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Accurate high throughput alignment via line
sweep-based seed processing
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Accurate and fast aligners are required to handle the steadily increasing volume of

sequencing data. Here we present an approach allowing performant alignments of short

reads (Illumina) as well as long reads (Pacific Bioscience, Ultralong Oxford Nanopore), while

achieving high accuracy, based on a universal three-stage scheme. It is also suitable for the

discovery of insertions and deletions that originate from structural variants. We compre-

hensively compare our approach to other state-of-the-art aligners in order to confirm its

performance with respect to accuracy and runtime. As part of our algorithmic scheme, we

introduce two line sweep-based techniques called “strip of consideration” and “seed har-

monization”. These techniques represent a replacement for chaining and do not rely on any

specially tailored data structures. Additionally, we propose a refined form of seeding on the

foundation of the FMD-index.
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W ithin computational genomics, there are various types
of alignment problems that can be classified as shown
in Fig. 1. These different types of problems require

different types of algorithmic approaches in order to be solved
efficiently. Applications that implement such algorithmic
approaches are called aligners. The approach presented here is for
the alignment of shorter sequences with respect to a single gen-
ome. Usually, these shorter sequences are the output of a DNA
sequencing system and are called reads. Alignments of such reads
with respect to a genome are called sequence-to-genome align-
ments. In contrast to genome-to-genome alignments1–3,
sequence-to-genome alignments typically do not require the
consideration of structural rearrangements. Smith-Waterman’s
algorithm4 provides optimal sequence-to-genome alignments on
the foundation of dynamic programming. However, due to its
high computational costs, this algorithm is not suitable for high-
throughput sequence alignment, where a large amount of reads
(up to several million reads) has to be processed in a reasonable
amount of time. For this purpose, several specially tailored
aligners have been proposed in recent years5–10. These aligners
aim at getting optimal alignments, but do not guarantee actually
obtaining them. They can be categorized according to the read
sizes that they are intended for. Short read aligners are meant to
align reads from 36 nucleotides (nt) up to a few hundred nt. Long
read aligners are meant to align reads of a few hundred nt up to
several thousand nt or even up to several ten thousand nt. Reads
that exceed 40,000 nt are possible already11. Instances of short
read aligners are SOAP212, GEM10, Bowtie 26 and BWA-MEM5.
For long read aligners this list can be extended by Minimap29,
BLASR7, GraphMap8 and NGMLR13. In an initial step, which is
called seeding14, most of these aligners search for short matches
(called seeds) between read and genome. These seeds may be
non-consecutive matches15–17. There are two popular approaches
for seeding18. It can either be done using some index as e.g. the
FMD-index19 or on the foundation of hash tables. The FMD-
index allows the computation of supermaximal exact matches
(SMEMs)19. Seeding with hash tables can be achieved in a
memory efficient fashion by using minimizers20. A magnitude of
techniques has been devised for seed processing that follows the
initial seeding. Notable here are the popular chaining21–23

approach and the line sweep paradigm. Chaining is used in many
state-of-the-art aligners as e.g. BWA-MEM5, Minimap29 and
Bowtie 26, while the line sweep paradigm is exploited in e.g.
Mashmap24 for the computation of homology maps between
genomes.

Sequence-to-genome alignment is next to sequence-to-
sequence alignment in Fig. 1. In contrast to sequence-to-
genome alignments, the aligned sequences are of similar sizes
there. A plain pairwise alignment represents the simplest variant
of a sequence-to-sequence alignment. It can be local or global. A
global alignment aligns two sequences with respect to their entire
length. With local alignments, dissimilar parts at the start and end
of both sequences may be omitted. Many sequence-to-genome
aligners, e.g. Bowtie 26, BWA-MEM5, Minimap29 and BLASR7,
rely on sequence-to-sequence alignments for filling gaps or for
alignment extension purposes. As for sequence-to-genome
alignments, it is possible to rely on dynamic programming25 for
finding optimal alignments here. But, such optimal alignments
are computationally expensive.

Aside of pairwise alignments, there are two additional sub-
categories within the family of sequence-to-sequence alignments:
With multiple sequence alignments more than two sequences are
aligned simultaneously26. Divergent homology detection tries to
identify statistically significant matches to a query sequence in a
database of reference sequences27–31.

Here we introduce an algorithmic scheme for efficiently
performing sequence-to-genome alignments for read sizes
ranging from 100 nt up to several ten thousand nt. The pro-
posed scheme allows high throughput alignments and shows an
excellent overall accuracy compared to other state-of-the-art
aligners as reported in the results section. Particularly, for
alignments comprising many insertions and deletions our
approach shows superiority compared to others. As part of
our scheme, we propose a refined form of seeding using
the FMD-index. This refined form of seeding relies on a divide-
and-conquer technique and computes seeds of higher relevance
than SMEMs as mentioned in the discussion. Further, we
propose two line-sweep-based techniques called strip of
consideration (SoC) and seed harmonization for quickly iden-
tifying promising positions on the genome and efficiently
computing sets of consistent seeds. In combined form, these
two techniques represent a drop-in replacement for chaining.
Further, our approach does not rely on specially tailored data
structures and it can be described concisely in pseudocode.
Using generated reads, we comprehensively compare several
state-of-the-art aligners with each other and with our approach.
An open source application called MA (Modular Aligner)
implements our approach. MA has a modular design and
is publically available via GitHub at https://github.com/ITBE-
Lab/MA.
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Fig. 1 Classification of alignment problems. The hierarchy classifies various forms of alignment problems. Our proposed approach belongs to the yellow
marked subgraph of the hierarchy
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Results
Approach outline. Our approach performs alignments by com-
pleting the following three stages: (1) Seeding, (2) seed processing
and (3) dynamic programming (DP). Seeding finds perfectly
matching substrings between a reference and a query. We do this
using the FMD-index19, which represents a full-text substring
index. In stage 2, the seeds obtained in stage 1 are filtered and
harmonized, which results in a consistent and spatially local set of
seeds. Remaining gaps between seeds are filled using DP25 in
stage 3. Apart from the FMD-index, our approach does not
require any specially tailored data structures.

