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ABSTRACT
Objectives  To describe the association between 
population size, population growth and opioid overdose 
deaths—overall and by type of opioid—in US commuting 
zones (CZs) in three periods between 2005 and 2017.
Settings  741 CZs covering the entirety of the US CZs are 
aggregations of counties based on commuting patterns 
that reflect local economies.
Participants  We used mortality data at the county level 
from 2005 to 2017 from the National Center for Health 
Statistics.
Outcome  Opioid overdose deaths were defined using 
underlying and contributory causes of death codes from 
the International Classification of Diseases, 10th revision 
(ICD-10). We used the underlying cause of death to identify 
all drug poisoning deaths. Contributory cause of death was 
used to classify opioid overdose deaths according to the 
three major types of opioid, that is, prescription opioids, 
heroin and synthetic opioids other than methadone.
Results  Opioid overdose deaths were disproportionally 
higher in largely populated CZs. A CZ with 1.0% larger 
population had 1.10%, 1.10%, and 1.16% higher opioid 
death count in 2005–2009, 2010–2014, and 2015–2017, 
respectively. This pattern was largely driven by a high 
number of deaths involving heroin and synthetic opioids, 
particularly in 2015–2017. Population growth over time 
was associated with lower age-adjusted opioid overdose 
mortality rate: a 1.0% increase in population over time 
was associated with 1.4% (95% CI: −2.8% to 0.1%), 4.5% 
(95% CI: −5.8% to −3.2%), and 1.2% (95% CI: −4.2% 
to 1.8%) lower opioid overdose mortality in 2005–2009, 
2010–2014, and 2015–2017, respectively. The association 
between positive population growth and lower opioid 
mortality rates was stronger in larger CZs.
Conclusions  Opioid overdose mortality in the USA was 
disproportionately higher in mid-sized and large CZs, 
particularly those affected by declines in population over 
time, regardless of the region where they are located.

INTRODUCTION
Drug overdose deaths increased exponen-
tially in the USA over the past 40 years.1 
Currently, opioids account for almost 75% of 
all overdose deaths in 2020.2 Opioid overdose 
mortality has grown steadily despite increased 
attention from policymakers, public health 
professionals and the general public.3 4 

National trends in opioid overdose mortality 
show that the number of opioid analgesic 
overdose deaths declined slightly between 
2011 and 2013, coinciding with interventions 
to limit prescribing and dispensing of opioid 
analgesics.5–8 After a short period, mortality 
began to rise again, a trend that was in part 
driven by heroin overdose deaths,4 followed 
by sharp increases in overdoses from illicitly 
manufactured synthetic opioids.9 10

Substantial evidence points to geograph-
ical patterning in the distribution of opioid 
overdose deaths. Studies initially identi-
fied hot-spots for overdose deaths clustered 
in areas of the country with high rates of 

Strengths and limitations of this study

	► In this study of patterns of opioid overdose mortal-
ity in US commuting zones (CZs), counts and rates 
of opioid overdose deaths were disproportionately 
higher in mid-sized and large CZs, compared with 
small CZs.

	► The phenomenon described here is known as super-
linear scaling, that is, disproportionally more deaths 
in large cities. However, our analysis showed a more 
complex pattern of mortality distribution, as CZs that 
experienced population growth over time had small-
er rates of opioid overdose mortality, compared with 
CZs that experienced stagnant growth.

	► The use of CZs as the geographical unit of analysis 
reflects commuting patterns and social interactions 
that may be at the core of the mechanisms under-
lying the associations between population metrics 
and opioid overdose outcomes.

	► This study does not aim to examine potential causal 
mechanisms between population metrics and opi-
oid overdose deaths. We recognise the complexity 
of the determinants of substance use disorders and 
the exploratory nature of our work.

