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Abstract

Biomedical research studies have generated large multi-omic datasets to study complex

diseases like Alzheimer’s disease (AD). An important aim of these studies is the identifica-

tion of candidate genes that demonstrate congruent disease-related alterations across the

different data types measured by the study. We developed a new method to detect such

candidate genes in large multi-omic case-control studies that measure multiple data types in

the same set of samples. The method is based on a gene-centric integrative coefficient

quantifying to what degree consistent differences are observed in the different data types.

For statistical inference, a Bayesian hierarchical model is used to study the distribution of

the integrative coefficient. The model employs a conditional autoregressive prior to integrate

a functional gene network and to share information between genes known to be functionally

related. We applied the method to an AD dataset consisting of histone acetylation, DNA

methylation, and RNA transcription data from human cortical tissue samples of 233 sub-

jects, and we detected 816 genes with consistent differences between persons with AD and

controls. The findings were validated in protein data and in RNA transcription data from two

independent AD studies. Finally, we found three subnetworks of jointly dysregulated genes

within the functional gene network which capture three distinct biological processes: myeloid

cell differentiation, protein phosphorylation and synaptic signaling. Further investigation of

the myeloid network indicated an upregulation of this network in early stages of AD prior to

accumulation of hyperphosphorylated tau and suggested that increased CSF1 transcription

in astrocytes may contribute to microglial activation in AD. Thus, we developed a method

that integrates multiple data types and external knowledge of gene function to detect candi-

date genes, applied the method to an AD dataset, and identified several disease-related

genes and processes demonstrating the usefulness of the integrative approach.
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Author summary

Recent technological advances have led to a new generation of studies that interrogate

multiple molecular levels in the same target tissue of a set of subjects, generating complex

multi-omic datasets with which to study disease mechanism. These datasets of genetic,

epigenomic, transcriptomic, and other data have the potential to reveal novel biological

insights; however, integrative analyses remain challenging and require new computational

methods. We developed an integrative Bayesian approach to detect genes with consistent

differences between case and control samples across multiple data types. The method fur-

ther integrates prior knowledge about gene function in the form of a gene functional simi-

larity network to improve statistical inference by sharing information between related

genes. We applied our method to an Alzheimer’s disease dataset of epigenomic and tran-

scriptomic data and detected and then validated several novel and known candidate genes

as well as three major disease-related biological processes. One of these processes reflected

microglial activation and included the cytokine CSF1. Single-nucleus data revealed that

CSF1 was primarily upregulated in astrocytes, implicating the involvement of this cell type

in microglial activation. Hence, we demonstrated that integrative analysis approaches to

multi-omic datasets can improve candidate gene detection and thereby generate new

insights into complex diseases.

Introduction

Alzheimer’s disease (AD) is a complex progressive neurodegenerative disease characterized

clinically by impaired episodic memory and other impaired cognitive abilities [1]. To better

understand disease mechanisms and to identify novel therapeutic targets, several studies of

aging and AD have generated large molecular datasets from blood and/or post-mortem

human brain samples. Some of these studies targeted multiple molecular levels and measured,

for example, genetic variants, epigenetic modifications, mRNAs, or proteins, in the same set of

samples [2–4]. However, jointly analyzing genome-wide multi-omic datasets remains chal-

lenging and requires novel computational methods to fully utilize these datasets [5].

Integration of multiple data types from the same set of samples has been referred to as verti-

cal data integration [6]. Methods for vertical data integration can be further characterized by

the primary goal of the integrative analysis as outlined in recent reviews [5–11]. While the

main objective of the method presented in this work is the detection of genes with consistent

differences between cases and controls in multiple data types, we review a wider range of verti-

cal data integration methods in the introduction with a focus on those that were either success-

fully applied to data from AD or related complex diseases or share methodological similarity

with our approach. Among the most frequently used are methods for integrating genetic and

transcriptomic data. These have successfully identified genetic variants that affect gene tran-

scription thereby improving our understanding of how the transcriptome mediates the effect

of risk variants for various diseases including AD [12–14]. Most of these methods regress gene

transcription on one or more genetic variants. A simple approach for integrating epigenomic

and transcriptomic data is to replace the genetic with epigenetic measurements in the regres-

sion model [15–17]. Stepwise regression procedures were proposed to study interaction effects

between different histone modifications that may not act independently on gene transcription