Stage 1: Seeding on the foundation of an FMD-index requires
an extension process19,32. Our seeding follows a divide and
conquer approach that starts at the query center. By applying
maximal extensions, a query section (initially the entire query) is
decomposed into three intervals, where the central interval is
defined by two or more maximally spanning seeds. These
maximally spanning seeds are computed in a two-step process.
First, we maximally extend forwards and then we maximally
extend backwards. By doing so, we obtain one or more seeds that
all cover the same query interval. Then, we apply the opposite
order of maximal extensions for getting one or more additional
seeds. The intervals remaining on the left and right are processed
recursively. This approach creates less irrelevant seeds than other
seeding approaches6,7,19 as reported in the discussion.

Stage 2: Informally, two seeds are consistent, if they appear in
the same order on reference and query. Further, two seeds are
spatially local, if the gap between them is small enough so that an
alignment comprising both seeds can have a positive score. In
stage 2, sets of consistent spatially local seeds are computed in
order to get alignments with optimal scores. We call this stage
seed processing. Seed processing can be done by chaining21–23,33

but our approach does not rely on this technique. Instead, our
approach does seed processing in two steps called strip of
consideration (SoC) and seed harmonization. The SoC identifies
best-scored sets of spatially local seeds. Although not algorithmi-
cally realized this way, the computation of SoCs can be imagined
as follows: By sliding a fixed size window along the reference, we
search for the best-scored window positions, where the score of a
position is the accumulative length of all seeds within the window
on that position. The overall time complexity of the SoC
computational is limited by the complexity of an initial seed
sorting. If the index used for seed generation is able to deliver the
seeds in correct order, then the SoC can be computed in a single
pass in linear time.

Seed harmonization computes a consistent subset of a SoC-
seed set. As opposed to chaining, seed harmonization represents a
purging technique. In order to be consistent, two seeds s and s'
must fulfill one of the following two properties exclusively: Either,
the query and reference start positions of s are smaller than the
corresponding start positions of s′, or, the query and reference
end positions of s are larger than the corresponding end positions
of s′. In the case of a pair of inconsistent seeds, we purge one of
them, where we rely on the following decision principle: Using a
heuristic approach, we define a line, called δ-guideline that
roughly approximates the expected shape of the alignment. The
seed showing the larger distance to this line is purged, while the
closer seed is kept.

Theoretically, our purging approach could have a squared
complexity behavior. However, it requires highly specialized
examples to obtain such a worst-case behavior. Practically, the
runtimes are driven by an initial seed sorting that is required as
part of the harmonization.

Stage 3: For computing optimal alignments, there are several
DP algorithms4,25,34. They are all controlled by some scoring
scheme. Like other long read aligners5–7, we make use of banded

DP35,36. We primarily use it for filling small gaps occurring
between the seeds of a harmonized SoC-seed set. Due to this
limited use of DP, its overall computational penalty is propor-
tional to the dissimilarity of query and reference. So, in the case of
high seed coverage DP costs become low.

Aligner comparison based on generated reads. In the following,
we compare MA with several other aligners for short and long
reads, where we analyze Minimap29, NGMLR13, GraphMap8 and
Blasr7 for long reads as well as BWA-MEM5 and Bowtie 26 for
short reads. The lack of ground truth with real-world data pre-
vents the direct inference of an alignment’s accuracy. Hence, our
evaluation relies on simulated reads. For creating Illumina reads,
we use DWGSIM37. Pacific Biosciences (PacBio) reads and
Ultralong Oxford Nanopore (UON) reads are generated from
sampled error profiles. These error profiles are computed by
evaluating alignments obtained via Minimap2 for the datasets
PacBio-MtSinai-NIST and Ultralong Oxford Nanopore (UON) of
HG002 (AJ Son)38. Our approach resembles the technique used
by SURVIVOR13 and is comprehensively described in Supple-
mentary Note 1. Opposed to SURVIVOR, our approach incor-
porates distributions for the observed lengths of insertions and
deletions. This boosts the resemblance among generated reads
and real-world sequencer reads. The bar diagrams at the bottom
of Fig. 2 depict the distributions of reads with respect to the mean
error rates.

We now discuss the behavior of all inspected aligners. For long
reads (PacBio and UON), all aligners deliver a similar high
accuracy within the left third of the diagrams. Then, the accuracy
deteriorates with different speeds, where MA is only surpassed by
GraphMap. Further, there are significant differences with respect
to the runtime, where Minimap2 and MA belong to a more
performant group than GraphMap, Blasr and NGMLR.

