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Objective. To our knowledge, there is no broad
genomic analysis comparing skin and synovium in pso-
riatic arthritis (PsA). Also, there is little understanding
of the relative levels of cytokines and chemokines in skin
and synovium. The purpose of this study was to better
define inflammatory pathways in paired lesional skin
and affected synovial tissue in patients with PsA.

Methods. We conducted a comprehensive analysis
of cytokine and chemokine activation and genes repre-
sentative of the inflammatory processes in PsA. Paired
PsA synovial tissue and skin samples were obtained
from 12 patients on the same day. Gene expression
studies were performed using Affymetrix HGU133 Plus
2.0 arrays. Confirmatory quantitative real-time polymer-
ase chain reaction (PCR) was performed on selected
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transcripts. Cell populations were assessed by immuno-
histochemistry and immunofluorescence.

Results. Globally, gene expression in PsA synovium
was more closely related to gene expression in PsA skin
than to gene expression in synovium in other forms of
arthritis. However, PsA gene expression patterns in skin
and synovium were clearly distinct, showing a stronger
interleukin-17 (IL-17) gene signature in skin than in
synovium and more equivalent tumor necrosis factor
(TNF) and interferon-yy gene signatures in both tissues.
These results were confirmed with real-time PCR.

Conclusion. This is the first comprehensive molec-
ular comparison of paired lesional skin and affected
synovial tissue samples in PsA. Our results support clini-
cal trial data showing that PsA skin and joint disease are
similarly responsive to TNF antagonists, while IL-17 an-
tagonists have better results in PsA skin than in PsA
joints. Genes selectively expressed in PsA synovium might
direct future therapies for PsA.

Psoriatic arthritis (PsA) is an inflammatory joint
disease associated with psoriasis. Up to 30% of patients
with psoriasis develop PsA (1). The pathogeneses of both
the skin disease and the joint inflammation of PsA are not
well defined. Early studies designated psoriasis and PsA as
Th1-mediated diseases with a focus on interferon-y (IFNy)
and interleukin-2 (IL-2) (2). More recent studies identify
IL-17 as the most critical cytokine for sustaining skin
disease, with important interactions between IL-17 and
tumor necrosis factor (TNF) within skin cells (3,4). IL-17
has also been implicated in PsA, with an increased number
of Th17 cells in the peripheral blood, synovial fluid, and
synovial tissue of PsA patients (5-7). In addition, synovio-
cytes of PsA patients show increased expression of 1L-17
receptor (IL-17R) compared with the synoviocytes of pa-
tients with osteoarthritis (OA) (7).

There is little understanding of the relative levels
of cytokines and chemokines within skin and synovium
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in PsA. Moreover, to our knowledge, there is no broad
genomic analysis comparing skin and synovium in PsA.
The purpose of this study was to better define the
inflammatory pathways of PsA in both skin and joint
pathogenesis in matched lesional skin and affected
synovial tissue specimens in patients with PsA. We
conducted a comprehensive analysis of the cytokine and
chemokine activation that defines Th1, Th2, Th9, Th22,
and Th17 T cell subsets as well as genes representative of
the inflammatory processes that are seen in psoriatic
skin and joint disease. Our results establish marked
within-patient differences in gene expression between
lesional skin and affected synovium in PsA patients.
Specifically, IL-17 expression is significantly higher in
skin than in synovium, while IL-6 expression is higher in
synovium.

PATIENTS AND METHODS

Twelve patients (10 women and 2 men) who fulfilled the
Moll and Wright criteria for PsA (8) were enrolled at the Arthritis
Treatment Center, Frederick, MD (see Supplementary Table 1,
available on the Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.38995/abstract). All patients
had active inflammatory arthritis and active psoriatic skin lesions,
were negative for rheumatoid factor, and received stable doses of
medications including nonsteroidal antiinflammatory drugs and
methotrexate. Patients receiving biologic agents, such as TNF
inhibitors, were excluded unless they had undergone a therapeu-
tic washout for at least 2 weeks. Samples of lesional psoriatic skin
tissue and synovial tissue from inflamed joints were obtained from
the same patient on the same day. The study was approved by the
Institutional Review Board of The Rockefeller University, and all
patients gave informed and written consent to participate in the
study. The study was performed in accordance with the ethics
principles of the Declaration of Helsinki. We chose not to use 6
scalp samples because our laboratory has described significant
differences in gene expression between scalp and nonscalp sam-
ples mostly due to hair follicle-related genes (Sudrez-Farifias M,
Krueger JG: unpublished observations).