[18]. Moreover, various machine learning approaches were applied to predict gene transcrip-

tion levels based on transcription factor binding, histone modification or other epigenomic
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data [19, 20]. If the primary goal is to predict the effect of an intervention experiment, the

often unknown causal structure between different variables has to be learned [21]. Recently,

Bayesian networks were applied to infer directed gene-wise graphs that model the relation-

ships between epigenomic, transcriptomic, pathologic and clinical variables in the AD brain

[22]. In the classic gene prioritization setting, the primary goal of an integrative analysis is to

detect genes with consistent differences between case and control samples across different data

types. The motivation for integrating data in this setting is twofold. First, gene prioritization

can be improved assuming that a gene with differences in more than one data type is more

likely to be a true positive finding. Second, if a specific epigenetic mechanism of a drug is

known, target genes for this drug should ideally not only demonstrate differences in the epige-

netic data, but also consistent differences at a functionally more relevant level such as gene

transcription or protein expression [23]. Methods for detecting differential genes in a joint

analysis of multiple data types were developed for experiments with only a few or no replicates

[24, 25]. These methods provide probabilistic frameworks for studying the relationship

between data types and for classifying genes, but since heterogeneity among replicates is not

modelled, statistical inference is challenging and can only be carried out by relying heavily on

prior information.

Further need for data integration stems from our constantly increasing knowledge about

gene functions and pathways which can be represented as a network where functionally related

genes are connected by edges [26]. This prior knowledge can be integrated into an analysis to

share information between related genes and thus improve statistical inference and interpret-

ability of the results. For example, gene networks have been used to improve parameter estima-

tion and gene selection in penalized regression models [27–29]. In Bayesian models,

conditionally autoregressive (CAR) Markov random field priors were frequently used to incor-

porate gene networks into genome-wide data analyses [25, 30–32].

Here, we propose a new integrative method to detect genes with consistent differences

between case and control groups across multiple data types. The method is based on an inte-

grative coefficient that summarizes information from multiple data types in a case-control

study design. To improve statistical inference, a CAR prior is used in a hierarchical Bayesian

model to share information between functionally similar genes defined by a gene network. We

applied our method to a large AD case-control study consisting of histone ChIP-seq, DNA

methylation, and RNA-seq profiles from 233 subjects. Identified genes were validated using

protein data and two independent RNA-seq studies of AD. Finally, in a post hoc analysis, we

identified differential networks reflecting AD-related processes. Our new method is outlined

in the flow chart S1 Fig and described in detail in the Methods section. The validation of our

method and findings from the analysis of the AD data are presented in the Results section. We

note that our approach can be adapted and applied to other similar multi-omic case-control

studies.

Methods

Coefficient for integration of multiple genomic variates

We propose an integrative coefficient Z that summarizes observations made in different geno-

mic data types for the same subjects and genes in a case-control study. Let XðkÞij denote the

value observed for gene i in individual j of the patient group in data type k, and Y ðkÞij denotes

the respective value in the matched control subject. We define Zij as the sum of standardized
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differences

Zij ¼
XK

k¼1

SðkÞ
XðkÞij � YðkÞij

sXðkÞYðkÞ
; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m: ð1Þ

The variances of the differences s2

XðkÞYðkÞ ¼
1

nm

P
i¼1;...;n; j¼1;...;mðX

ðkÞ
ij � Y ðkÞij Þ

2
are calculated across

all genes and used to standardize the differences which may have a different range of values

depending on the data type and technical platform used to generate the data. Whether a posi-

tive or negative association is expected between the genomic data types is modelled by the fac-

tor S(k)2{−1,1}.