	► Nonetheless, we believe that our approach can be a 
valuable way to understand broad patterns of opioid 
mortality. In particular, using population growth as a 
potential proxy for other macro-level determinants 
can be helpful to predict which areas may be at a 
greater risk of increases in opioid overdose mortality.
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long-term unemployment, such as Appalachia and the 
Rust Belt.1 11 But the demographic profile and geograph-
ical distribution of opioid overdose deaths have changed 
over time.10–13 Initial reports showed that mortality 
from prescription opioids was higher among older (vs 
younger) age groups, white (vs non-white) and rural (vs 
urban) communities.12 However, further studies found 
an increase in opioid overdose deaths in urban centres, 
particularly deaths due to heroin overdose in younger 
age groups.1 Data from 2017 show that opioid mortality 
in urban counties has surpassed that of rural counties.14 
However, little is known about how opioid overdose 
deaths are patterned across areas of different population 
sizes. Additional characterisation of the opioid epidemic 
may shed light on underlying dynamics of opioid over-
dose mortality across the urban–rural spectrum.

We adopted the framework of urban scaling to study 
the association between population size, population 
growth and opioid overdose deaths. According to this 
framework, cities share a set of universal characteristics 
that lead to non-linear patterning of outcomes among 
city residents.15–17 Specifically, superlinear and sublinear 
scaling are two potential responses to changes in city size. 
Superlinear scaling is observed when large cities have a 
disproportionately large number of outcomes compared 
with small cities. For example, large cities have higher 
economic outputs compared with smaller cities, even 
after accounting for population size.15 In other words, 
the economic output per capita is higher in large (vs 
small) cities. Sublinear scaling is observed when cities 
have a disproportionately small number of outcomes 
compared with small cities. Examples of sublinear scaling 
are common when dealing with features of the infrastruc-
ture of cities, such as the length of road networks; large 
cities need a relatively short road network compared with 
small cities due to economies of scale.15

Health outcomes also show scaling behaviours.18–22 
Sexually transmitted infections (ie, chlamydia, gonor-
rhoea and syphilis) in US cities scale superlinearly—
disproportionally more cases of sexually transmitted 
diseases occur in larger cities even after adjusting for 
population,19 potentially due to a relatively larger number 
of contacts among residents of larger cities.20 Conversely, 
motor vehicle crashes scale sublinearly, potentially due to 
shorter road network length.21 Additionally, while most 
studies on scaling have used population size as the main 
exposure, recent reports have also examined popula-
tion growth. For example, UK districts that have shrunk 
over time have higher age-standardised mortality,23 while 
Latin American cities with higher population growth 
have higher life expectancy.24 Population growth can be 
thought of as a cause of improved living conditions, such 
as when the share of the working-age population is larger 
than the non-working-age share of the population,25 or as 
a consequence of it, as increases in population can result 
from changes in economic opportunities, with economi-
cally strong areas attracting people from other regions.22 
Growing areas may receive more migrants, who tend to 

have improved health statuses,26 causing in part these 
growth–mortality associations.27

This study examines the urban scaling of opioid over-
dose deaths in the USA. The aims of this study are: (1) 
to estimate the scaling parameter of opioid overdose 
deaths in US commuting zones (CZs) between 2005 and 
2017; and (2) to estimate the independent associations of 
population size, growth and their interaction, with opioid 
overdose deaths. We hypothesised that a large number 
of contacts resulting from larger population counts will 
be associated with a disproportionally higher count of 
opioid deaths (superlinear scaling) due to an increase 
in successful matches between susceptible people and 
sources of prescription and illicit opioids.28 The relation-
ship between population growth and opioid mortality 
may be inverted, as population growth can be an indi-
cator of communities with a thriving economy and poten-
tially lower rates of mortality.29–31

METHODS
Study setting
We used data on all CZs of the USA from 2005 to 2017. 
CZs are aggregations of counties based on commuting 
patterns that were developed by the US Department 
of Agriculture32 (section 1 in the online supplemental 
material provides further details on CZ’s definition and 
relationship with county boundaries). Unlike counties, 
which reflect political boundaries, CZs reflect local econ-
omies, which may be important to the understanding of 
the macro-determinants of opioid outcomes. There are 
741 CZs that cover the entirety of the USA and provide 
a complete picture of the country, from rural to highly 
urbanised areas. These CZs have a perfect overlap with 
county boundaries allowing for computation of CZ-level 
measures by aggregating data from the counties that are 
part of the CZs.32 We analysed data in three periods roughly 
corresponding to different waves of the opioid epidemic: 
2005–2009 characterised by an increase in deaths due to 
prescription opioids, 2010–2014 marked by an increase in 
the number of heroin deaths and 2015–2017 marked by 
an increase in deaths associated with synthetic opioids, in 
particular illicitly manufactured fentanyl.33

Data sources
We used mortality data at the county level from 2005 to 
2017 from the National Center for Health Statistics34 and 
population estimates from the US Census Bureau for the 
same period.35

Patient and public involvement
No patients or members of the public were involved in 
this study.