Arthroscopy and skin biopsy. Synovial tissue samples
from the most actively inflamed and accessible joint were recovered
using arthroscopically guided synovial biopsy procedures. Psoriatic
lesional skin was obtained from all patients by 4-mm punch biopsies.
All tissue samples were snap-frozen in liquid nitrogen, stored at
—80°C, and shipped on dry ice to the Laboratory of Investigative
Dermatology at The Rockefeller University.

RNA extraction and microarray. One nanogram of total
RNA was subjected to 2-cycle complementary DNA synthesis ac-
cording to the Affymetrix protocol with a slight modification (9).
Labeling of complementary RNA transcripts with biotin was per-
formed using a GeneChip IVT Labeling kit (Affymetrix). Fifteen
micrograms of biotin-labeled RNA was fragmented and hybridized
to HGU133 Plus 2.0 arrays (Affymetrix), washed, stained, and
scanned according to the manufacturer’s protocol.

Quantitative real-time polymerase chain reaction
(PCR). The preamplification quantitative real-time PCR tech-
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nique was used for measuring various genes in total RNA
according to the manufacturer’s protocol (Applied Biosys-
tems) and as described previously (10). The sequences of
primers and probes (Applied Biosystems) used in this study are
shown in Supplementary Table 2, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/doi/
10.1002/art.38995/abstract.

Immunohistochemistry and immunofluorescence. Im-
munohistochemical and immunofluorescence analyses were
performed on cryostat tissue sections (4 PsA skin samples and
4 PsA synovium samples) with the antibodies listed in Supple-
mentary Table 3 (available on the Arthritis & Rheumatology
web site at http://onlinelibrary.wiley.com/doi/10.1002/
art.38995/abstract) as previously described (10).

Statistical analysis. Quality control of microarray data
was conducted using a Harshlight package (http://asterion.
rockefeller.edu/Harshlight/index2.html) (11) and ArrayQuality
Control packages in R (http:/www.r-project.org/). A GC-
RMA algorithm was used to calculate expression values (12).
Expression values across diseases for skin and synovium were
adjusted by organ using a linear model. Changes in gene
expression were modeled using mixed-effects models, which
simultaneously account for across-group differences and
within-patient correlation across skin—synovium samples. Hy-
potheses of interest were tested in an R Limma package
framework using contrasts. P values were adjusted for multiple
hypotheses using the Benjamini-Hochberg approach, which
controls the false discovery rate (FDR). Contrasts were also
used to obtain the transcriptomics estimates adjusted by organ.

Clustering. Unsupervised clustering of expression pro-
files for differentially expressed genes was carried out using
Pearson’s correlation and an average agglomeration algorithm.

Gene set variation analysis (GSVA). To summarize
per-patient differences across pathways, we also used GSVA
(13). GSVA is a per-sample generalization of commonly used
gene set enrichment analysis in which a pathway/gene set score
is produced for each sample, thus allowing statistical modeling
of functional pathways as done in gene-based analysis. GSVA
estimates variation of a set of genes over the sample popula-
tion. It uses a Z score, which is a statistical measurement of a
score’s relationship to the mean in a group of scores.

Upstream Regulator Analysis. An Ingenuity Pathway
Analysis (IPA) (Ingenuity Systems; www.ingenuity.com) Up-
stream Regulator Analysis tool was used to identify upstream
regulators that may be responsible for expression changes in
the data set.

RESULTS

Global comparison of transcriptional profiles of
PsA skin and synovium. To gain a global view of the
gene expression profiles of the PsA skin samples and
PsA synovium samples, a principal components plot was
used in which we also included normal skin, normal
synovium, rheumatoid arthritis (RA) synovium, OA
synovium, and systemic lupus erythematosus (SLE) sy-
novium gene sets obtained from GEO (GEO accession
nos. GSE7307 and GSE14195) and previously reported
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data (14,15). The skin and synovium are inherently
different organs and the profiles were clearly separate
(see Supplementary Figure 1, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.38995/abstract).

