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Abstract
It is debated whether training with a working memory (WM) task, particularly n-back, can improve general WM and reasoning
skills. Most training studies found substantial improvement in the trained task, with little to no transfer to untrained tasks. We
hypothesized that training does not increaseWM capacity, but instead provides opportunities to develop an efficient task-specific
strategy. We derived a strategy for the task that optimizes WM resources and taught it to participants. In two sessions, 14
participants who were taught this strategy performed as well as fourteen participants who trained for 40 sessions without strategy
instructions. To understand the mechanisms underlying the no-instruction group’s improvement, participants answered ques-
tionnaires during their training period. Their replies indicate that successful learners discovered the same strategy and their
improvement was associated with this discovery. We conclude that n-back training allows the discovery of strategies that enable
better performance with the same WM resources.
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Working memory (WM) is defined as the ability to simulta-
neously retain and manipulate information within short time
periods (Baddeley, 1992, 2003). The number of items that can
be explicitly accessed and manipulated (i.e., WM capacity) is
extremely limited and poses a strict bottleneck to human cog-
nition (Cowan, 2001). Indeed, WM capacity is strongly cor-
related with fluid intelligence (Engle, Laughlin, Tuholski, &
Conway, 1999; Süß, Oberauer, Wittmann, Wilhelm, &
Schulze, 2002) and with academic achievements (Baddeley,
1992; Bayliss, Jarrold, Baddeley, & Gunn, 2005; Hitch,
Towse, & Hutton, 2001; Swanson, 2004). One of the most
studiedWM tasks is the n-back task (e.g., Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008), in which participants are presented
with a sequence of serially presented stimuli and are asked to
respond when a stimulus is repeated at an interval of exactly n
stimuli. This task requires holding the last n items, plus the
new item, in WM. When each stimulus is presented, partici-
pants must compare it to their predicted target stimulus (the

item presented n intervals earlier), respond if there is a match
(target), and then update their WM representation to form a
prediction for the next target stimulus. Since performance in
this task is highly correlated with general intelligence scores,
even compared with other WM tasks (Jaeggi, Buschkuehl,
Perrig, & Meier, 2010), it has become a common task for
training aimed at generally enhancing WM and fluid intelli-
gence (e.g., Au et al., 2015; Redick, 2019; Schwaighofer,
Fischer, & Bühner, 2015).

Training WM unequivocally yields improvement in the
trained task, but the generalization of this benefit has been
heatedly debated (e.g., Redick, 2019). Some meta-analyses
and systematic reviews supported the existence of significant
transfer (Au, Gibson, Bunarjo, Buschkuehl, & Jaeggi, 2020;
Karbach & Verhaeghen, 2014). Yet others found no transfer
to untrained tasks, or, at best, minimal transfer to very similar
tasks (Au et al., 2015; Melby-Lervåg & Hulme, 2013; Melby-
Lervåg, Redick, & Hulme, 2016; Redick, 2019; Soveri,
Antfolk, Karlsson, Salo, & Laine, 2017). Gathercole,
Dunning, Holmes, and Norris (2019) concluded that reliable
transfer ofWM training occurs only when the new task is very
similar in structure (“near”) to the trained task and requires
similar cognitive routines.

Others (e.g., Jacoby & Ahissar, 2013, 2015; Melby-Lervåg
et al., 2016; Redick, 2019; Sala & Gobet, 2017; Simons et al.,
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2016) noted that “far” transfer is more characteristic of studies
without an active-control group. In these studies, a no-contact
control group that did not practice any task was included,
either as the only control (e.g., Jaeggi et al., 2008) or as an
additional control group, whose inclusion is crucial for
attaining a significant transfer effect (e.g., Anguera et al.,
2013). The no-contact group is not given monetary (or equiv-
alent) rewards or stimulating personal attention, both of which
positively impact performance. Therefore, differences in
transfer may stem from the mere existence of a training pro-
tocol rather than from the specific training protocol of the
experimental group (Foroughi, Monfort, Paczynski,
McKnight, & Greenwood, 2016; Melby-Lervåg & Hulme,
2013; Shipstead, Redick, & Engle, 2012). Studies that used
active control groups (trained with a similarly demanding task
and a similar reward protocol) typically found either
small near-only transfer (Linares, Borella, Teresa, Id,
& Carretti, 2019) or no transfer at all (Jakoby, Raviv,
Jaffe-dax, Lieder, & Ahissar, 2019).