Outcome variable
The main outcomes of this study are opioid overdose 
deaths, overall and by type of opioid involved. Opioid 
overdose deaths were defined using underlying and 
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contributory causes of death codes from the Interna-
tional Classification of Diseases, 10th revision (ICD-10). 
Consistent with the methodology used by the Centers 
for Disease Control and Prevention (CDC), we used the 
underlying cause of death to identify all drug poisoning 
deaths coded as accidental poisoning (X40–X44), self-
poisoning (X60–X64), homicidal poisoning (X85) and 
those of unknown intent (Y10–Y14). Then, we used the 
contributory cause of death to determine if the overdose 
was associated with opioids (ICD-10 codes: T40.0, T40.1, 
T40.2, T40.3, T40.4 and T40.6).36 37 In addition to the 
overall number of opioid overdose deaths, we also exam-
ined overdose deaths according to the three major types 
of opioid involved in the overdose, that is, prescription 
opioids, heroin and synthetic opioids other than meth-
adone, also following the CDC classification.37 Each 
death certificate may include more than one contribu-
tory code. Therefore, for the analysis by opioid type, the 
same death could have been included in more than one 
group. Approximately 25% of all drug poisoning deaths 
in the data analysed were coded as ‘unspecified’ (T50.9) 
with regard to the type of drug involved. To address this 
issue, we followed the approach used by Ruhm38 to assign 
unspecified drug codes to either opioid or non-opioid 
overdose group (section 2 in the online supplemental 
material provides further details on this procedure).

For the first aim, we operationalised the main outcome 
as the sum of all opioid overdose deaths in each CZ in 
three periods: 2005–2009, 2010–2014 and 2015–2017. 
We also calculated counts associated with each opioid 
type. For the second aim, we calculated age-standardised 
opioid overdose mortality rates, and by type, in the three 
periods. We used the age distribution of the US standard 
population in 2000 and the direct method of standardisa-
tion to calculate age-standardised rates per CZ per period.

Exposure variables
For the first aim, we used population size, operationalised 
as the natural logarithm (ln) of the average population in 
each of the three periods, as the main exposure. For the 
second aim, the exposures were population size (oper-
ationalised as in the first aim) and population growth, 
measured as the relative change in population between 
the first and last years of each period (eg, for the first 
period (2005–2009), the difference between the popu-
lation in 2009 and 2005, divided by the population in 
2005). We adjusted the models for region where the CZ is 
located (Northeast, Midwest, South and West).

Analytical approach
For descriptive purposes, we first examined mortality 
rates by groups of CZs classified into deciles of the popu-
lation distribution in 2005.

For the first aim, we estimated the scaling param-
eter for opioid overdose deaths by regressing the log of 
death counts due to opioid overdose on the log of the 
average population in each period. We used the following 
equation:

	﻿‍ In(Yi) = α + β × In(Size)i + εi‍�

Where Yi is the death count for the i-th CZ and Sizei is 
the population of the CZ. β is the scaling coefficient: β<1 
corresponds to sublinear scaling and β>1 corresponds 
to superlinear scaling. A total of 36, 32, and 42 CZs did 
not have any opioid overdose death in 2005–2009, 2010–
2014 and 2015–2017, respectively. We also calculated the 
scaling parameter deaths associated with three opioid 
types (prescription opioid, heroin and synthetic opioid). 
For the models by opioid type, we conducted a sensitivity 
analysis using a consistent subsample of CZs (those who 
had at least one death involving each opioid type).

To visually depict the relationship between opioid over-
dose deaths and population, we created three plots (one 
per period) with the log of population on the x axis and 
the log of opioid overdose counts on the y axis. We also 
mapped the residuals (ei above) to explore the geograph-
ical distribution of CZs with higher or lower mortality.