The read distributions with PacBio and UON (as shown by the
bar diagrams) indicate the existence of notable amounts of reads
within the range of two times up to three times of the mean error.
Therefore, the different accuracy levels of the inspected aligners
within this range are relevant to their assessment. For all
generated reads, we assume that the location of the genome
section used as template for the read’s generation is the read’s
only correct position. If a template is chosen from an ambiguous
section of the reference genome, an aligner can deliver an
alignment for an alternative position of this ambiguous section.
Such different positions are assessed as wrong positions, because
they are unknown during read generation. This explains the
inability of all aligners to reach 100% accuracy for perfect reads
for all analyzed datasets.

An evaluation for short reads (paired Illumina reads) is given
in Fig. 3. Compared to long reads (PacBio and UON), Illumina
reads are less prone to sequencing errors, but they are more likely
to deliver ambiguous alignments. Therefore, the mapping quality
represents crucial information for this kind of reads. Figure 3 is
motivated by similar figures of Li5 and visualizes the behavior of
aligners depending on the mapping quality. The figure shows that
MA’s mapping behavior is superior to the behavior of Bowtie 2
but inferior to that of BWA-MEM. However, MA is roughly twice
as fast as BWA-MEM and three times faster than Bowtie 2.
Additional information can be found in Supplementary Note 8.
Among all aligners, MA is the only one that suits short as well as
long read alignments. As opposed to k-mer based approaches,
MA does not require adapted indices for different types of
sequencing techniques or genomes (Supplementary Fig. 7). This
proves the universal nature of the proposed algorithmic schemes.

Table 1 reports several additional benchmarks for all analyzed
aligners. The startup time reflects the initial timespan required by
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the aligner before it starts the actual alignment operation. The
index size denotes the amount of disk space observed for storing
an index of the human genome (GRCh38.p12). The peak memory
consumption (Peak mem) is measured using the tool Valgrind39.
MA can perform long read alignments while still having the
footprint of a short read aligner.

Discovery of indels caused by structural variants. Now we
additionally analyze MA with respect to the mapping of two types
of structural variants: insertions and deletions. For this purpose,
we generate reads on the foundation of the sampled UON
mean error and inject exactly one SV into each generated
read. According to an aligner’s CIGAR for a generated read, we
distinguish among six categories of SV detection accuracy:
Precise: The aligner reports the accurate SV position. Split:
The SV is reported accurately using two alignments. Indicated:
The positon of the SV is misplaced more than 10nt. Forced:
The SV is delivered in fragmented form. Trimmed: Reads are
clipped near the SV. Unaligned: There is no alignment close to
the SV position. A detailed explanation of these categories is
given in Supplementary Note 2. Figure 4 shows the outcome of
our comparison in form of bar diagrams. (The respective
diagrams for PacBio reads are in Supplementary Fig. 6). The
diagrams are motivated by the corresponding diagrams of
Sedlazeck et al.13, where our accuracy categorization is similar,

but our measurement approach is different (this strongly effects
the category “unaligned”). Despite these differences, both sets of
diagrams confirm a low level of precise SV (indel) detection for
GraphMap and Blasr. Within the category “precise” of Sedlazeck
et al.13, we distinguish a subcategory “split”, where the aligner
finds accurate end-points of the SV but reports the SV as chimeric
alignment (one primary alignment, one supplementary align-
ment). The justification for this additional category is the indirect
indication of the SV in contrast to the direct indication with
“precise”. MA recognizes SV via the SoC. Therefore, it produces
very few “split” alignments in contrast to Minimap2 and
NGMLR. This behavior is advantageous in ambiguous regions as
indicated in the discussion. All aligners show a similar decreasing
level in SV detection for increasing SV sizes. This is to be
expected because with increasing SV size an increasing portion of
the read is not related to the reference genome anymore.

Discussion
One highlight of our work is the proposed technique for com-
puting sets of consistent spatially local seeds. We compute these
sets using the SoC followed by seed harmonization. The efficiency
of this backend allows performant alignments of long reads using
SMEMs19 as shown by the runtimes for UON reads in Fig. 2.
Using our maximally spanning seeds, MA shows even better
performance as indicated by the runtimes for PacBio in Fig. 2.
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Fig. 2 Analysis of multiple aligners for various sequencing techniques. The top part of each diagram shows the computed accuracy behavior for various
aligners (Minimap2, NGMLR, Blasr, GraphMap, MA). The center part displays the observed total runtimes, where each measurement is for 103 reads. The
accuracy is measured in the range from 0 to 4 times of the sampled mean error. For example, the 60% accuracy of Minimap2 with PacBio is measured for
reads of 7.6% substitution rate, 12.3% insertion rate and 5.5% deletion rate (twice the mean error). The mean error for the different sequencing techniques
is shown in the boxes labeled mean. The bottom part of the diagram depicts the distributions of substitutions, insertions and deletions for various error
rates. Each bar spans a range of 0.5 with respect to a scalar extension/shrinking of the three individual components of the mean error. For example, the
first red bar indicates that roughly 25% of all PacBio reads have a substitution rate from 0% (error free) up to 1.9% (=0.5 · 3.8%). For insertions
(deletions), we count a sequence of consecutively inserted (deleted) nucleotides as one single insertion (deletion). As data source we rely on the GiaB data
for HG00238. Further details can be found in Supplementary Note 1 and Supplementary Note 8
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Aside from this strong efficiency, our backend has several sig-
nificant theoretical advantages compared to other backend
approaches:

Some aligners, e.g., GraphMap, rely on a bucketing technique
instead of the SoC. Bucketing techniques have several dis-
advantages compared to our approach: Bucket-boundary crossing
alignments require special consideration. If the size of all buckets
is fix, the number of buckets is proportional to the genome size.
Therefore, the costs (runtime and memory) for the discovery of
the best buckets become proportional to the genome size.