The magnitude of transfer, when such was reported, is usu-
ally small, and is difficult to dissociate from a null result, since
it is not resilient to correction for multiple comparisons.
Typically, several tasks are assessed before and after training,
and performance in most untrained tested tasks does not im-
prove following training (Barnett & Ceci, 2002; Shipstead
et al., 2012). Given that testing several tasks increases the
probability of false positive(s), the target significance criterion
should be raised (reviewed in Jacoby & Ahissar, 2013, 2015).
However, the effect size of transfer to untrained tasks, if any,
is small: ~0.3 standard deviations in methodologically weaker
studies, ~0.01 in methodologically sound studies (Melby-
Lervåg et al., 2016; Redick, 2019). Since the typical size of
trained groups is also small (~15 per group; Chooi &
Thompson, 2012; De Simoni & von Bastian, 2018;
Gibson et al., 2012; Redick et al., 2013; Thompson
et al., 2013), raising the target level of significance
would have rendered the reported transfer nonsignificant
(e.g., Anguera et al., 2013).

The combination of the huge effort required to conduct
intensive training studies and the small (if any) generalization
to untrained conditions that are not very similar, highlights the
importance of understanding the cognitive mechanisms un-
derlying training-induced behavioral improvement.
Remarkably, these mechanisms have hardly been addressed.
Deciphering these processes was the aim of the current study,
with a specific focus on n-back training because it is the most
commonly trained task. We asked, what is it that participants
learn which enables their substantial improvement in a chal-
lenging updating task, designed to require limited-capacity
online manipulations? The few recent studies that addressed
this question suggest that the use of a task-specific strategy
may facilitate training-induced improvement (Fellman et al.,
2020; Laine, Fellman, Waris, & Nyman, 2018; Linares et al.,

2019; Redick et al., 2013). Indeed, the importance of a strat-
egy that reduces WM requirements has been gradually ac-
knowledged (Redick, 2019). But can the use of an efficient
strategy explain the entire learning process?

We began this study with practicing the n-back task our-
selves and discussing our accumulative introspection of what
facilitated our improved performance. These discussions clar-
ified to us the strategy that we each had independently discov-
ered. We measured whether participants who were explicitly
taught this strategy could quickly reach the level of perfor-
mance attained by those who go through intensive training
without strategy instructions. We then deciphered, based on
the self-reports of participants who had trained massively with
no instructions, whether their improvement was associated
with the discovery of an efficient (perhaps the same) strategy.

Method

The naïve strategy of n-updates versus the efficient
strategy of 1-update

Naïve participants can typically perform well with n = 1 and n
= 2, but find n ≥ 3 extremely challenging. The reason the task
becomes difficult with n ≥ 3 is that participants need to update
the content of n positions (slots) in WM following each item
presentation. Figures 1 and 2 illustrate this naïve n-updates
strategy (presented in the central column) for two types of n-
back tasks—letters (Fig. 1) and spatial positions (Fig. 2). With
this strategy, the last n items are always stored in WM in the
order of their presentation. When a new stimulus is presented,
it is compared with the oldest item (presented n stimuli earli-
er). Participants are asked to press a button if they recognize
the match—stimulus repetition with an interval of n (denoted
in yellow in Figs. 1 and 2). After each comparison, partici-
pants need to update all WM slots—all n(+1) items are
“pushed” one position backward (left in Fig. 1), so that the
most “recent” position holds the recently presented item and
the “oldest” position holds the target of the next stimulus
presentation. For example, when the items are letters, n = 3,
the representation in WM is D, S, R, and the next letter is B
(see Fig. 1, center, line 3)—this B will be compared with the
item in the slot that holds the oldest item in WM—D (center,
enclosed letter), and then added to WM at the most recent
slot—following R. Then, the content of occupied slots in
WM will be updated—shifted backwards, so that D will be
dropped out, keeping the shifted three-letter representation—
S,R, B. Thus, the naive strategy requires an update in the
content of all WM slots—a shift in the slots of all n items in
memory upon each stimulus presentation.