For the second aim, we used linear models to estimate 
the associations between population size, population 
growth and age-standardised opioid mortality rates, and 
test an interaction between population size and growth. 
We used the following equation:

	﻿‍

In(Yi) = α + β1 ∗ In(Size)i + β2 ∗ Growthi +

β3 ∗ In(Size)i ∗ Growthi + β4 ∗ Regioni + εi‍�

Where Yi is the age-standardised opioid mortality rate 
for the i-th CZ, Size is the average population for the 
period, Growth is the relative growth during the period, 
and Region is a vector of indicator variables for the census 
region of the CZ. We also examined separate models 
for prescription opioid, heroin and synthetic opioid 
mortality.

To assess whether differential quality of coding by area 
may bias our results, we tested for an association between 

Figure 1  Boxplots for age-standardised opioid mortality 
rate in groups of CZs by decile of the population in three 
periods. Population decile 1 has 75 CZs, 90% of which have 
less than 10 000 people. The other deciles have 74 CZs each. 
CZs, commuting zones; NCHS, National Center for Health 
Statistics.
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the proportion of records coded as unspecified drug and 
population size. This analysis showed that population 
size was not associated with counts of records coded as 
unspecified, except for the last period (2015–2017), in 
which larger CZs were more likely to have fewer counts 
of records with unspecified codes (online supplemental 
figure 1). The percentage of unspecified codes also varied 
across regions, which is likely to be related to differences 
in drug profile. In the first period, the median per cent 
varied from about 19% in the Northeast to 25% in the 
South. In the third period, the median per cent unspec-
ified varied from 3% in the Northeast to 14% in the 
Midwest (see online supplemental table 1 for median and 
percentile variation). Finally, we compared the results 
from the imputed data with the results from the orig-
inal data to check for potential biases resulting from the 
imputation.

Detailed results including mortality due to various 
combinations of opioids, visualisations of the relation-
ships between population metrics and overdose deaths, 
and per cent of unspecified poisoning deaths by CZs were 
included in an interactive app available here: https://​
drexel-uhc.shinyapps.io/Opioid_Scaling/. All analyses 
were conducted in STATA V.14.39

RESULTS
Figure 1 shows boxplots for age-standardised opioid over-
dose mortality among CZs grouped by decile of the popu-
lation in 2005–2009, 2010–2014 and 2015–2017. Median 
rates were generally higher for CZs in the top deciles of 
the population compared with smaller CZs. Median rates 
increased over time, particularly between the second and 
third period and in deciles 9 and 10, corresponding to 
CZs with more than 400 000 people.

Opioid overdose deaths scaled superlinearly in the 
three periods; opioid overdose deaths were dispropor-
tionately higher in larger CZs as compared with smaller 
CZs (table 1 and figure 2). A CZ with 1.00% larger popu-
lation had 1.10%, 1.10%, and 1.16% higher opioid death 
count in 2005–2009, 2010–2014, and 2015–2017, respec-
tively (table 1). These coefficients were within the range 
of those obtained from the original data (ie, before impu-
tation of unspecified drug codes) (online supplemental 
table 2). Death counts by opioid type show that the super-
linear behaviour of opioid overdose deaths was strongly 
driven by deaths involving heroin in the first and second 
periods, and deaths involving heroin and synthetic 
opioids in the third period. Prescription opioid deaths 

Table 1  Scaling coefficients for opioid deaths and subgroups of opioid in three periods

2005–2009 2010–2014 2015–2017

All opioids Scaling coefficient 1.10 1.10 1.16

95% CI 1.07 to 1.13 1.07 to 1.13 1.13 to 1.19

Prescription opioid Scaling coefficient 1.03 1.03 1.03

95% CI 0.99 to 1.07 1.00 to 1.07 1 to 1.06

Heroin Scaling coefficient 1.07 1.15 1.20

95% CI 1.00 to 1.13 1.10 to 1.2 1.15 to 1.25

Synthetic opioid Scaling coefficient 0.88 0.92 1.16

95% CI 0.84 to 0.91 0.89 to 0.95 1.10 to 1.21

For the analysis by type of opioid, that is, prescription opioid, heroin and synthetic opioid, more than one opioid can be reported in the death 
certificate. The number of commuting zones included in the models varies by period and by opioid type as commuting zones with zero deaths for 
any given outcome are dropped from the model when the outcome is log-transformed. A sensitivity analysis, including only commuting zones with at 
least one death involving each opioid type, resulted in the similar superlinear/sublinear scaling pattern (online supplemental table 3).