Another replacement for the SoC is chaining, which has
received a lot of attention in research already7,21–23. In the fol-
lowing, we will compare our technique to chaining.

All chaining techniques share the property that they sequen-
tially grow chains of seeds. This can be done without sophisti-
cated data structures5,9, but for the price of a squared worst-case
complexity. Alternatively, it can be done on the foundation of
special tailored data structures in time O (n log n log log n) (with
gap-costs21) or O (n log n) (without gap-costs23). However, the

latter solutions rely on complex data structures and, to our
knowledge, they have not been integrated into any aligner so far.
Our technique does not require sophisticated data structures and
is, due to its simplicity, highly performant. The time complexity
of our SoC computation is driven by the initial sorting of all
seeds. For specially constructed examples, the seed harmonization
can show a squared worst-case complexity. On average, however,
the seed harmonization can be expected to be completed in time
O (n log n), where n is the number of seeds.

The chaining approaches with gap costs7,21,22 cannot cope
well with overlapping seeds, because they cannot concatenate
them. The following example shall explain the severity of this
limitation: Let the string AATGG be the query and let the string
AATCTGG be the reference. There are two non-enclosed
(maximally extended) seeds (>1nt) on the reference AATCTGG,
which are overlapping on the query AATGG. (The over- and
underlines indicate the locations of both seeds on query and
reference). This overlap is triggered by the occurrence of a T on
either side of the C. Such overlaps occur with a probability of 7/
16 for seeds that are separated by indels (1/4 on both sides of
the indel; assuming random strings). Hence, such cases should
be quite common on nucleotide sequences. Chaining has to
drop one of these seeds, because a concatenation is impossible.
With our approach, the seed harmonization keeps both seeds.
The overlap among them does not cause any trouble.

In the case of pairs of contradicting seeds, one seed has to be
chosen in favor of the other seed or both have to be purged.
Chaining has to perform the required decision on the foundation
of the local context. Several strategies have been proposed for this
purpose (e.g. gap-costs21 or accumulative seed lengths23). Fig-
ure 5 shows an example, where these strategies run into an
inconvenient ambiguity. They cannot distinguish between both
paths due to equal gap costs and seed lengths. Our predicted
alignment approximation (introduced as δ-guideline) delivers
global information about the expected overall alignment path. In
our approach, we pick the seed closer to the δ-guideline. This
should be advantageous, because an alignment via s allows more
substitutions of gaps by matches or mismatches than an align-
ment via s′.

Alignments in repetitive regions of a genome demand for
long seeds because short seeds can show unmanageable
amounts of repetitive occurrences in these regions (Supplemen-
tary Fig. 7). In contrast, noisy reads demand for short seeds
because exact matches of an inappropriately chosen size
might not lead to sufficiently many seeds, which are required to
guarantee the discovery of the correct position. Therefore, fixed-
length seeds require sequencer specific fine-tuning for meeting
both requirements simultaneously (k-mer sizes must be adapted
to sequencing techniques). Variable-length seeds, as e.g.
SMEMs19, do not require such fine-tuning. Additionally, variable-
length seeds become longer and decrease in quantity with
increasing read quality, while fixed-size seeds are expected to
increase in quantity. (With fixed-size seeds, the information about
a long perfect match has to be decomposed into many small
pieces.)
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Fig. 3 Accuracy analysis for paired-end Illumina reads. The diagram shows
a comparison of the three aligners BAM-MEM5, Bowtie 26 and MA using
250nt paired-end reads generated by DWGSIM37. Each point corresponds
to its annotated mapping quality threshold n and reports accumulatively
about all alignments having a mapping quality ≥n. The y-axis informs about
the percentage of aligned reads for a specific mapping quality threshold and
the x-axis indicates the relative amount of wrong alignments among those
reads. For example, the point annotated with 110 on the red curve expresses
the following: MA aligns 80% of all simulated reads with a mapping quality
of ≥110 and roughly 0.01% of the corresponding alignments are wrong. By
default, 5% of the reads generated by DWGSIM are completely random.
For those reads, aligners should not deliver any alignment at all, which
explains the lack of 100% alignment rate for all aligners. All runtimes are
reported right to the aligner names within the legend. Each curve delivers a
statement about 106 read pairs. Further details are given in Supplementary
Note 8 and Supplementary Fig. 4