We then adjusted for organ-specific genes, which
allowed us to focus on disease-specific genes by compar-
ing diseased tissue with normal tissue from the same
organ. Gene expression profiles in PsA skin (the remain-
ing 6 nonscalp samples), PsA synovium, normal skin,
normal synovium, RA synovium, OA synovium, and
SLE synovium gene sets were again visualized on a
principal components plot (Figure 1). There were
many differences in gene expression data between the
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different forms of arthritis. For example, one clear
difference between RA synovium and PsA synovium
was the greater B cell signature in RA (Belasco J,
Suérez-Farinas M, Krueger JG: unpublished observa-
tions). Gene expression in PSA synovium was much
more closely related to gene expression in PsA skin than
to gene expression in synovium in other forms of arthri-
tis, after adjustment for organ (skin and synovium)
differences. However, even after accounting for organ-
specific genes, while the skin and synovium of PsA
patients were closely related, they were clearly distinct,
showing disease-related differences. When we directly
compared PsA skin with PSA synovium (prior to adjust-
ment for organ differences), 2,590 probe sets were
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Figure 1. Principal components analysis showing that gene expression in psoriatic arthritis (PsA) synovium was much more closely related to gene
expression in PsA skin than to gene expression in synovium in other forms of arthritis, after adjustment for organ (skin and synovium) differences.
The principal components plot shows gene expression profiles in lesional skin from PsA patients, synovium from PsA patients, synovium from
osteoarthritis (OA) patients, synovium from rheumatoid arthritis (RA) patients, synovium from systemic lupus erythematosus (SLE) patients, skin
from healthy controls, and synovium from healthy controls after adjustment for organ differences. Lines connecting samples of skin and synovium
from PsA patients indicate matched pairs. While skin and synovium from PsA patients are closely related, they are clearly distinct even after
accounting for organ-specific genes, showing that there are disease-related differences between the 2 tissues. PC = principal component.
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up-regulated in PsA skin and 3,057 probe sets were
down-regulated in PsA skin. After adjusting for organ-
specific differences, we compared the PsA skin and PsA
synovium transcriptomes and still found many differen-
tially expressed genes, with 809 probe sets up-regulated
in PsA skin and 2,008 probe sets down-regulated in PSA
skin (see Supplementary Table 4, available on the
Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.38995/abstract).

We also compared PsA synovium with normal syno-
vium (the PsA synovium transcriptome), PsA skin with nor-
mal skin (the PsA skin transcriptome), and the PsA synovium
transcriptome with the PsA skin transcriptome (Supplemen-
tary Table 4 and Figure 2A). It must be noted that even if
probe sets are “shared” by both groups, the expression is not
necessarily present in the same direction or magnitude. Our
organ difference-adjusted comparison of the PsA skin and
PsA synovium transcriptomes accounts for this as described in
Patients and Methods. For example, integrin beta 8 (ITGBS),
a shared gene, had a fold change of 4.99 in the PsA synovium
transcriptome but a fold change of —3.76 in the PsA skin
transcriptome. This indicates a different direction of differen-
tial expression between the transcriptomes. Kynureninase
(KYNU), also a shared gene, had a fold change of 4.59 in the
PsA synovium transcriptome and a fold change of 21.56 in the
PsA skin transcriptome. This indicates the same direction of
differential expression but a different magnitude. Another
shared gene, TGFBR1, had a fold change of 2.22 in the PsA
skin transcriptome and a fold change of 2.04 in the PsA
synovium transcriptome, indicating the same direction and
magnitude of differential expression between the transcrip-
tomes.

We generated a heatmap of the top 50 shared
genes with the same direction and similar magnitude of
differential expression between the PSA synovium tran-
scriptome and the PsA skin transcriptome (Figure 2B).
Figure 2C shows a heatmap of all the genes that were
shared but had a different magnitude of differential expres-
sion between these transcriptomes. Lesional skin from
patients with psoriasis vulgaris was included as a positive
control for disease activity in PsA skin. Normal skin,
normal synovium, and lesional skin gene sets from patients
with psoriasis vulgaris were obtained from previous reports
or GEO (GEO accession no. GSE7307) (15,16).