Figure 2  Opioid deaths in US commuting zones (CZs) in three periods: 2005–2009, 2010–2014 and 2015–2017. The line 
represents the regression line of the association between opioid overdose death counts and population counts. Red CZs are 
those with positive residuals (death counts are larger than predicted by the model) and green CZs are those with negative 
residuals (death counts are smaller than predicted).
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scaled superlinearly but the scaling coefficients were very 
close to 1, while heroin overdose deaths scaled superlin-
early in all periods. Scaling of synthetic opioids changed 
from sublinear in the first two periods to superlinear in 
the last period. Figures by opioid types are included in 
the interactive app. Coefficients obtained from sensitivity 
analysis using only CZs with at least one opioid death 
showed similar patterns (online supplemental table 3).

We also mapped the residuals from the scaling regres-
sion, finding that heroin deaths were concentrated in 
Rust Belt and Midatlantic CZs, prescription opioids 
deaths were concentrated in the Appalachia and some 
areas in the West, and synthetic opioid deaths were 
concentrated in the Appalachia, Rust Belt, Midatlantic, 
and New England (see interactive app).

Table  2 shows the associations of CZ population size, 
population growth and their interaction with age-
standardised opioid overdose mortality rates. There was 
evidence of a negative interaction between population 
size, that is, average population, and population growth, 
that is, change in population over time. For CZs that did 
not grow in population (stable), greater population size 
was associated with higher opioid mortality rates: a 1.0% 
higher population size was associated with an increase in 
opioid overdose mortality rate of 0.12% (95% CI 0.08% 
to 0.17%) in 2005–2009, 0.14% (95% CI 0.10% to 0.18%) 
in 2010–2014 and 0.16% (95% CI 0.12% to 0.20%) in 
2015–2017. However, the association became weaker for 
CZs where the population was growing over time: for 
every 1.0% increase in population growth, that is, change 
in population over time, the association between over-
dose mortality and population size across CZs declined 
(moved closer to the null) by 0.01%, 0.01%, and 0.02% in 
2005–2009, 2010–2014, and 2015–2017, respectively.

In CZs at the median population (about 100 000 resi-
dents), greater population growth was associated with a 
decline in opioid mortality: 1.0% increase in a CZ’s popu-
lation growth, that is, change in population over time, was 
associated with a decline in the opioid overdose mortality 
rate of −1.4% (95% CI −2.8% to 0.1%), −4.5% (95% CI 

−5.8% to −3.2%), and −1.2% (95% CI −4.2% to 1.8%) in 
2005–2009, 2010–2014, and 2015–2017, respectively. The 
negative interaction between population size and growth 
demonstrates that the association between higher growth 
and lower opioid mortality was stronger for larger CZs.

Table  3 shows the associations of CZ population size, 
growth, and their interactions with age-standardised 
mortality involving prescription opioid, heroin, and 
synthetic opioid. Larger population size was associated 
with higher overdose mortality involving prescription 
opioid, heroin and synthetic opioid in some periods, but 
the pattern of association was not consistent across opioid 
types or periods. Population growth was consistently 
associated with lower mortality by any opioid type in 
2010–2014 but this pattern changed in 2015–2017 when 
coefficients for all drugs moved closer to the null. The 
interaction between population size and growth did not 
have a consistent pattern.

Scatterplots showing the relationship between age-
standardised opioid mortality rates and population 
growth can be found in the interactive app, which also 
shows the CZs with the highest mortality rates.

DISCUSSION
Opioid overdose deaths increased in US CZs between 
2005–2009 and 2015–2017. Opioid deaths were dispro-
portionally concentrated among large CZs, consistent 
with a superlinear scaling behaviour, and this pattern 
intensified over time. We also found that population 
growth was associated with lower opioid mortality and 
that this association was stronger for larger CZs. Last, we 
observed differences in the patterns by type of opioid, 
such that deaths involving heroin scaled superlinearly 
throughout the study period, deaths involving synthetic 
opioids shifted from a sublinear to a superlinear scaling 
behaviour, and deaths involving prescription opioids had 
a scaling behaviour close to linear.

