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Abstract
Caloric restriction is the most effective and reproducible dietary intervention
known to regulate aging and increase the healthy lifespan in various model
organisms, ranging from the unicellular yeast to worms, flies, rodents, and
primates. However, caloric restriction, which in most cases entails a 20–40%
reduction of food consumption relative to normal intake, is a severe intervention
that results in both beneficial and detrimental effects. Specific types of chronic,
intermittent, or periodic dietary restrictions without chronic caloric restriction
have instead the potential to provide a significant healthspan increase while
minimizing adverse effects. Improved periodic or targeted dietary restriction
regimens that uncouple the challenge of food deprivation from the beneficial
effects will allow a safe intervention feasible for a major portion of the
population. Here we focus on healthspan interventions that are not chronic or
do not require calorie restriction.
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Introduction
Aging is the leading risk factor for many among the major diseases 
and a key factor in the overall decline of physical and mental per-
formance. Interventions that slow down the aging process can delay 
or prevent multiple chronic diseases and improve productivity and 
quality of life in older ages. For clarity, here, we use caloric restric-
tion (CR) to refer to a dietary intervention with an overall 20–40% 
reduction of total caloric intake, and dietary restriction to repre-
sent a broader scope of dietary interventions that encompass those 
with specific macronutrient and feeding pattern restrictions. CR is 
the most studied and reproducible non-genetic intervention known 
to extend healthspan and/or lifespan in organisms, ranging from 
unicellular yeast to monkeys. It started with a simple experiment 
where a reduction in dietary intake (i.e. caloric restriction) extended 
the lifespan of rats1, providing a foundation to experimentally 
study the relationship between nutrition and the biology of aging. 
Here we discuss more recent discoveries that have advanced our 
knowledge of the effects of less invasive and restrictive dietary 
interventions in aging and healthspan.

Caloric restriction and the conserved mechanisms of 
aging
In their seminal report in 1935, Crowell and McCay demonstrated 
that simply reducing caloric intake without causing malnutrition 
nearly doubled the lifespan of rats1, providing an experimental 
model to begin to demonstrate that aging can be slowed down. 
Nearly half a century later, Walford and Weindruch reported that 
“adult-initiated” caloric restriction started at 12 months of age not 
only increased lifespan but also reduced the incidence of spontane-
ous cancer by more than 50% in rats2,3. Several decades later, the 
effect of caloric restriction on healthspan and lifespan has been con-
firmed in model organisms ranging from unicellular yeast to worms, 
flies, rodents, and primates4, suggesting a highly conserved effect 
which may involve common genes. Although the molecular mecha-
nisms that mediate the effect of caloric restriction are still being 
investigated and debated, there is more widespread acceptance of 
the hypothesis that caloric restriction and lifespan extension involves 
the down-regulation of insulin and insulin-like signalling (IIS)5,  
as well as of the amino signalling target of rapamycin (TOR)-S6 
kinase pathway6,7, and the glucose signalling Ras-protein kinase A 
(PKA) pathway6,8,9.

Because an in depth discussion of the anti- and pro-aging pathways 
conserved in model organisms has been covered elsewhere, here we 
will only mention the most relevant ones10–12. In yeast, down-regulation 
of (a) the amino acid-sensing TOR and the ribosomal protein S6 
kinase (S6K) ortholog Sch9 pathway6, and (b) the Ras-AC-PKA 
pathway13 are key changes mediating part of the effects of caloric 
restriction on chronological lifespan, the measurement of cellu-
lar survival under non-dividing conditions. In contrast, elevated 
activity of sirtuin (SIR2) has been described as a key change in the 
extension of replicative lifespan, measured by counting the number 
of buds generated by an individual mother cell14,15. In worms, the 
lifespan extension caused by the inactivation of IIS, or by different 
forms of caloric restriction, requires Forkhead FoxO transcription 
factor daf-1616. In flies, the IIS pathway is involved in the effects 

of caloric restriction17 and, although dFoxo is not required for 
its longevity effect, its activity can affect the response to caloric 
restriction18. In rodents, growth hormone (GH) and IGF-1 levels 
are reduced following caloric restriction19, but the link between 
dietary restriction, GH and aging is still being investigated, with 
focus on the genes and pathways regulating longevity in the simple 
organisms described above. The long-lived GH receptor knock-out 
(GHRKO) mice, which are resistant to GH, do not exhibit further 
lifespan extension or health benefits by caloric restriction20,21, but 
the long-lived GH-deficient Ames mice do22, suggesting a complex 
involvement of the GH/IGF-1 axis and periphery pathways in the 
response to caloric restriction.