To further highlight the major differences in the
transcriptomes of these diseases, we generated a heatmap of
the genes most differentially expressed (after adjustment for
organ differences) between PsA skin and PsA synovium
(using normal synovium and lesional skin from patients with
psoriasis vulgaris as controls) (Figure 2D). Overall, the pat-
tern of gene expression in PsA skin lesions was similar to that
in psoriasis patients without arthritis. Even after adjustment
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for organ differences, the top genes included genes that were
intrinsic to skin and that were highly up-regulated inflamma-
tory genes. Many were keratinocyte specific, such as S100
calcium binding protein A7A (S100A7A), S100A9, lipocalin 2
(LCN2), and involucrin (IVL). Some were immunologically
active genes often seen at epithelial barriers such as interleu-
kin 36 gamma (IL36G) and interleukin 36 receptor antagonist
(IL36RN), which are known to be increased in psoriasis (17).
A small number of genes were highly up-regulated in PsA
synovium but were overall down-regulated or showed no
change in PsA skin, psoriatic skin, normal skin, or normal
synovium. These included genes specific to synovium such as
Frizzled family receptor 8 (FZDS), cytokine-like 1 (CYTLI),
and collagen type II, alpha 1 (COL2A1); these genes may
indicate the destruction and repair that are occurring in this
tissue (18-21).

Gene expression in PsA skin. Many of the top
genes differentially expressed in PsA skin compared with
normal skin were terminal differentiation genes such as
S100A7A, S100A9, S100A8, and S100A7 (fold change of
>19) as well as peptidase inhibitor 3 (PI3) and small
proline-rich protein 2C (SPRR2C) with fold changes of
74 and 24, respectively (see Supplementary Table 5,
available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.38995/
abstract). Defensin, beta 4A (DEFB4A), a psoriasis
hallmark gene, was increased, with a fold change of 80.
In addition, IL36G, IL36RN, IL19, LCN2, and CXCL1
were all increased, with fold changes of >2.

Gene expression in PsA synovium. The top genes
differentially expressed in PsA synovium compared with
normal synovium were structural in nature and related
to formation and breakdown of joint tissue. These
included matrix metalloproteinase 1 (MMP1), COL2A1,
WNT1 inducible signaling pathway protein 1 (WISP1),
hyaluronan synthase I (HASI1), integrin-binding sialo-
protein (IBSP), FZDS§, and bone morphogenetic protein
receptor, type II (BMPR?2). In addition, collagen type
XVIII alpha 1 (COL18A1) (an antiangiogenic protein)
and coagulation factor V (F5) were among the top 50
differentially expressed genes (22) (see Supplementary
Table 6, available on the Arthritis & Rheumatology web
site at http://onlinelibrary.wiley.com/doi/10.1002/
art.38995/abstract).

Analysis of disease-related transcripts in skin
versus synovium by functional pathways. Our gene lists
were subsequently interrogated using IPA Upstream
Regulator Analysis. TNF was predicted to be an up-
stream regulator in both synovium and skin; however,
TNF was much more strongly activated in the PsA
synovium transcriptome (Z = 3.767) than in the PsA
skin transcriptome (Z = 0.540). IFNG was also pre-
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A Venn Diagram of Differentially Expressed Probe Sets in
PsA Skin and PsA Synovium Transcriptomes
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Figure 2. A, Venn diagram showing numbers of differentially expressed probe sets in psoriatic arthritis (PsA) skin (PsA skin versus normal skin)
and PsA synovium (PsA synovium versus normal synovium) transcriptomes prior to adjustment for organ differences. Genes listed in boxes indicate
biologically relevant genes in the top 60 differentially expressed genes (DEGs) (fold change of >2, false discovery rate [FDR] of <0.05) uniquely
or commonly expressed by each tissue. B, Heatmap showing the top 50 genes shared by PsA skin and PsA synovium transcriptomes in which no
difference in dysregulation is observed. C, Heatmap showing all the genes shared by PsA skin and PsA synovium transcriptomes in which the
magnitude of dysregulation differs between skin and synovium (fold change of >2, FDR of <0.05). D, Heatmap comparing the 50 most up-regulated
and 50 most down-regulated genes in PsA skin versus PsA synovium after adjustment for organ-specific genes. Heatmaps show PsA synovium (n =
12), normal synovium (n = 9), PsA skin (n = 6), psoriatic lesional skin (n = 33), and normal skin (n = 30) tissue samples.