By contrast, the strategy described by Laine et al. (2018)
for letters (see Fig. 1, right column) and its parallel for the
spatial task that was derived by us (see Fig. 2, right column)
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includes no shifts in WM representation. Rather than shifting
the items in WM slots, it shifts the slot to which attention is
allocated in the given WM representation. The shift in the
attended slot in WM does not put load on WM (Myers,
Chekroud, Stokes, & Nobre, 2018). Crucially, in each trial
only the item in the attended slot is updated (if it differs than
the expected target). Thus, the strategy requires, at most,
updating the content of one WM slot (compared with n slots
in the naïve strategy), keeping track of which position is now
relevant, and an attention shift, which does not occupy addi-
tional WM resources (Myers et al., 2018). For example, for
letters and n = 3 (see Fig. 1, right), when the representation in
WM is D, S, R, then B is the new letter, and the attended
position is the first (line 3), only this position is updated so
that the new representation in WM will be B, S ,R. When the

next stimulus is presented (line 4), attention is shifted to the
second position, and the new stimulus is compared with S,
which will be updated if there is no match. Thus, if the new
item isN, the updatedWM sequence will be B, N, R.Next, the
third position will be attended, and then back to the first (when
n = 4, this loop has four positions, as illustrated in Fig. 5).

The difference between the amount of update required by
each strategy can easily be seenwhen examining the similarity
between consecutive WM representations, shown in consecu-
tive lines in Fig. 1. One can also perceive the similarity in
sound by sounding the preupdating and postupdating se-
quences (content of consecutive steps): D, S, R is much more
similar to B, S, R (efficient 1-update strategy) than to S, R, B
(naïve strategy), since the content of only one slot is modified
in the former, as opposed to three slots in the latter.

The above description focuses on letters.We now extended
the same conceptual strategy to other stimuli (though the anal-
ogy may not be transparent to participants). When the task is
spatial (see Fig. 2), spatial locations of stimuli need to be
retained in WM. Thus, the same n-updates versus 1-update
strategy applies to the spatial task. In the naïve strategy, par-
ticipants consistently compare the item in the first (oldest) slot,
and then update the entire set of slots by pushing them back-
wards and removing the “oldest” slot from memory (as
illustrated in Fig. 2, left). In the efficient strategy, only one
slot is updated. This slot—the attended and updated one—
changes with the presentation of each stimulus, in a loop with
a length of n (for n items). Here too, efficiency results from
solving the task using the 1-update strategy (only one WM
slot is updated in each step of Fig. 2, right) and keeping track
of which item needs to be attended next. As with letters,
switching the strategy from updating all slots to updating only
the attended slot, with the index looping over the number of
items—first-second-third-first—reduces the WM resources
required for attaining the same level of success.

In this study, we chose to use a spatial n-back task; in the
past, we had trained a group of participants with this task, with
no explicit strategy instructions, for 40 sessions (Jakoby et al.,
2019). Most of those participants improved significantly in
this task, but showed no transfer to other WM tasks. We
now asked what these participants had actually learned during
this training, and whether a similar degree of improvement
could be gained in less time if participants were explicitly
taught the efficient 1-update strategy.

Experimental design and participants

In this paper, we compared the data of the two following
groups:

(1) The strategy-instruction group (N = 14), who received
three training sessions—a naïve session with no strategy
instructions, and two subsequent sessions. At the
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Fig. 1 An illustration of the two strategies for n-backwith letters: naïve n-
updates (center) and an efficient 1-update (right), similar to that used by
Laine et al. (2018), n = 3. The sequence of letters is shown in the left
column. Each horizontal triplet of letters represents the information stored
in WM during that trial before the letter on the left is presented (after the
letter above was presented). The most recent letter in each trial is denoted
in red. The slot storing the content that is being compared with the in-
coming letter is highlighted with a bold frame. Target stimuli repeated
with an interval of 3 are highlighted in yellow. The naïve strategy stores
the letters in WM in the order of their presentation, and each new letter is
compared with the letter that is stored in the earliest memory slot. After
each comparison, all three letters that are stored in WM are shifted one
slot back (the earliest letter is discarded), and the new letter is inserted into
the latest WM slot. Therefore, each step requires updating the content of
three slots, as with a basic stack. By contrast, in the efficient 1-update
strategy, only the attended slot is updated following each new stimulus,
regardless of n. The attended position is shifted every step, but there is no
change in the content of unattended positions. (Color figure online)
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beginning of each of these two sessions, they watched a
detailed 8-minute video clip with strategy instructions in
Hebrew (the English version of this video clip can be
found here [https://youtu.be/-21tuZQNMMQ]). Then
an experimenter showed the participant a sequence of
s ix s t imul i and asked them to descr ibe the
representation in memory on Steps 4–6 when n = 3.
The criterion for understanding was strategy-correct an-
swers for all three steps, and it was met by all the partic-
ipants. Participants were then asked to perform the task
according to the strategy presented in the video clip. The
interval between consecutive sessions was 1–8 days.
Participants were told that the aim of the study is to
assess how using this specific strategy affects their