If the differences XðkÞij � Y ðkÞij for a gene i and individual j show consistent directions as mod-

elled by S(k) across all K data types, the absolute value of Zij is large. In contrast, a difference in

one data type might be cancelled out by a difference in another data type if the directions of

the differences do not meet the assumption defined by S(k). Zij is also expected to be close to

zero if a gene does not have any differences in any data type. Previous work suggested multipli-

cative instead of additive coefficients for data integration [24, 25, 33], however, replacing the

sum by a product in Eq (1) is a very conservative approach when multiple different data types

are modelled. A small difference in a single data type would result in a small multiplicative

coefficient even if distinct differences are observed in the other data types. In this work, we

jointly analyzed gene transcription, histone modification and CG methylation both at promot-

ers and at exons resulting in K = 4 different data types. To model the negative association

between promoter methylation and transcription [34], we set S(k) = −1 for promoter methyla-

tion and S(k) = 1 for the other three data types.

Bayesian hierarchical model

Model. The Zij are assumed to be normally distributed. The normal distributions’ means

are regressed on two gene-specific effects, Hi and Ui. The former is simply assigned a normal

distribution, while the latter represents a spatial effect sharing information between function-

ally similar genes. Similarity information is extracted from an external gene network where

two functionally related genes i and g are connected by an edge and the weight ωig of the edge

represents the strength or confidence of the relation,

Zij � Nðmi; s
2

i Þ;

mi ¼ b0 þ Ui þ Hi; ð2Þ

1=s2

i � Gammaðas; bsÞ; ð3Þ

UijUr; r 6¼ i � Nðmi; niÞ;

Hi � Nð0; nHÞ:

The spatially structured effect Ui is given an intrinsic Gaussian CAR prior, and the network’s

similarity values ωig are employed as weights,

mi ¼

P
g2di
oigug

P
g2di
oig

and ni ¼
~n

P
g2di
oig

;

where δi denotes a set of ~ni genes neighboring gene i in the gene network. Further, β0 is

PLOS COMPUTATIONAL BIOLOGY Bayesian integrative analysis of multi-omic data in Alzheimer’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007771 April 7, 2020 4 / 27

https://doi.org/10.1371/journal.pcbi.1007771


assigned an improper flat prior on R, and the variances ~n and νH are assigned inverse Gamma

distributions,

b0 � Rð� 1;1Þ;

1=~n � Gammaða~n ; b~nÞ; ð4Þ

1=nH � GammaðanH ; bnH Þ: ð5Þ

The posterior distributions of the quantities Ei≔Ui+Hi,i = 1,. . .,n, are used to classify genes as

consistently differential, i.e. as presenting congruent differences between cases and controls

across different data types. Specifically, gene i is assumed to be consistently differential if the

99% credible interval for Ei lies either above or below zero. An implementation of the model in

the BUGS language is given in S1 File.

Prior elicitation. The hyperparameters of the distributions for 1=s2
i ; 1=~n and 1/νH are

important as they regulate the degree of confidence in the gene-level data and, additionally, in

the functional similarities between transcripts reported by the gene network. We suggest an

empirical Bayesian approach where the prior in the model is chosen based on the empirical

variance observed in the data. To obtain hyperparameters for ~n and νH, we decompose the var-

iability of the gene-wise mean coefficients Zi� ¼
1

m

Pm
j¼1

Zij into a non-structural part and a

structural part explained by the neighborhood relationship. The structural part of the variance

is used to derive a prior for ~n, and the remaining variance is used to derive the prior for νH.

Specifically, we assume

VarðHiÞ ¼ nH � VarðZi� � ~miÞ and VarðUijUr; r 6¼ iÞ ¼ ~n=odi
� Varð ~miÞ;

with ~mi ¼
P

g2di
oigZg�=

P
g2di
oig and odi

¼
P

g2di
oig . The hyperparameters in Eqs (4) and (5)

are calculated using that E(X) = α/β and Var(X) = α/β2 for X~Gamma(α,β). To solve the equa-

tions, odi
is replaced by the average number of neighbors and the variance of the priors is set

to 104.

The parameters s2
i , i = 1,. . .,n, model the variability of Zij within a gene across subjects. To

derive the hyperparameters in Eq (3), we assume s2
i � mediani2f1;...ng

1

m

Pm
j¼1
ðZij � Zi�Þ

2
and

use a prior variance of 104. The hyperparameters obtained for the presented analysis are given

in S1 Table.