Table 1 Additional aligner benchmarks

MA Minimap2 NGMLR Blasr GraphMap BWA-MEM Bowtie 2

Startup time 2.8 s 7.1 s 4.6 s 143 s 46.0 s 2.6 s 1.9 s
Index size 5.7 Gb 7.1 Gb 5.3 Gb 13 Gb 41 Gb 5.7 Gb 4.4 Gb
Peak mem. 6.0 Gb 9.2 Gb 6.4 Gb 16.4 Gb 46.2 Gb 6.1 Gb 6.1 Gb

The benchmarks reported in column 1 to 5 are measured using simulated PacBio reads, while column 6 and 7 comprise benchmarks received via Illumina reads generated by DWGSIM. Supplementary
Note 8 describes the environment used for this analysis
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Maximally spanning seeds constitute a subset of SMEMs19.
Although being a subset, maximally spanning seeds can deliver
similar accuracy to SMEMs thanks to their high relevance
(Supplementary Fig. 8). This relevance aspect is now inspected
more in detail. A seed s is called relevant with respect to a query Q
if and only if s overlaps with the reference interval of Q (i.e., the
seed leads to the correct position on the reference). Let S be a set
of seeds and let S′ ⊆ S be the set of relevant seeds in S. We define
the relevance rate of S as the ratio |S′|/|S|. For simulated UON
reads (mean error sampled from HG002 (AJ Son) by Zook
et al.38), maximally spanning seeds deliver a relevance rate of
4.4% (i.e., 4.4% of all seeds lead to the correct position on the
genome), while for SMEMs the rate is 1.5% merely. With simu-
lated PacBio reads, the relevance rates are 5.0% (maximally
spanning) and 1.7% (SMEMs).

We inspect MA with respect to insertions and deletions that
represent SVs. Apart from indels, there are other forms of
structural variants as e.g. duplications, translocations and inver-
sions. Currently, MA does not distinguish between insertions and
duplications; it always reports insertions. Translocations can be
discovered via SoCs, if the translocated segment forms a sepa-
rated SoC of sufficient score. Such translocations are reported via
supplementary alignments. In the context of the SoC, sufficiently

sized inversions resemble translocations between forward and
reverse strand. Therefore, MA can report sufficiently sized
inversions via supplementary alignments like translocations. Our
SV analysis for insertions and deletions comprises a category
“split”. “Split” alignments report the SV accurately but indicate
that an aligner discovers both ends separately. However, if one of
both ends originates from an ambiguous region, the ambiguity
can prevent the SV discovery. SoC based seed processing avoids
such splitting and so it helps with the precise discovery of SVs in
such cases.

Overall, the proposed algorithmic approach allows a
modular application architecture as shown by our implementa-
tion (see Code availability section). MA’s codebase consists of
individual modules, realized in C++, which are coupled using a
dependency graph for getting a functional aligner. The module
coupling can be achieved via Python or C++ itself. MA com-
prises a graphical user interface application as well as a command
line application that are both realized via a C++ based module
coupling. The graph-based design allows modules to be inter-
changed seamlessly, which boosts flexibility and supports
experimental work with alternative aligner design. Therefore, MA
can be perceived as a general framework for aligner design and
construction.
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Methods
Basic notions and planar alignment representation. We consider alignments as
a path that follows a sequence of points ½ðrn; qnÞ j 0 � n � Aj j; rn; qn 2 N0� in a
two-dimensional plane, where |A| shall denote the alignment length. With this
plane, the reference R is on the x-axis and the query Q is on the y-axis, with |Q| < |
R|. Please note: The sequences r0, r1, …, r|A| and q0, q1, …, q|A| are both mono-
tonically increasing. Two consecutive points (rn, qn) and (rn+1, qn+1) are always
associated in one of the following four ways:

● Deletion: rn+1 = rn + 1, qn+1 = qn; visually this is equal to a horizontal path
extension.

● Insertion: rn+1 = rn, qn+1 = qn + 1; visually this is equal to a vertical path
extension.

● Match or Mismatch: rn+1 = rn + 1, qn+1 = qn + 1; visually both appear as
diagonal path extensions.

For example, in Fig. 5 a complete alignment via the orange path follows the
sequence: [(0, 0), (1, 1), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (8, 3), (9, 4),
(10, 5), (11, 6), (11, 7), (12, 8), (13, 9)]

The alignment process is decomposed into three separated stages: seeding, seed
processing and dynamic programming (DP). In the following three sections, we
will explain our approaches for all three stages in detail.

Seeding. Seeding computes a set of seeds, where a seed is a perfectly matching
section between query and reference. Each seed is represented as a triple (q, r, l),
where q and r are the starting positions on query and reference, respectively
q; r 2 N0ð Þ. l denotes the length of the seed l 2 Nð Þ. Hence, a seed describes the
equivalence of the interval q; qþ l½ Þ on the query with the interval r; r þ l½ Þ on the
reference. We do not consider spaced seeds or gaped seeds6,12,15–17.