dicted to be activated in both synovium and skin (Z = IL17R was activated in skin (Z = 2.795) (Figure 3A).
2.099 and Z = 2.293, respectively). IL17-related up- VEGF and TGFBI, factors involved in increased vascu-
stream regulators were not detected in synovium, while larization (23), were activated upstream regulators in
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Figure 3. A, Ingenuity Pathway Analysis (IPA) Upstream Regulator Analysis showing that IL17 upstream regulators are present only in skin, while IFNy
and TNF are present in both skin and synovium. B, Gene set variation analysis (GSVA) of curated gene sets in psoriatic arthritis (PsA) synovium (PsA
synovium versus normal synovium) and PsA skin (PsA skin versus normal skin) transcriptomes. Values are the mean * SD of the Z score of the given set
of genes. P values indicate significance or a trend of each transcriptome (PsA synovium or PsA skin) independently. # = P < 0.1; #x = P < 0.05; s =
P < 0.01. IL-17 = interleukin-17; TNF = tumor necrosis factor; IFNy = interferon-y; RHE = reconstructed human epidermis.

synovium (Z = 3.938 and Z = 2.047, respectively) but
not in skin. WNT3A, which is antiosteoclastogenic (18),
was predicted to be an upstream regulator only in
synovium (Z = 2.379). Upstream Regulator Analysis
also identified several transcription regulators (see Sup-
plementary Tables 7 and 8, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.38995/abstract). The transcription factor

v-ets erythroblastosis virus E26 oncogene homolog 1
(ETS1) was predicted to be activated only in synovium
and not in skin. Ets-1 regulates genes involved in
development, differentiation, and cell proliferation in-
cluding angiogenesis, cartilage regeneration, and inhibi-
tion of Th17 cell development (24,25).

To evaluate the differences between the PsA skin
transcriptome and the PsA synovium transcriptome at
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the pathway level, we used GSVA (Figure 3B). We
evaluated relative genomic scores within various gene
sets that represent T cells, T cell axes, epidermis,
keratinocytes, macrophages, fibroblasts, and curated
groups of genes that we have used in prior studies or
retrieved from the Broad Institute database (26-32).
Overall, both PsA skin and PsA synovium had an IFNy
gene signature. While the IL-6 signaling pathway was
not significantly expressed in either transcriptome, there
was a trend toward positive IL-6 signaling in synovium
but not in skin. The TNF receptor signaling pathway was
significantly expressed only in synovium and was also
expressed, although not significantly, in skin. The Th22
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. @ o
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o
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i B Synovium
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cell/IL-22 and IL-17 axes were only significantly positive
in the skin and the IL-17 axes trended toward being
negative in the synovium.

Analysis of inflammatory gene expression by
real-time PCR. Gene arrays provide a means to analyze
complex expression pathways, but their limited sensitiv-
ity does not allow reliable quantification of most primary
cytokine transcripts. We used real-time PCR as a more
sensitive measure and to further compare the immuno-
logic similarities and differences between PsA skin and
PsA synovium (Figure 4). Expression of messenger RNA
(mRNA) for many cytokines and chemokines was ob-
served, but this expression did not differ significantly
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~ Thi Th2 Th17 )
-- Ii N ]
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Figure 4. Confirmation of microarray results by quantifying mRNA expression of biologically significant genes by real-time polymerase chain
reaction and normalizing expression values to the housekeeping gene hARP. There is significant elevation of mRNA for interleukin-17A (IL-17A)
and IL-17F in psoriatic lesional skin compared with inflamed psoriatic synovium (P = 0.01 and P = 0.001, respectively). In addition, the gene
DEFB4A and mRNA for IL-1« are significantly increased in psoriatic skin compared with affected synovium (both P < 0.0005). Messenger RNA
for IL-6 and CXCL2 is significantly increased in synovium (P < 0.05 and P = 0.05, respectively). Values are the mean * SD. * = P < 0.05; s =
P = 0.001. IFNy = interferon-y; IL-2RA = IL-2 receptor antagonist; TNFa = tumor necrosis factor ; MMP-1 = matrix metalloproteinase 1.
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between psoriatic skin and synovium as determined by
real-time PCR. Messenger RNA was expressed for IFN+y
(defining Th1 cells), IL-4 and IL-13 (defining Th2 cells),
IL-22 (defining Th22 cells), IL-9 (defining Th9 cells),
and FoxP3 (defining Treg cells). Messenger RNA for
TNFa, IL-1B8, IL-8, and matrix metalloproteinase 1
(MMP-1) was also expressed, but this expression did not
differ significantly between psoriatic skin and synovium.
However, expression of mRNA for IL-6 and CXCL2 was
significantly increased in synovium compared with lesional
skin (P =< 0.05), and the gene DEFB4A and mRNA for IL-1«
were significantly increased in skin compared with synovium
(P < 0.0005). Of the Th17-polarizing cytokines, mRNA for
IL-23A was present in both skin and synovium with no
significant difference in expression; expression of mRNA for
both IL-17A and IL-17F was significantly higher in skin than
in synovium (P = 0.01 and P = 0.001, respectively).