The diversity of analytical approaches used here, 
examining opioid mortality rates and counts of opioid 

Table 2  Associations between opioid overdose mortality rates per 100 000 (log 2), population growth and size in three periods

2005–2009 2010–2014 2015–2017

Growth (% change for a 1% increase in population for a CZ with 
population 100 000)

−1.4 (−2.8 to 0.1) −4.5 (−5.8 to –3.2) −1.2 (−4.2 to 1.8)

Size (% change for a 1% change in average population for a stable CZ) 0.12 (0.08 to 0.17) 0.14 (0.10 to 0.18) 0.16 (0.12 to 0.20)

Growth×size −0.01 (−0.01 to 0.00) −0.01 (−0.02 to to 001) −0.02 (−0.04 to to 0.01)

Rate in a stable CZ with a population 100 000 in the NE region 5.6 (4.6 to 6.9) 8.5 (7.0 to 10.3) 16.9 (13.7 to 21.1)

Observations 705 709 699

R2 0.1641 0.1644 0.1756

95% CIs in parentheses.
Models were adjusted for a categorical variable representing region (five categories): NE (reference), MW, S, W and region combinations. Twenty-seven CZs crossed 
regional lines creating the combinations NE–MW (n=1), NE–S (n=1), MW–S (n=17), MW–W (n=5) and S–W (n=3).
Population size was centred at 100 000 (approximately the median population).
Coefficients for growth were exponentiated and calculated as a per cent change in opioid overdose mortality rate per 1% growth in population using the formula 
(2β–1)×100. Rates in stable CZ with population 100 000 for each period are shown for reference and are derived from the exponentiated coefficients.
CZ, commuting zone; MW, Midwest; NE, Northeast; S, South; W, West.

https://dx.doi.org/10.1136/bmjopen-2021-048831
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overdose deaths and using groups of CZs by deciles of 
population, points to a pattern in which opioid overdose 
deaths are disproportionally more common in larger 
CZs after accounting for population size, particularly in 
more recent years. These patterns are broadly consis-
tent with the hypothesis that opioid overdose deaths 
increase disproportionally as a function of population 
size. Under the urban scaling framework, a dispropor-
tionally large number of contacts, experienced in more 
urbanised areas, increases the potential for successful 
matches, which explains superlinear behaviours observed 
for outcomes such as wealth and innovation.40 Similar 
mechanisms might explain the results observed here. 
For opioids, these successful matches may involve suscep-
tible populations and sources of prescription and illicit 
opioids. However, we also found great variability in opioid 
mortality rates across CZs with similar population sizes, 
particularly in the group of large CZs (deciles 9 and 10) 
in the last period. This points to the existence of other 
potential factors in these large CZs that are likely to be 
related to overdose deaths that are beyond population 
metrics, and is part of a divergence in mortality rates 
across geographies in the USA.41 Future research should 
aim to identify potential explanations related to differ-
ences in exposure to opioids or differences in policies to 
reduce harm among people who use opioids.

Over and above the relationship between larger CZ 
population and higher overdose rates, we found that CZs 
with stagnant or declining population have higher opioid 
overdose mortality rates. Economically distressed areas 
of the country may experience population decline over 
time. In fact, between 2008 and 2017, US metropolitan 
areas concentrated nearly 99% of all jobs and population 
growth.42 To the extent that population growth is concen-
trated in cities with strong economies, our findings are also 
consistent with literature linking high opioid mortality 
rates and lack of economic opportunity.29–31 43 In addi-
tion, the interaction between population size, across CZs, 
and population growth shows that positive population 
growth over time becomes an even stronger predictor of 
lower opioid mortality rates in larger CZs.