performance of the task. Data for this group were collect-
ed specifically for this study.

(2) The no-instruction group, who trained for 40 ses-
sions with no explicit strategy instructions (five
times a week for 2 months). The data of this group
have been previously published, in a study aimed at
assessing transfer to other WM tasks, which found
no transfer (Jakoby et al., 2019). Participants were
told that the aim of the study is to assess how train-
ing for a task improves their performance in the
trained task and in other memory-challenging tasks.
Both groups answered the questionnaires detailed be-
low, in which they expounded on the strategy they
had used to perform the task.
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Fig. 2 An illustration of two strategies for spatial n-back: naïve n-updates
(center) and efficient 1-update (right), n = 3. The sequence of stimuli is
presented in the left column. Each triplet of circles represents the infor-
mation stored inWMduring a trial, when a new circle is presented. Faded
red circles represent the location of the oldest stimulus inWM, soon to be
deleted. The arrows represent updates of locations in WM. Repetitions
with n = 3 (targets) are highlighted in yellow. In the naïve strategy,
locations are stored inWM in the order of their presentation. The “oldest”

(presented n intervals earlier) item is compared with the newly presented
item, and all three slots in WM are updated, each with the content of a
more recent slot—as with a basic stack. In the efficient 1-update strategy,
only oneWM slot is compared and updated.What changes is the attended
(and updated) slot in WM. Increasing n (see Fig. 5) increases the tracked
loop with the number of retained positions, but not the number of updates
per stimulus presentation. (Color figure online)
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The choice of 14 participants in the strategy-instruction
group was aimed to match the number of participants who
had previously formed the no-instruction group. In the context
of this study, the relevant effect size is the magnitude of im-
provement in the trained task. Since improvement was larger
than three standard deviations (Jakoby et al., 2019), 14 partic-
ipants per group were sufficient in both the previously studied
group (no-instruction) and the newly added one (strategy-in-
struction group). Statistical power analysis shows that to get
the power of 0.9 with α = 0.01, based on the results of the first
and the last session of the no-instruction group (Jakoby et al.,
2019), at least 10 participants are needed per group (Table 1).

All participants received monetary compensation or course
credit for their participation (for a detailed description of the
monetary compensation of the no-instruction group, see
Jakoby et al., 2019). The data of one participant from the
no-instruction group were excluded from the analysis (data
of 14 participants are reported) because her performance on
the task before training was an extreme outlier (z score of over
2.5 in each session). Her first self-report indicates the discov-
ery of the efficient strategy. We believe that she had discov-
ered the strategy early in the first session. Importantly, all the
reported results remain statistically significant when including
this participant.

Spatial n-back task

Both groups were administered the same spatial n-back pro-
tocol (Jakoby et al., 2019). In this protocol, red circles are
presented sequentially, one circle every 2 seconds (stimulus
duration 500 ms; interstimulus interval 1,500 ms), in one of
eight positions on a virtual rectangle on a computer screen.
Participants respond by pressing a space bar with their index
finger whenever the location of a newly presented circle
matches the location of the circle presented n steps back (tar-
get). No response is required for nontargets. Participants are
notified about the relevant n at the beginning of each block.
Each block comprises n+20 steps (stimuli) and includes six
targets. Particularly confusing stimuli are lures: repetitions
with an interval slightly different than n—a circle appears at
a previous position (repetition) but with an interval of (n − 1)
or (n + 1), as illustrated in Fig. 3. Differentiating lures from
targets is difficult—participants tend to press the button upon
detecting a repetition, even with different intervals (Duncan,
2003). In our experiment, we included three possible levels of
lure difficulty: easiest—no lures, intermediate—four lures per

