source.

 (ii) Protects the code against potential distortions due to the 
variance of conductivity during transmission in long 
projection pathways.

 (iii) Enables deployment of the same compressed information 
over large areas of the cerebral cortex and selective “rea-
ding-out” of the local information (Figure 5) without 
point-to-point mapping between the neurons of the input 
and target areas.

 (iv) Effectively compresses the spatio-temporal pattern of APs 
before transmission (n-to-1 and 1-to-n).

 (v) Enables invariant temporal relations to be encoded indepen-
dent of the delay and duration of sensory information pro-
cessing. Similarly, it enables invariant spatial relations to be 
encoded independent of the absolute spatial location of the 
agent (Figure 9 and Figure 2B in Supplementary Material).

 (vi) It provides an intrinsic biological mechanism for stimulus 
segmentation.

 (vii) It enables information reconstruction at single-neuronal 
precision (sparse coding) without confusion of informa-
tion between neighboring neurons.

 (viii) It implements spatial and temporal transformations 
between cortical representations (spatio-temporal recep-
tive fi elds), which cannot otherwise be achieved by simply 
changing the topographic mapping between interconnected 
cortical areas (Figure 1 in Supplementary Material).
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