Our findings related to mortality by opioid type show 
that the superlinear scaling of opioid deaths was largely 
driven by deaths involving heroin and synthetic opioids, 
with synthetic opioids strongly influencing the results 
observed in 2015–2017. This finding is consistent with 
the rise in the supply of fentanyl, an illicitly manufactured 
synthetic opioid that entered the US drug markets starting 
around 2013.44 Fentanyl powder and pill presses are used 
to produce pills that resemble prescription opioid pills or 
added to heroin by drug dealers to increase its effects.44 
Recent evidence suggests that fentanyl is sought out by 
people who use drugs in some drug markets.45 Data on 
fentanyl seizures indicate that these synthetic opioids 
were initially concentrated in specific parts of the country 
such as the Appalachian region, the Midatlantic and New 
England.9 This is consistent with our residual maps (inter-
active app). Our results highlight the potential for future Ta
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increases in opioid mortality if fentanyl ‘spreads’ to other 
regions of the country given the potential for superlinear 
scaling and the large number of people exposed in highly 
urbanised areas. In light of these findings, broad public 
health strategies that increase access to naloxone and 
medication for opioid use disorders46 47 and allow for 
safer use of opioids and other substances, for example, 
supervised injection facilities,48 49 are critical to mitigate 
harm among people who use opioids.

An important feature of our study is the use of CZs 
as a geographical unit of analysis.50 Studies examining 
the geographical patterning of drug fatalities have used 
county-level or state-level outcomes.30 38 51 State-level and 
county-level analyses are important to assess the effect 
of policies adopted by states and local governments. 
However, these analyses do not account for the complex 
networks across counties that share interconnected econ-
omies. CZs reflect commuting patterns and social interac-
tions that may be at the core of the mechanisms associated 
with the scaling nature of opioid overdose deaths.

This study has limitations. First, this study does not aim 
to examine potential causal mechanisms between popula-
tion metrics and opioid overdose deaths. Several factors, 
including broader social determinants of health and 
factors of the local context, have a role in the occurrence 
of overdose deaths.52 In addition, strategies such as harm 
reduction programmes have the potential to substan-
tially reduce the burden of opioid overdose mortality.51 
If the distribution of these factors is also associated with 
population size or growth, the associations we found can 
be a consequence of confounding. We recognise the 
complexity of the determinants of substance use disor-
ders and the exploratory nature of our work. Nonethe-
less, we believe that our approach can be a valuable way to 
understand broad patterns of opioid mortality. In partic-
ular, using population growth as a potential proxy for 
other macro-level determinants can be helpful to predict 
which areas may be at a greater risk of increases in opioid 
overdose mortality.

Lastly, there are important limitations related to the ascer-
tainment of the cause of death and the use of contributory 
cause of death to classify drug poisoning deaths, particu-
larly when examining overdose deaths by type of drug.53 
Determining which drugs were involved in an overdose 
often requires comprehensive toxicology testing, including 
testing of novel psychoactive substances, but in reality toxi-
cology testing is not always comprehensive or timely.53 We 
conducted a number of secondary or sensitivity analyses, 
which showed consistent results. However, we cannot rule 
out the existence of bias in the ascertainment of opioid over-
dose deaths, particularly in the analysis by type of opioid 
(ie, prescription opioids, heroin and synthetic opioids). We 
assume that the distribution of unspecified drug codes occurs 
independently of other factors beyond those we adjusted for 
in the imputation procedure, including the type of death 
investigation system, local economic and demographic 
profile, and geography. While the majority of poisoning 
deaths during our study period were associated with opioids, 

deaths involving psychostimulants with abuse potential (eg, 
methamphetamines) and cocaine began to increase around 
2013.10 Thus, our results about the last period might have 
overestimated the number of opioid-associated deaths to 
some extent, although fentanyl was the drug that showed the 
greatest increase during that period (either in isolation or 
associated with other drugs).10 Variation in toxicology testing 
across jurisdictions may also have affected our results. In this 
scenario, it is possible that the associations observed were at 
least partially explained by the existence of more compre-
hensive toxicology testing in larger metropolitan areas of the 
country, thus revealing a more accurate picture of the types 
of drugs associated with overdoses in these jurisdictions.

In summary, our study shows that population dynamics 
of local areas, specifically size and growth, may have a role 
in the distribution of opioid deaths in the USA. Our find-
ings expand the understanding of the opioid epidemic 
by demonstrating that several large and mid-sized CZs 
across the country have disproportionally high number 
of opioid overdose deaths. The potential superlinear 
scaling of opioid overdose deaths due to recent economic 
and social consequences of the COVID-19 pandemic is 
a particularly worrisome implication from these results.
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