To verify that the low levels of cytokines or the
absence of cytokines based on microarray data were
not due to a lack of inflammatory cells, immunohis-
tochemistry was performed to identify T cells
(CD3+), macrophages (CD163+), and myeloid den-
dritic cells (DCs) (CD11c+) (see Supplementary Fig-
ure 2A, available on the Arthritis & Rheumatology web
site at http://onlinelibrary.wiley.com/doi/10.1002/
art.38995/abstract). The staining indicated that T cells
were present in both skin and synovium, although
there seemed to be fewer T cells in synovium. Mac-
rophages appeared abundant in both skin and syno-
vium. Myeloid DCs were also present in both tissues,
but fewer myeloid DCs were present in synovium.
Immunofluorescence performed with anti-CD11c and
anti-TNF showed greater overall CD11c in skin than
in synovium, and TNF appeared to be present in skin
and synovium in relatively equal amounts (see Sup-
plementary Figure 2B). Many CD11c+ DCs expressed
high levels of TNF, as reported previously for inflam-
matory DCs in psoriatic lesions (33).

Immunohistochemistry was also performed for
IL-17, IL-17R, and IL-6 (see Supplementary Figure 3,
available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.38995/
abstract). There was generally more IL-17 and IL-17R
staining in PsA skin than in PsA synovium. Also, there
was generally more IL-17R staining than IL-17 staining
in both PsA skin and PsA synovium. In PsA skin, IL-17
staining appeared more localized to the upper regions of
the epidermis (stratum granulosum), while IL-17R stain-
ing was panepidermal. IL-6 staining was apparent at
similar levels in both skin and synovium.
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DISCUSSION

To our knowledge, this study provides the first
comprehensive genomic and molecular comparison of
matched lesional skin and affected synovium in PsA.
Our global gene expression analysis indicates that syno-
vial tissue in PsA is much more similar to psoriatic
lesional skin than to synovial tissue in other forms of
arthritis such as RA, OA, and SLE. Given this informa-
tion, the idea that treatments of other forms of inflam-
matory arthritis can be equally effective in PsA is likely
flawed. This analysis clarifies the importance of differ-
entiating PsA from other forms of arthritis.

One might think that there are similar pathomecha-
nisms of disease between the involved skin and synovium in
PsA. However, our comparative gene array analysis revealed
that thousands of genes are differentially expressed between
paired skin and synovium in PsA. Skin and synovium are very
different organs, and it could be predicted that there would be
numerous differences in gene expression. However, even with
adjustment for organ-specific genes, there is still a great deal
of differential gene expression.

Indeed, our study showed that there are clear
differences in inflammatory gene expression between skin
and synovium. We found a strong IL-17-related gene
signature in skin relative to synovium. Many up-regulated
genes in skin were IL-17 signature genes. For example, the
genes S100A7, S100A8, and S100A9 have been shown to
be up-regulated in vitro by IL-22, IL-17, or both cytokines
(29,34-36). PI3 and SPRR2C were found to be IL-17
signature genes in IL-17-induced keratinocytes (4). IL-17A
induces IL-36 cytokines, and IL-36 and IL-17 are synergis-
tic for the production of S100A7 and TNF« (37). IL-17
promotes expression of CXCL1 in epithelial cell popula-
tions such as keratinocytes and synoviocytes (4,38,39).
IL19, DEFB4A, LCN2, and CCL20 are also known to be
classic IL-17 target genes (4,28).