In order to refrain from scanning the reference, our approach relies on a full-
text substring index40–42. We denote such an index as IR and expect it to

implement three functions I�R cð Þ; I R c;OR;s

� �
and I!R c;OR;s

� �
. We call I R and I!R

backward extension and forward extension, respectively. Given a single character c
(typically a nucleotide symbol), I�R cð Þ shall return the set OR,c containing the
positions of all occurrences of c in R. The position of a string is the index of its first
character. Given a set OR,s of all positions of the string s in R and a single

character c, I R c;OR;s

� �
shall return OR,c⊕s, where c ⊕ s denotes the string

concatenation of c and s. Similarly, I!R c;OR;s

� �
shall return OR,s⊕c. We assume that

all three operations are performed in time O(1). All OR,s shall be represented
implicitly (e.g. as suffix array intervals40) so that runtime does not depend on the
size |OR,s|. Further, the size |OR,s| must be obtainable in constant time. Our
approach is built on the foundation of FMD-indices19, but it is possible to use other
index-models (as e.g., Bi-directional BWT43 or enhanced suffix arrays32) as well.
Our code for the FMD-index as well as the pack management is imported from the
code of BWA-MEM5 and adapted to our needs. FMD-indices are based on FM-
indices, which form a space-efficient family of indices40. FMD-indices are
optimized for searching on genome data, where the forward strand and its reverse
complement can be expressed in terms of each other. FMD-indices allow extending
on both strands simultaneously19. Further, because any sequence and its reverse

complement have suffix arrays of equal size, FMD-indices support forward
extensions by interval decomposition.

Because our seeding technique relies on an implicit seed representation, it
cannot deliberately discover seeds with specific positional properties on the
reference. For this reason, the following three properties (1) fully covering, (2) non-
enclosed and (3) maximally spanning are defined on the foundation of query
positions.

(1) A set of seeds S is fully covering if and only if there is a seed (q, r, l) ∈ S for
each position i on the query (0 ≤ i < |Q|), so that q ≤ i < q + l. If the reference
alphabet ∑R is a proper subset of the query alphabet ∑Q, it is impossible to
compute a fully covering set of seeds. So, we assume

P
Q �

P
R .

(2) A seed (q, r, l) is non-enclosed with respect to a set of seeds S if and only if
there is no other seed (q′, r′, l′) ∈ S with q′ ≤ q < q + l ≤ q′ + l′.

(3) We now give two definitions that formalize the outmost query positions
reached by a set of seeds S: S:begin : ¼ min q j q; r; lð Þ 2 Sf g and
S:end :¼ maxfqþ l j q; r; lð Þ 2 Sg. A set of seeds S is maximally spanning
with respect to a query position i, if it fulfills the following property: For all
(q, r, l) in S we have q ≤ i < q + l and it is not possible to construct a seed (q′,
r′,l′) with q′ ≤ i < q′ + l′, so that q′ < S.begin or q′ + l′ > S.end.

We now propose an algorithm that, for a given query position i, computes a set
of maximally spanning non-enclosed seeds, where each seed covers i. Based on the
resulting seeds, we then compute a fully covering set of seeds.

Maximally spanning seeds. We call a repeated extension by I R ðI!R Þ, starting
from a query position i and continuing while I R ðI!R Þ yields a non-empty set of
matches, maximal backwards (forwards) extension. We now propose a scheme that
efficiently computes a subset of all non-enclosed seeds spanning over a given query
position i (0 ≤ i < |Q|). Starting from position i, we first maximally extend
backwards and obtain a set of seeds S. Then, we extend Smaximally forwards. S can
comprise one or multiple seeds, where all seeds in S have identical query intervals.
By starting from position i again, but using the opposite order of extensions (first
maximally forwards and then maximally backwards), we get a second set of seeds
S′. We return the union S ∪ S′ as outcome of the extension process. The
pseudocode for this algorithmic approach is given by the procedure MAXIMALLY
—SPANNING (IR, Q, i) in Supplementary Note 3. Trivially, MAXIMALLY—
SPANNING always delivers a non-empty set of seeds. We now prove that the
above extension process always finds maximally spanning seeds with respect to a
given start position i.
Corollary 1:
Let S' be the set of all seeds (q′, r′, l′) with respect to a query Q and a reference R that
span over a given query position i (0 ≤ q′ ≤ i < q′ + l′ ≤ |Q|). Let S be the set of seeds
computed by MAXIMALLY—SPANNING(IR, Q, i). There is no seed (q′, r′, l′) ∈ S′, so
that q′ < S.begin or q′ + l′ > S.end.

Proof: Assume, there is a seed (q′, r′, l′) ∈ S′, so that q′ < S.begin. This poses a
contradiction to the definition of the maximal backwards extension that continues while
there is a non-empty set of matches returned by the extension. Likewise, there cannot be
a seed with q′ + l′ > S.end. ■

Similarly to our approach, BWA-MEM uses a seeding algorithm that initially
finds non-enclosed seeds covering a given query position19. BWA-MEM then uses
this algorithm in order to compute a fully covering set of seeds. These seeds are
called supermaximal exact matches (SMEMs), where a seed is supermaximal
extended if and only if it is non-enclosed. Our maximally spanning seeds represent
a subset of SMEMs. We now explain which unrelated (and therefore irrelevant,
because they are not part of an optimal alignment) seeds are non-enclosed but not
maximally spanning. These unrelated seeds can be recognized by their query
location as follows: They are completely covered by two or more longer non-
enclosed seeds. Supplementary Fig. 8 graphically illustrates such situations. In an
average UON and PacBio alignment, 56.8% and 57.9% of all non-enclosed seeds
(SMEMs) are irrelevant and completely covered by longer non-enclosed seeds,
respectively. Merely 4.4% (UON) and 4.9% (PacBio) of these irrelevant seeds are
comprised within maximally spanning seeds.