block (two of each type), and most difficult—eight lures per
block (four of each type). We included lures because it has
been previously shown that lures increase WM load and the
requirements of cognitive control (e.g., Redick & Lindsey,
2013; Szmalec, Verbruggen, & Kemps, 2011). Each block’s
level of difficulty was determined as follows: If the partici-
pant’s performance was 85% correct or above (calculated as
hit rate minus false alarm), the difficulty level for the follow-
ing block was increased by adding four more lures. After
reaching a level of eight lures in a block, reaching the 85%
accuracy criterion increased n by one. When performance was
65% correct or below, the number of lures was decreased from
eight to four to zero, and eventually n was decreased by one
(and the next block, with the smaller n, would include eight
lures). Difficulty level was not modified otherwise. Each ses-
sion lasted ~30 min and consisted of 25 blocks with short
breaks between them. The first two sessions began with n =
2 and four lures per block for all participants. Subsequent
sessions began for each participant at the difficulty level they
had reached during the last block of the previous session. The
same protocol was administered to both groups.

Questionnaires Both groups answered questionnaires regarding
the strategies they had used to perform the task. In the strategy-
instruction group, participants filled out questionnaires only at
the end of the third session. First, they were asked to describe
their strategy in their own words (i.e., explain what they had
done and evaluate the efficiency of their strategy). Then, they
were presented with illustrations of two strategies—the naïve n-
updates strategy and the efficient 1-update strategy—and were
asked to state which was closer to their own strategy (if any).
This questionnaire had two goals: (1) to make sure that the
participants in the strategy-instruction group had indeed used
the explicitly taught strategy; (2) to see whether other methods
were developed and used by the participants.

In the no-instruction group, each participant answered a
questionnaire at the end of each week of training (five training
sessions). The same questionnaire was administered every
week. The questionnaire included two open question regard-
ing strategy use (“In general, could you describe your strategy
for performing the training task?” and “Is it a different strategy
from the one that you used in last week’s training?”). The
questions were open-ended and nonspecific so that no partic-
ular strategy would be implied, and no guidance would be
inadvertently provided. The answers to all questionnaires
were read and analyzed only after the experiment had ended,

Table 1 Demographics of both groups, mean ± SD; the data of the no-instruction group have been published previously (Jakoby et al., 2019)

Group Number (women) Age (in years) Years of education

Strategy-instruction 14 (9) 24.6 ± 2.1 14 ± 0.4

No-instruction 14 (11) 23.9 ± 3.8 15.7 ± 2.1
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so that participants would not be affected by the experi-
menters’ expectations. To decide which strategy had been
used and whether it was modified with training, we asked four
independent reviewers, who were familiar with the task yet
blind to participants’ performance, to evaluate based on each
week’s reply of each participant whether she or he had used
the efficient 1-update strategy, and if so.

Results

Improvement was substantially faster in the strategy-
instruction group

Initial performance without instructions (performance during
the first session, measured by mean n per session) did not
differ between groups (strategy-instruction group: mean n =
2.65, SD = .37, 95% confidence interval (CI) [2.46, 2.84]; no-
instruction group: mean n = 2.43, SD = .44, 95% CI [2.2,
2.66]; p = .38, in a two-tailed, two-sample unequal variance
t test, Cohen’s d = .4). The second session began with an
instructional video clip for the strategy-instruction group,
and with no specific instructions in the no-instruction group.
Afterwards, both groups performed the same task, with the
same adaptive protocol (see Method section).

Mean performance in the second session significantly dif-
fered between the two groups, with the n of the strategy-
instruction group (mean n = 3.25, SD = .43, 95% CI [3.02,
3.48]) being significantly higher than that of the no-instruction
group (mean n = 2.56, SD = .58, 95% CI [2.36, 2.82]; p =
.002, Cohen’s d = 1.29), as shown in Fig. 4.

In the third session, performance was very different between
the groups (strategy-instruction: mean n = 4.3, SD = .66, 95%
CI [3.95, 4.65]; no-instruction: mean n = 2.8, SD = .6, 95% CI
[2.49. 3.11]; p < .00001, Cohen’s d = 2.36). In fact, within three
sessions performance of the strategy-instruction group reached
the level attained by the no-instruction group only after 25–40
sessions, and did not significantly differ from the no-instruction
group’s final performance during the fortieth session (strategy-

instruction group third session: mean n = 4.3, SD = .66, 95%CI
[3.95, 4.65]; no-instruction group 40th session: mean n = 3.96,
SD = 1.13, 95% CI [3.37, 4.55]; p = .46, Cohen’s d = .35).