Much has been learned about caloric restriction and aging from 
model organisms, but the ultimate question that lingers is the rel-
evance of these models to human lifespan and healthspan. The rhe-
sus monkeys are the closest model organism to humans in which 
caloric restriction has been experimentally tested in a controlled 
environment. Two notable studies performed by independent pro-
grams, the National Institute on Aging (NIA) Intramural Research 
Program and the Wisconsin National Primate Research Center 
(WNPRC), subjected male and female rhesus monkeys to 30% 
caloric restriction from levels of baseline caloric intake. The NIA 
reported no improvement in lifespan but observed a positive trend 
for the delay of age-related diseases (i.e. healthspan)23, whereas 
WNPRC reported significant improvement in both lifespan and 
healthspan4,24. The discrepancies are largely attributed to the dif-
ferent dietary composition and heterogenic genetic background4,23, 
which have been shown to be a significant factor in rodents25,26. 
This underscores the importance of diet composition and genetic 
background and their compatibility when applying caloric restric-
tion to humans. Nonetheless, several studies provide evidence sup-
porting beneficial health effects of caloric restriction for humans. A 
notable NIH-sponsored controlled randomized study on non-obese 
individuals, CALERIE (Comprehensive Assessment of the Long-
term Effects of Reducing Intake of Energy), recently reported that 
a two year 25% caloric restriction is feasible for humans and pro-
vides health benefits, such as reduced inflammatory markers and 
cardiometabolic risk factors27–29. However, caloric restriction was 
associated with reduced bone mineral density and exercise was rec-
ommended to offset such adverse effects30. Notably, CALERIE was 
conducted in three independent centers and involved 218 overweight 
participants, suggesting that caloric restriction can be beneficial 
even in a very genetically heterogeneous group31. However, consid-
ering the results in monkeys, much longer and larger studies will be 
needed to know what the effects of CR on human healthspan.

Among the cellular alterations most closely associated with both 
caloric restriction and longevity mutations is the resistance to mul-
tiple stressors, which in most cases includes resistance to oxidative 
stress. The ability of caloric restriction to prevent the damage caused 
by exogenous toxins is likely to be associated with the protection, 
repair and replacement effects that prevent the age-dependent dys-
function caused by endogenous processes and toxic molecules32. 
An alternative hypothesis suggests that caloric restriction acts as a 
mild stressor that promotes hormesis, which refers to the beneficial 
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effects resulting from the cellular responses to mild, repeated 
stress33. Stress resistance should also be considered an important 
criterion for the successful development of caloric restriction-
mimetic dietary and pharmacological interventions.

Dietary restriction: macromolecular restriction 
without caloric restriction
The definition of dietary restriction has been expanded from an 
alternative description of caloric restriction to also encompass a 
broader scope of interventions, including short-term starvation, 
periodic fasting, fasting-mimetic diets, intermittent fasting, normo-
caloric diets with planned deficiencies (in particular macronutrients: 
proteins, carbohydrates, etc.), and time-restricted feeding. Most of 
these relatively novel interventions are reported to have beneficial 
effects on overall health and in some cases longevity. Fasting is an 
extreme dietary intervention describing either a complete lack of 
food intake or a 60% or higher food restriction. Intermittent fasting 
refers to practicing this intervention every other day whereas peri-
odic fasting refers to severe restriction for two or more days period-
ically (every two weeks, month, etc.). Caloric restriction and fasting 
share similar but often distinct effects on a number of biomarkers 
(e.g. reduced glucose, and insulin levels) suggesting that partially 
overlapping mechanisms are involved19. Both intermittent and peri-
odic fasting can increase lifespan, even when there is little or no 
overall decrease in calorie intake34,50.