The top differentially expressed genes in synovium
were not generally related to an IL-17 gene signature.
Instead, many of the top genes and predicted upstream
regulators were related to cartilage and bone breakdown
and formation (MMP1, COL2A1, WISP1, HASI1, IBSP,
FZD8, BMPR2, WNT3A) or the angiogenesis that is
present in PsA (COL18Al, F5, VEGF, TGFB1) (23).
IL-17 can induce MMPs, but very few other IL-17-related
genes were expressed in psoriatic or normal synovium, and
expression of mMRNA for MMP-1 was not significantly differ-
ent between psoriatic skin and synovium by real-time PCR
(28). Indeed, the expression of all the detectable IL-17-
related genes in PsA synovium was not significantly different
from that in normal synovium. For example, there were no
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significant differences in CXCL1, S100A7A, and LCN2,
which are all considered to be IL-17-regulated products (28).

IPA identified IL.17R as an upstream regulator for the
PsA skin versus normal skin gene set, but not for the PsA
synovium versus normal synovium gene set. In addition,
GSVA showed a general trend for IL-17-related pathways to
be more highly expressed in skin than in synovium, which
further supports our IPA findings. It should be noted that
many of the curated gene sets used for GSVA were devel-
oped in skin. However, the gene sets developed in skin
contain many genes seen in a variety of tissues. In general, a
strong signal can override the few genes that are specific for
skin. For instance, even in gene sets developed in skin for
IFNvy and TNF, it is possible to see a significantly elevated
genomic score in synovium compared with skin. When possi-
ble, we included gene sets curated from connective tissue such
as fibroblasts, and we also included the Gaffen gene set (28),
which more generally includes genes from various cells and
conditions. The Gaffen IL-17 gene set showed a positive trend
in skin and a negative trend in synovium. As further confir-
mation of a stronger IL-17 gene signature in skin, mRNA for
IL-17A and IL-17F was significantly elevated in skin com-
pared with synovium by real-time PCR. Our data point to an
overall stronger IL-17 gene signature in PsA skin, reflecting
the IL-17 activation pathway that is seen and well understood
in psoriasis in general.

Another upstream regulator identified by IPA
only in PsA synovium was ETS1, a transcription factor
involved in angiogenesis, cartilage regeneration, and
inhibition of Th17 cell development (24,25). Overex-
pression of ETS1 has been shown to increase COL2A1
promoter activity. We found a significant increase in
COL2AL1 (fold change of 10.48) in PSA synovium com-
pared with normal synovium. In addition, Ets-1 plays a
role in angiogenesis and is associated with increased
expression of VEGF (40). In our study, VEGF was
predicted to be an activated upstream regulator in
synovium but not in skin. It is possible that the decreased
level of mRNA for IL-17 in PsA synovium compared
with PsA skin is due to the inhibition of Th17 cell
differentiation by an increase in Ets-1 in T cells in the
synovium. This hypothesis needs further confirmation.

Unlike IL-17, TNF appears to have a more similar
gene signature in skin and synovium. TNF was predicted by
IPA to be an upstream regulator in both skin and syno-
vium, and GSVA also suggested that TNF may play a role
in both organs. In addition, expression of mRNA for TNFa«
was not significantly different between skin and synovium
by real-time PCR. TNF is not transcriptionally regulated,
so analysis of downstream genes is essential. IL1 is down-
stream of TNF and was up-regulated in both skin and
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synovium, while expression of IL6 (regulated by bioactive
IL1) was even higher in synovium.

It should be considered that we compared only skin
and synovium in our study. Enthesitis and bone erosion/
proliferation play important roles in PsA (41,42). It is possible
that our findings would be further elucidated by also analyzing
entheses and bone in a similar group of patients. If IL-17
contributes to arthritic inflammation as suggested by some
recent studies, the effect might be mediated by high levels of
IL-17 in the circulation with effects on target cells that are not
in synovial tissues (e.g., osteoclasts or other inflammatory cells
at joint entheses) (5,6). Our immunohistochemical staining
does show a higher amount of IL-17R compared with IL-17.
This may indicate that there are many receptors on cells in the
synovium, but not a great deal of IL-17. This suggests the
potential for IL-17 effects in synovium, with the proviso that
IL-17 is coming from the circulation or other nearby cells. In
addition, IL-23 appears to be expressed in both skin and
synovium. Again, it is possible that IL-23 could be produced
and influence Th17 cells outside the synovium and that we are
just not seeing a synovial response. Also, it is possible that
TNF antagonists may work by modulating circulating IL-17.