Data

Study cohort and case/control definition. The dataset was taken from the longitudinal

Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) [35]. Participants

of these two studies were without known dementia at time of enrollment and underwent

annual cognitive and clinical tests. The studies were approved by an Institutional Review

Board of Rush University Medical Center. All participants signed an informed consent, an

Anatomic Gift Act for brain donation, and a repository consent to allow their data and biospe-

cimens to be shared. More information on the study and resources can be found on our

Resource Sharing Hub at www.radc.rush.edu. Post-mortem neuropathologic evaluation was

performed to assess AD and other brain pathologies common in aging and dementia. Gray

matter was dissected from biopsies of the dorsolateral prefrontal cortex (DLPFC) and used to

generate profiles of the histone acetylome, DNA methylome, and transcriptome [3]. For this

study, we defined AD cases based on the NIA Reagan diagnosis (high or intermediate likeli-

hood of AD) [36] and on the clinical diagnosis of dementia status at time of death (AD and no
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other cause of cognitive impairment) [37]. Subjects with a NIA Reagan diagnosis of low likeli-

hood of AD or no AD and a clinical diagnosis of no cognitive impairment were considered as

controls (persons with mild cognitive impairment were excluded from these analyses). This

definition of AD and control cases resulted in a total of 141 AD cases (40 males, Ø 90.1 years;

101 females, Ø 91.7 years) and 92 control cases (34 males, Ø 83.0 years; 58 females, Ø 85.9

years) who had complete genome-wide molecular data after quality control. For matching AD

cases to controls, age of death was stratified into five-year intervals between 70 and 95 years

and an additional >95 years stratum. Then, each AD case was randomly matched to a control

of the same gender and age stratum.

Matching of data types. Different genomic data types were matched at the transcript (iso-

form) level following a previously suggested approach [38]. Transcript abundances were esti-

mated from RNA-seq data using RSEM [39]. Only active transcripts with an fpkm value�2 in

at least 25% of the samples were considered. The targeted histone mark histone 3 lysine 9 acet-

ylation (H3K9ac) is primarily located at active transcriptional start sites (TSS) [40]. To quantify

the H3K9ac level for a given transcript i, we counted the number of ChIP-seq reads aligned

within a genomic region RH
i of 5,000 bp centered at the transcript’s TSS. Often, multiple tran-

scripts of a gene share the same TSS or have TSSs in close genomic vicinity. These transcripts

cannot be distinguished at the H3K9ac level, and thus, we merged genomic regions RH
i of two

or more transcripts if they overlapped and summed their respective fpkm values (Fig 1A). In

total, we observed 23,674 active transcripts which were merged to 14,796 groups of transcripts

with disjoint promoter regions RH
i , and hence, distinct H3K9ac values. DNA methylation levels

were measured by the Illumina HumanMethylation450 BeadChip limiting the methylation

data to CG dinucleotides included in the chip design. DNA methylation in promoter regions

is generally assumed to be negatively correlated with transcription, whereas the correlation

with transcription has been reported to be positive when looking at exon methylation [34]. We

calculated the promoter methylation for a transcript by averaging the methylation values of all

probes located within the promoter region RM1
i defined as 2,000 bp upstream of the transcript’s

TSS. Similarly, exon methylation was calculated by averaging the methylation values of all

probes located within the transcript’s exonic region RM2
i . As illustrated in Fig 1A, for groups of

transcripts, we combined the regions RM1
i and RM2

i of the individual transcripts. Overall, we

obtained 10,857 transcripts or groups of transcripts with non-missing values for all four data

types. For simplicity, we will use the term gene hereafter ignoring the detail that our features

actually represent either a single transcript or a group of transcripts that share a promoter, and

thus, that a gene with two or more active promoters is represented by two or more features in

our dataset.

Data normalization. Large genomic datasets are inevitably affected by technical con-

founders. To reduce the effect of these covariates, we used the preprocessed datasets after qual-

ity control as described in the respective original publications [41–43] and subsequently

regressed out technical covariates, biological covariates, and the estimated proportion of neu-

rons in the cell type composition of the neocortical tissue. Pearson residuals obtained from the

regression models were then plugged into Eq (1) as our normalized observations XðkÞij and YðkÞij .

Fig 1B depicts the correlation of the residuals of the same gene between different data types.