Binary seeding. Binary seeding computes a fully covering set of seeds. In each
step, binary seeding decomposes a given query interval iQ ¼ b; e½ Þ into three
subintervals iL ¼ b; p1½ Þ; iC ¼ p1; p2½ Þ and iR ¼ p2; e½ Þ. The initial interval covers
the entire query. iC comprises the query area covered by the seed-set that originates
from position bþe

2 and is computed by a call of the procedure MAXIMALLY—
SPANNING. Binary seeding continues recursively on non-empty iL and iR. The
pseudocode for binary seeding can be found in Supplementary Note 4.
Corollary 2:
Binary seeding terminates for any given query Q and reference index IR.

Proof: Let m ¼ bþe
2 be the middle of the query interval iQ. Let S be the set of seeds

received by the call MAXIMALLY—SPANNING(IR, Q, m). All seeds in S overlap m and
are of size 1 at least. Thus, we have S.begin ≤ m and S.end > m. We decompose iQ into
iL ¼ b; p1½ Þ; iC ¼ p1; p2½ Þ and iR ¼ p2; e½ Þ, where p1 = S.begin and p2 = S.end. Since p2−
p1 > 0, we get (p1− b) + (e− p2) < e− b. Hence, the size of iL and iR is smaller than the
size of iQ. Calls for size zero return immediately. ■

Seed processing. Seed processing performs the collection of a set of consistent
seeds with the intention of acquiring an optimal alignment. It comprises two major
steps: Strip of consideration (SoC) and seed harmonization. A SoC comprises a set
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of seeds that cover a candidate region for an optimal alignment. Seed harmoni-
zation erases inconsistent seeds within a SoC.

Strip of consideration (SoC). Informally, two seed that can participate in an
alignment with a positive score are called spatially local. In order to define spatial
locality formally, we require the SoC width λ, which is defined as follows:

Let sM be the score for a match and let pO, pE be the penalties for opening and
extending a gap, respectively. Further, let |Q| denote the length of a given query Q.
The width of a SoC, denoted by λ, is computed as follows:

λ :¼ sM Qj j � pO
pE

: ð1Þ

The derivation of λ can be found in Supplementary Note 5. In order to get an
optimal value for λ with respect to DP, the parameters sM, pO and pE should be
equal to the respective parameters in DP.

Two seeds (q, r, l) and (q′, r′, l′) are considered spatially local if and only if |δ−
δ′| ≤ λ, where δ: = r− q and δ′: = r′− q′ (i.e. the distance between two δ-values
must be smaller than λ). Measuring the distances of seeds using their δ-values is
done in other aligners (as e.g. GraphMap8) as well.

We now explain our algorithmic approach for computing SoCs, which is related
to techniques used in the context of convolutional filters in image processing. We
assume that all seeds are stored as triples in an array AS. Initially, AS is ascendingly
sorted according to the δ-values of all seeds in AS. Using a left to right scan, where
we adjust a running score, we collect all SoCs that do not overlap with another
higher scored SoC. This scan is implemented by using two indices with respect to
AS. One index indicates the beginning of the SoC and a second index refers to the
end of the SoC. The indices are incremented, so that the referred seeds of both
indices keep a distance ≤ λ. By doing so, we trace a score that is equal to the
accumulative length of all seeds between both indices. For all non-overlapping
SoCs, the index of the first seed (with respect to the SoC) in AS and the score
(accumulative length of all seeds in SoC) are stored in a stack. This stack is finally
transformed into a priority queue44, where the order is defined by the SoC scores.
This priority queue is then forwarded to the seed harmonization step. The
pseudocode for the SoC computation can be found in Supplementary Note 6. The
time complexity of the SoC computation is limited by the initial sorting. Figure 6
illustrates an exemplary SoC.

Seed harmonization. Seed harmonization computes a consistent subset of SoC
seeds by applying a guided purging of contradicting seeds. Two seeds are consistent
if they occur in the same order on query and reference. All seed in an alignment
must be mutually consistent. For determining consistency, we introduce the
concept of shadows for a given seed s: Informally, each seed is characterized by its
start point and its end point in the two-dimensional plane spanned by query and
reference (using the point based alignment representation introduced before). If we
imagine a centered spotlight shining towards the seed, a shadow is created, where

the outer limits of the shadow are determined by the start and end-points defining
the seed. A seed completely within the shadow of s cannot be part of any consistent
alignment comprising s. Note, that a partially shadowed seed is still consistent.
Further, the spotlight can be placed on either side of s. This results in two shadows,
one in its second and one in its fourth quadrant. We denote these shadows by
σII and σIV, respectively. The indexing scheme for shadows was chosen in
accordance with the quadrant enumeration using Roman numerals in plane
geometry. Figure 7 gives a visual example. Formally, we define:

σII :¼ 0; r þ l½ Þ ´ q; Qj j½ Þ; ð2Þ

σIV :¼ r; Rj j½ Þ´ 0; qþ l½ Þ: ð3Þ
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Note, by using this definition σII and σIV are partially overlapping.
In the context of the seed harmonization, we compute a δ-guideline on the

foundation of all seeds in a SoC. The δ-guideline forms a decision tool during the
purging of conflicting seeds. For the computation of the δ-guideline, we create a
point cloud PSoC in the plane spanned by query and reference. PSoC comprises the
start point, center point and end point of all seeds of a SoC. Using random
sample consensus (RANSAC)45, the angle and position of the δ-guideline is
computed on the foundation of the point cloud PSoC. For a pair of inconsistent
seeds, we measure their proximity to the δ-guideline and delete the more
distant one.