A repeated-measures two-way analysis of variance
(ANOVA) for the three first sessions (2 groups × 3 sessions(
showed a significant main effect of session, F(2) = 62.99, p <
.0001, ηp

2 = .83, indicating a general improvement as partic-
ipants completed more sessions; a significant main effect of
group, F(1) = 17.47, p < .0001, ηp

2 = .4, indicating different
performance levels in the two groups, with the strategy-
instruction group showing significantly better performance
overall; and crucially—a significant interaction between ses-
sion and group, F(2) = 26.7, p < .0001, ηp

2 = .68, indicating
faster improvement in the strategy-instruction group.

Figure 4 plots mean performance (mean n per session) as a
function of session number in the two groups. The initial and
end points are similar, but the strategy-instruction group im-
proved much faster. Cross-participant variability is similar for
both groups in the first session (strategy-instruction SD = .37,
no-instruction SD = 0.44 in the no-instruction group), and it
increases for both groups during training, with a greater in-
crease observed in the no-instruction group (strategy-instruc-
tion SD = .66, no-instruction SD = 1.13). This pattern results
from the substantially different rates of improvement across
participants, particularly when no explicit instructions are giv-
en. Large cross-participant variability was also observed in
previous (no-instruction) training studies (e.g., Jaeggi,
Buschkuehl, Jonides, & Shah, 2011). Previously, this variabil-
ity was attributed to the extent to which general WM capacity
increased. However, Figs. 4 and 5 show that this cross-
participant variability results from different success rates in
discovering the efficient task-specific 1-update strategy.

Improvement in the no-instruction group is associat-
ed with the discovery of the efficient strategy

Participants in the strategy-instruction group indicated in the
questionnaires that they all understood and used the instructed
strategy during the two postinstruction sessions.

Fig. 3 An illustration of five consecutive steps in a block of the spatial n-back task, n = 3
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Analyzing the self-reports of participants in the no-instruction
group was complex, because the verbal reports of eight (out of
14) participants were too vague to determine or rule out any
specific strategy. However, six (out of 14) participants explicitly
indicated that they used the efficient 1-update strategy starting

from a particular trainingweek (see Fig. 6). For example: “As the
dots appear on the screen, I number them inmy head. I do counts
of four [n = 4], meaning that the fifth dot that appears is given the
number one. If the dot appears in the same location as the original
number one, I click the space bar, if not I memorize “number 1s”
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“As the dots appear on 
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Fig. 5 An illustration of the 1-update strategy for n = 4, based on participants’ reports. Arrows represent the updated location; faded red circles represent
the attended (oldest) position in WM, soon to be forgotten; a trial with a match (target) is marked in yellow. (Color figure online)
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Fig. 4 Performance as a function of session number in both groups. Mean
n (~2.5) and error bars (CI 95%) were similar for both groups during the
first session. Error bars of the two groups are similar in Session 1. The
task is adaptive, which means that mean n increases as participants’
performance improves. Though both groups improved, the
improvement rate was much faster in the strategy-instruction group.

The mean n in the third session of the strategy-instruction group was
similar to that attained by the no-instruction group after 25–40 sessions.
The no-strategy instruction group showed greater cross-subject variability
as training progressed, revealing increased variability in learning rate. A
detailed analysis of individual learning variability is presented in Fig. 6
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new location. I do the same thing with the other dots that appear,
constantly memorizing new locations and keeping count
at the same time.” Figure 5 illustrates how this account
directly maps to the implementation of the efficient 1-
update strategy with n = 4.

Figure 6a plots performance as a function of training week for
each of the 14 participants of the no-instruction group.
Performance is plotted with respect to “Week 0”—the week in
which they discovered the efficient strategy, as evident from their
self-report questionnaire (submitted at the end of every training
week). As described above, the plots of six participants either
started at or crossed Week 0. Four of them discovered this strat-
egy within their first training week—that is, within their first five
sessions (and hence their plots begin at “0”)—and the other two
discovered it later, one in the third week and the other in the
fourth week. Their slopes abruptly rise following this discovery.
Plots of participants who did not report discovering a strategy
during their 8 training weeks begin at “−8”, indicating that they
trained 8 weeks without discovering the efficient strategy.