Correlation between the residuals from gene transcription and H3K9ac data were shifted

towards positive values, whereas correlation coefficients were almost centered for promoter

and exon methylation. A strong correlation is not expected for the majority of genes, since we

regressed out known factors like gender that impose a correlation structure between the data

types. The remaining correlation structure is caused by AD or by unknown environmental
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and genetic factors. Environmental and genetic factors likely have a small effect due to the

homogeneity of the ROS/MAP cohort.

In more detail, the following regression models were used. For the RNA-seq data (Synap-

seID: syn3388564), we log-transformed the transcript-level fpkm values and fitted a linear

regression model for each transcript with the covariates RNA integrity score, log-transformed

total number of sequence reads, batch, postmortem interval, age of death, gender and propor-

tion of neurons. For the ChIP-seq data (Synapse ID: syn4896408), we used the number of

reads observed in the genomic region RH
i as outcome and fitted a negative binomial regression

model for each transcript with the log transformed total number of reads as offset and the

covariates cross correlation, postmortem interval, age at death, gender and proportion of neu-

rons. DNA methylation data (Synapse ID: syn3157275) contained methylation values between

0 and 1 for each CG dinucleotide. We applied beta regression models with the covariates bisul-

fite conversion rate, batch, postmortem interval, age at death, gender and proportion of

neurons.

The proportion of neurons used in the regression models to adjust for changes in cell type

composition during the course of AD were estimated from the RNA-seq data. We applied the

Digital Sorting Algorithm (DSA) [44] to the expression values of the five neuronal marker

genes GABBR2, MYT1L, ARL4C, CADPS and NRXN3 that were previously identified using an

external human brain RNA-seq reference dataset of purified cells [42, 45]. We observed a

decrease of the proportion of neurons from 66.9% to 65.5% in AD subjects (p = 0.01, Wilcoxon

rank-sum test, n = 141 AD subjects and 92 controls) indicating the need to adjust for neuronal

Fig 1. Matching different data types to genes. (A) The figure shows an exemplary gene with four transcripts and their TSSs (small arrows), CG methylation probes

(circles), and H3K9ac ChIP-seq reads (small dashes at the bottom) aligned to the genome (black double line). H3K9ac data is matched to transcripts by counting the

number of reads in the promoter region (long blue and green lines below the genome). Since the promoter regions (±2.5 kbp around TSS) of the three blue transcripts

overlap, the blue transcripts are merged and all ChIP-seq reads are added together. Transcipt-level expression values from RNA-seq data for the blue transcripts are

summed accordingly, whereas the green transcript constitutes a separate feature in the final dataset. Methylation levels are calculated separately for promoter and exon

methylation. Promoter methylation is calculated as the average methylation level of all probes in the 2 kbp upstream promoter regions of the transcripts (blue and green

lines above the genome). Selected probes are indicated by blue and green circles (lower row). Similarly, exon methylation is calculated as the average methylation level of

all probes in the respective transcripts’ exons (blue and green circles in the upper row). (B) Violin plots show the correlation between transcription data and H3K9ac,

promoter methylation, and exon methylation respectively. Pearson correlation was calculated for each gene across the n = 233 subjects after removing the effects of

technical variables, proportion of neurons, age and gender.

https://doi.org/10.1371/journal.pcbi.1007771.g001
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proportion. RNA-seq-derived estimations were also used to adjust the H3K9ac and DNA

methylation data since these data were generated from adjacent specimens of the same tissue

block.

Functional gene network

Information about the functional similarity of genes was obtained from the HumanNet [46].

HumanNet is a functional gene network consisting of 16,243 genes connected by 476,399

weighted edges. Weights ωig range between 0.41 and 4.26 (Ø 1.14) and reflect the likelihood of

a functional linkage between the two connected genes. The HumanNet was not developed spe-

cifically for the human brain and many genes and functional relationships are not observed in

the human neocortex. Therefore, we first removed all genes that were not detected in our data.

Then, edges of the induced subgraph were removed if the connected genes did not show a cor-

relation coefficient larger or equal to 0.35 (85th percentile) in an external gene transcription

dataset from the Mount Sinai Brain Bank (MSBB) AD study [47]. The MSBB dataset consisted

of 753 RNA-seq profiles of human aged and Alzheimer’s brain samples generated from four

different brain regions (S1 File). The modified network consisted of 6,470 genes connected

by 41,093 edges with a mean weight of 1.24. The remaining 4,387 genes in our dataset that

were either not represented in the original network or not connected by any edges after prun-

ing remained in the analysis, but for these genes the structural component Ui is ignored in

Eq (2).