In detail, the δ-guideline based removal happens according to the following
algorithmic scheme: Let σII (σIV) and σ 0IIðσ 0IVÞ be the second (fourth) quadrant
shadows of two seeds s = (q, r, l) and s′ = (q′, r′, l′), respectively. Our approach is
based on the observation that s′ is within σII if and only if σ 0II is encompassed by σII.
Accordingly, s′ is within σIV if and only if σ 0IV is encompassed by σIV. σ 0II within σII
is determined by (a) q ≤ q′ and r′ + l′ ≤ r + l; σ 0IV within σIV is determined by (b) r
≤ r′ and q′ + l′ ≤ q + l. The seeds s and s′ are conflicting if and only if σ 0II is within
σII or σ 0IV is within σIV. As described above, we keep the seed closer to the δ-
guideline and remove the other.

(a) and (b) represent instances of the interval-interval-inclusion problem.
We call our problem interval-interval-inclusion problem for avoiding confusion
with the notion interval-inclusion problem. The latter one is usually used in
the context of point inclusion decisions. However, we will do enclosure decisions
with respect to complete intervals here. The enclosure of complete intervals can be
efficiently solved using the line sweep paradigm. Using an example, Fig. 7 visually
describes the line sweep-based discovery of contradicting seeds by means of their
shadows. All details including pseudocode can be found in Supplementary Note 7.

The asymptotic worst-case complexity of the seed harmonization is O(|S|2),
where |S| is the number of seeds in a SoC. More detailed, the time complexity can
be expressed as O(|S|⋅ξ + |S|) with 0 ≤ ξ ≤ |S|, where ξ is smaller than or equal to
the number of contradictions of the seed with the most contradictions. Practically,
however, we observed that the initial sorting of the harmonization is the driving
runtime factor.

Dynamic programming. There can still be gaps between seeds after
harmonization. In order to fill these gaps, we rely on a bandwidth-limited
variant of dynamic programming (Needleman-Wunsch25 with affine gap penal-
ties). This represents a standard approach used by other aligners as well7,9.
Further, the first seed might not touch the query start and the last seed might not
extend to the query end. In this case, we rely on an adaptive banded semi global
dynamic programming approach. Practically, we relied on ksw2 (the algorithmic
approach was proposed by Gotoh35) for filling gaps and libGaba (based on the
algorithmic approach detailed in Suzuki et al.36) for performing semi global
extensions.

Heuristic optimizations. Our approach relies on several heuristic optimizations
for getting an improved runtime behavior. (1) After seeding, we probe the periodic
occurrence of sufficiently sized seeds and give up on failing queries. Our approach

is accumulative here. Formally, we require
P

s2S
sj j
α � Qj j

β , where α is a minimum

seed length, β is a segment size, Q the given query and S the set of seeds for Q. For
each segment, we expect one sufficiently sized seed in S at least. Once a query
passed this test, our approach delivers one alignment for this query at the mini-
mum. (2) There are two user defined thresholds minSeedSize and maxAmbiguity.
All seeds with a size below minSeedSize are removed. Further, if there are
more than maxAmbiguity many seeds with identical query intervals, we purge
them all. (3) During SoC computation, we purge SoCs using two user defined
thresholds γ and ξ. γ represents an imaginary minimum seed length and ξ (0 < ξ ≤
1) is a scalar factor with respect to the query length. For a query Q, we purge all
SoCs with a score (accumulated seed length) below max γ; ξ � Qj jð Þ (i.e., we demand
seeds of minimal accumulative size γ and ξ · |Q|). Whenever we complete the
harmonization of a SoC, we apply the above filter to the altered SoC. (4) The
harmonization of consecutive SoCs happens according to the order given by the
extraction from the priority queue. Depending on the query length, we apply two
different heuristics, where the first one represents a filtering technique and the
second one a stop-criteria. For long queries (roughly more than 1,000 nt), we
always inspect a predetermined number of SoCs and discard SoCs that get a lower
score than preceding SoCs. For shorter queries, we trace equality using a look-
ahead approach. If we observe an unaltered score for more than a given threshold
number of times, we break and move forward to DP. The latter two heuristics
represent the outcome of an observational optimization. Improvements with
respect to the filtering of harmonized SoC could be a valuable topic in the context
of further research.

Data availability
All data used in this study are available via the public sources listed below: GiaB HG002:
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/.
Homo sapiens GRCh38.p12 genome: https://www.ncbi.nlm.nih.gov/assembly. The
underlying data of all diagrams can be created using our evaluation tool (https://github.
com/ITBE-Lab/MA-EVAL) in combination with the above data sources.

Code availability
MA—The Modular aligner—is available under the MIT license at https://github.com/
ITBE-Lab/MA. The code for error profile sampling, read generation and aligner
evaluation is available under the MIT license at https://github.com/ITBE-Lab/MA-EVAL.
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