Figure 6b shows the individual gains in n between the first
and last sessions in the strategy-instruction group and in two
subgroups of the no-instruction group—the six participants
who explicitly deciphered the efficient strategy, and the eight
who did not. All participants improved in the strategy-
instruction group, though not to the same extent. In the no-
instruction group, improvement differed significantly between
those who explicitly deciphered the efficient strategy and those
who did not (p = .00067 in a Mann–Whitney U test), with no

overlap between the degree of improvement of individuals in the
two subgroups. Thus, the high cross-participant variability in the
no-instruction group (see Fig. 4) is largely explained by the dif-
ference in improvement between those who discovered the effi-
cient strategy, and substantially improve, and those who did not,
whose improvement ranges between small to none at all.

Discussion and conclusions

Our results indicate that training-induced improvement in the n-
back task can be fully explained by the discovery of a task-
specific strategy. Hence, improvement does not indicate a gen-
eral enhancement of WM capacity. This finding explains previ-
ous findings of no transfer, or only very-near transfer to other
types of the n-back task (e.g., Jakoby et al., 2019; Linares et al.,
2019). Based on our results, we predict that performance in un-
trained tasks will improve only when the discovered efficient
strategy applies, and its relevance is transparent to the partici-
pants. Thus, performance in tasks with the same structure may
be improved (Fellman et al., 2020; Redick, 2019), as previously
reported (Linares et al., 2019). However, performance in most
other WM tasks, and even in n-back tasks for which the strategy
is difficult to implement (Jakoby et al., 2019), is not expected to
benefit from the discovery of this strategy. This account is in line
with the proposal of Gathercole et al. (2019), who claim that
training-induced transfer occurs only when participants have
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Fig. 6 Individual learning trends, a Individual learning curves of training
participants as a function of training weeks. The first point of each plot
represents the number of weeks without (before any) use of the efficient
strategy. Week 0 is the week at which the participant explicitly reported
using the strategy for the first time. Individuals who begin at −8 are those
who did not report the use of the efficient strategy throughout their 8
training weeks (indicated by gray lines). Black lines represent
participants who unequivocally reported the use of the strategy at some
point. Performance in each week is denoted by the mean level of n
achieved by the participant in this week. Explicit reports of the strategy
are associated with a sharp rise in the performance curve. b Individual

gains in mean-session n during training (difference between the last and
first sessions) for participants in both groups. Reference lines represent
group means and CI of 95%. Participants in the no-instruction group are
divided into two subgroups—those who unequivocally discovered and
used the efficient strategy, and those who did not report the strategy.
Changes in n of individuals in the no-instruction group range between
−0.376 and 2.72, while in the strategy instruction group, all changes are
positive. Importantly, within the no-instruction group all individuals
whose reports indicate a discovery of the efficient strategy improvedmore
than all individuals who did not report such a discovery
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acquired a new complex cognitive skill during training, and
when that skill can be applied to a novel task.

Though to the best of our understanding, the same efficient
strategy was repeated across participants, we do not claim that
this is the only possible strategy. Yet, theoretically, we expect all
efficient strategies across WM tasks to have something in com-
mon. In fact, and as mentioned before, our strategy is the same or
very similar to the strategy described previously for n-back with
letters (Laine et al., 2018) andwith digits (Fellman et al., 2020) in
their studies characterizing the continuous effect of training with
and without an explicit strategy. We assert that all efficient strat-
egies reduce the number of manipulations inWM per trial, com-
pared with the naïve strategy. Importantly, there is no need to
reduce the total number of operations per trial—only the
operations that put load on WM. For example, scanning
through items without changing their slot in WM does
not add to WM load (Myers et al., 2018).

This training study provides further support for the strategy
mediation theory of WM improvement (Dunning & Holmes,
2014; Peng & Fuchs, 2017), compared with the capacity theory
(Engle & Kane, 2003). The strategy mediation theory assumes
thatWMhas a relatively fixed capacity, and therefore claims that
WM performance is determined by the efficiency with which its
capacity is used (Bailey, Dunlosky, & Kane, 2008; McNamara
& Scott, 2001). The capacity theory assumes that capacity can
increase with practice, and is often described using the muscle-
like metaphor—efficient training strengthens WM by increasing
capacity (described by Peng & Fuchs, 2017).