In addition to comparing only skin and synovium in
this study, there are other limitations that should be consid-
ered. Our sample size was relatively small, and a larger
confirmatory study would be worthwhile. Also, the severity of
skin lesions was not addressed, as we did not use any index of
lesional severity at the time of recruitment. However, our
group has investigated thin-plaque and thick-plaque psoriasis,
and the gene profile is not very different across severity
(Suérez-Farifias M, Krueger JG: unpublished observations).
Also, we included lesional skin from patients with moderate-
to-severe psoriasis vulgaris as a positive control. Even if PsA
lesional skin had less extensive involvement than typical
psoriatic lesions, the characteristics of PsA lesional skin seem
similar overall to those of psoriatic lesional skin. The top
differentially expressed genes in the gene expression profile
we present in the PsA skin transcriptome are very typical for
psoriasis in general and include terminal differentiation genes
and the psoriasis hallmark gene DEFB4A. Also, we were not
able to make in-depth comparisons of many of the tissues
mentioned in our report as this was outside the scope of this
study. For example, we included data on psoriatic lesional
skin, but we did not provide a thorough description of the
comparison of psoriatic lesional skin and PsA lesional skin.
This comparison deserves a deeper evaluation and will be
addressed in future research. For the purposes of this study,
psoriatic lesional skin was included only as a positive control
for skin disease activity.

Our findings indicate that treating both skin lesions
and arthritis with the same modalities may show different
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patterns of efficacy between the skin and the joint. Al-
though TNF antagonists are somewhat effective treat-
ments for both psoriasis without arthritis and skin/joint
manifestations of PsA, treatment failures occur in at least
30-40% of the overall PsA population, and alternative
treatments are needed (43,44). IL-17 has emerged as the
most critical cytokine for sustaining skin disease. In pso-
riasis vulgaris trials, the emerging I1.-17 antagonists yielded
response rates that reflect virtual elimination of disease
(45,46). IL-12/IL-23 antagonists, which ultimately suppress
IL-17 signaling, show marked lesional skin improvement in
psoriasis but less robust results for PsA joint symptoms
(47-49). It is not clear whether IL-17 will play a major role
in PsA. The lower responses of PsA to ustekinumab and
brodalumab (compared with TNF antagonists) seem to
predict that this cytokine will not have the dominant role in
arthritis that it has in controlling the skin phenotype
(47,50). In addition, some clinical trials have shown flares
of arthritis in a small number of PsA patients whose skin
disease was well controlled with ustekinumab (51,52).

Our findings of a relatively stronger IL-6 gene
signature in synovium may point toward another target in
PsA. GSVA showed a trend toward positive expression of
IL-6 pathways in synovium and negative expression in skin.
In addition, real-time PCR further confirmed our GSVA
IL-6 pathway findings, with mRNA for IL-6 significantly
increased in synovium compared with skin. Tocilizumab, a
humanized monoclonal antibody directed against the IL-6
receptor, has been used in a small number of PsA patients
with mixed results (53,54). A larger study would be needed
to show more definitive results.

Our data provide insight into the outcomes of the
most recent clinical trials of TNF antagonists, 1L-12/1L-23
antagonists, and IL-17 antagonists in psoriasis and PsA. These
clinical trials make it clear that the better the match between
pathogenic molecules and therapeutic antagonists, the more
effective the therapeutic agent may be. In PsA this is compli-
cated by the differences in immunopathology of the skin and
joint symptoms. We believe that our current expectations for
treatment of PsA need to be reconsidered in light of emerging
data on the treatment of psoriasis without arthritis. IL-17
appears to be a critical molecule for driving psoriatic skin
disease. An equivalent pivotal molecule remains to be identi-
fied for PsA joint disease.
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