Macronutrient restriction
In addition to periodic or intermittent fasting-based strategies as 
alternatives to caloric restriction, the restriction of specific macro-
nutrients (or macronutrient restriction) without the restriction 
of calories is among the most promising interventions that have 
emerged to promote healthy aging in humans. Among the differ-
ent types of macronutrient restriction, reduced intake of proteins 
and amino acids is the most effective pro-longevity intervention35,36.  
Simply reducing protein intake can deliver an equally potent impact 
on lifespan as dietary restriction in multiple model organisms35.  
A recent analysis of the National Health and Nutrition Examination 
Survey (NHANES) showed that low protein intake was associated 
with reduced overall mortality for those under 65 years of age37. 
Also, a high-carbohydrate, low-protein diet resulted in longer 
lifespan and improved cardiometabolic health, despite increased 
food intake and body fat38,39. Furthermore, the restriction of a  
single essential amino acid in a normal diet increased lifespan and 
stress resistance40–44. In flies, adding back essential amino acids to 
the caloric restriction diet decreased lifespan to that of the normally 
fed group36. Laboratory rodents fed a methionine-restricted diet dis-
played an extended lifespan with decreased age-dependent diseases 
and increased resistance to oxidative stress, in part due to increased 
antioxidant capacity44–48. A tryptophan-restricted diet also provided 
longevity and reduced age-dependent deterioration42,43,49 but has 
mainly been explored for neurological benefits, due to its role in 
serotonin synthesis. A fasting-mimicking diet, consisting of very 

low calorie and protein that leads to similar physiological response 
to fasting, including reduced levels of glucose and IGF-1 and 
increased levels of ketone bodies IGFBP-1, enhanced healthspan 
and rejuvenated the hematopoietic system while promoting adult 
neurogenesis50. Further studies on carbohydrate and fat restriction 
are needed to determine their role in dietary restriction.

Restriction of feeding time
Feeding schedule has also been shown to have a significant impact 
on health and survival. In flies, time-restricted feeding (limited to 12 
daytime hours every day) had profound effects on neural, peripheral, 
and cardiovascular physiology and improved sleep, body weight 
maintenance, and delayed signs of cardiac aging, under unchanged 
caloric intake and activity53. When mice were given access to food 
for only 8–9 hours during the active phase of the day, metabolic 
diseases induced by a high-fat, high-fructose, and high-sucrose 
diet, were reduced without lowering caloric intake51. The benefits 
of time-restricted feeding against such obesogenic diets were pro-
portional to the duration of the fasting each day52. Ad lib feeding 
during the weekend did not interfere with the protective effects of 
time-restricted feeding52. Notably, the restricted feeding pattern 
reversed the progression of pre-existing obesity and type II diabe-
tes, suggesting it has the potential to be a clinically relevant and 
feasible dietary intervention, useful to prevent and treat obesity and 
metabolic disorders52.����������������������������������������������       Considering that key metabolic factors, such 
as 5’ AMP-activated protein kinase (AMPK), sirtuins, and protein 
kinase B (AKT), are regulated by an interplay of circadian rhythm 
and feeding time54,55, dietary schedules should be more carefully 
studied in the context of dietary restriction.

Conclusion
Dietary interventions that extend healthspan and lifespan have 
evolved and have become much better characterized since the origi-
nal caloric restriction experiments performed by McCay in 1935. 
We now understand that its effects on aging are not simply the 
result of the reduced amount of calories consumed, but are also 
determined by diet composition, and can be achieved by periodic 
interventions which do not require an overall reduction in calo-
rie intake and which can be achieved without a complete lack of 
food intake during the periodic fasting cycles. Further studies are 
important to identify even less invasive and more effective dietary 
interventions that will cause coordinated and beneficial effects on 
healthspan.
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