Yet most of the literature of strategy mediation theory does
not specify the strategies that would be efficient for WM tasks.
The description of rehearsal or chunking (McNamara & Scott,
2001; Peng & Fuchs, 2017; Turley-Ames & Whitfield, 2003)
does not capture the unique structure of WM tasks, which are
designed to require online manipulations that cannot be orga-
nized into fixed chunks, or at least not in any straightforward
manner. Our study adds to recent studies (Fellman et al., 2020;
Laine et al., 2018) in specifying an efficient strategy for the case
of the spatial n-back task. Unlike n-back tasks that use items that
can be easily named, like letters or digits, spatial tasks cannot
benefit from subvocal rehearsal of the items (see Chooi & Logie,
2020). Still, subvocal verbalization can help memorizing which
of the n items in WM should be updated in each step.

The positive impact of strategy instructions had been recently
studied. For example, Fellman et al. (2020) taught participants a
specific strategy for the n-back task with digits via the Internet,
and found that using this strategy facilitated initial learning.
However, the advantage of explicit instruction, observed during
the first few sessions, was partial, as the strategy group continued
to improve throughout the 12 training sessions, and performance
of the tutored and nontutored groups was similar following the
first few training sessions. Thus, instruction was beneficial, but
its impact was smaller than in our case, perhaps due to the nature
of Internet training, or due to the difference in task stimuli.

Another potential contribution to the enhanced efficiency of in-
struction in our study, which yielded the equivalent of more than
25 uninstructed training sessions following only three sessions,
was the effort we put on strategy clarity (presenting instructions
with a video clip [https://youtu.be/-21tuZQNMMQ]), and
verification of participants' understanding. Additionally, we
showed that the large individual differences in training-
induced improvement within a no-strategy group delin-
eate the participants who discovered an efficient strategy
spontaneously versus those who did not.

One of the most interesting questions that our results have
raised is what differentiates people who develop an efficient
strategy during training, even without explicit instructions,
from those who do not. Studying this question systematically
requires testing whether those who developed an efficient
strategy for one task also tend to develop efficient strategies
for other challenging tasks, which is beyond the scope of this
study. There is some evidence that individuals with larger
WM pretraining are the ones who benefit more from training
(Foster et al., 2017; Redick, 2019; Wiemers, Redick, &
Morrison, 2019). There may be a link between initial WM
capacity and the ability to quickly and efficiently adapt a strat-
egy for a task, or there may be another cognitive trait under-
lying both. We do not find evidence for that in our group of
participants; performance during the first session is not a good
predictor of learning rate, though perhaps mean performance
during the first session already includes some learning.
Another suggestion in the literature is that action video game
players are more likely to find efficient strategies, as their
ability to learn is enhanced (Bejjanki et al., 2014, Green &
Bavelier, 2014), perhaps due to enhanced attention and spatial
cognition (Bediou et al., 2018). This claim had been chal-
lenged, and the findings regarding the advantages of strategic
video games have been questioned (e.g., Roque&Boot, 2018;
Sala, Tatlidil, & Gobet, 2018). We should note that even if
action video game players demonstrate better strategies, it is
still not clear whether playing action video games is the reason
or the result of this enhanced strategic ability (or both).

Finally, perhaps the most important conclusion of this
study is its contribution to the accumulative recent body of
research, which support the strategy account of WM training,
and indicate that time has come to change the metaphors we
use to describe WM training studies. Training WM does not
open a common bottleneck. Successfully trained individuals
do not perform the same operations faster or better. They
change the set of operations used to solve the task. This type
of change is likely to underlie the acquisition of all expertise.
When the same operations are administered to the same se-
quences of stimuli repeatedly, as in word reading, we replace
theWMoperations with chunking and schemas. But when the
crux of the task is using the operations on untrained stimuli
sequences (as in reading nonwords), chunking cannot replace
online computations. Hence, training-based improvement
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probably results from using a set of more efficient task-
specific operations. Better understanding of these task-
specific strategies may both teach us about the structure of
WM and facilitate performance in tasks that heavily load on
our limited WM resources.
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