Detection of differential subnetworks

We applied the prize-collecting Steiner tree (PCST) algorithm implemented in the R package

PCSF [48] to detect subnetworks that were enriched with consistently differential genes identi-

fied by our integrative Bayesian analysis. To detect multiple trees in the network, the algorithm

introduces an extra root node connected to each node in the network with cost ω0 [49]. After

the PCST problem has been solved, the artificial root node is removed from the tree and the

remaining forest structure F is returned. Specifically, the algorithm maximized the objective

function

f ðFÞ ¼ b
X

i2VF

jÊij �
X

ði;jÞ2LF

cðoijÞ � o0kF

where VF denotes the set of all vertices (genes) in the forest and LF the set of all edges (func-

tional links between genes) in the forest. Variable κF denotes the number of trees in the forest.

The cost for an edge (i, j) was defined as c(ωij) = ωc−ωij with constant ωc set to the sum of the

maximum and minimum weight observed in the functional similarity gene network. The opti-

mal solution depends on the two tuning parameters β and ω0 that need to be specified. β bal-

ances the prizes associated with genes, i.e., the absolute values of the integrative statistics jÊij,

and the costs assigned to the edges. A larger value of β results in larger trees. We set β = 22,

which corresponded to the 75th percentile of the costs c(ωij) divided by the 95th percentile of

the prizes jÊij in our data. The parameter ω0 defines the costs for adding a tree to the forest. A

larger value of ω0 results in fewer trees in the optimal solution F. We set ω0 to the 99th percen-

tile of bjÊij. Our choices for β and ω0 preferred a solution with a few small trees, which is often

better for biological interpretability. The optimal forest F with these settings consisted of nine

trees. Three trees consisted of ten or more genes and were studied in more detail. These three

trees were extended into the subnetworks by adding all edges to a tree that existed between any

two genes of the tree in the initial functional gene similarity network. Thus, each of the three
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subnetworks corresponds to one single tree found by the PCSF algorithm with the identical set

of genes but additional edges. Differential subnetworks were tested for an enrichment of gene

ontology (GO) terms from the biological process ontology using the R package topGO [50,

51]. Fisher’s test was applied to compare genes within a subnetwork to the background set of

all genes included in the initial gene network. GO terms with less than 10 genes were excluded

from the analysis.

Model fitting

The hierarchical Bayesian model was implemented in the BUGS language. The code is

available in S1 File. The Gibbs sampler implemented by WinBUGS was used to carry out

400,000 iterations after an initial number of 40,000 burn-in iterations. A thinning of 200

was applied resulting in 2,000 samples from the posterior distributions. Median values and

99% credible intervals were obtained from these 2,000 samples to perform inference. Estimates

for the parameters β0, νH, and ~n, and their respective trace plots are given in S2 Table and

S2 Fig.

Results

Detection of genes with consistent differences across data types in AD

The primary goal of our integrative analysis was to identify genes with consistent alterations of

the epigenome and transcriptome in AD. Evidence for differential gene regulation across tran-

scription, H3K9ac, promoter methylation and exon methylation data was summarized by the

integrative coefficient Z. In Eq (1), we set S(k) = −1 for promoter methylation and S(k) = 1 for

the other three data types to model the negative association between promoter methylation

and transcription [34]. Genes were classified as consistently differential if the 99% credible

interval for the integrative statistic Ei excluded 0. In total, 393 genes were significantly upregu-

lated and 423 genes were significantly downregulated in AD. S3 Table contains the statistics

for all genes included in the analysis. The first ten genes sorted by |Ei| are shown in Table 1.

Among the differential genes in Table 1 are the neurotransmitter transporters SLC6A9 and

SLC6A12, which were associated with cognition in human AD patients and AD model systems

[52–54]. A recently developed SLC6A9 inhibitor is currently tested in a clinical trial [55]. The

downregulated phosphatase DUSP9 and the upregulated kinase CDK18 have been suggested to

modulate pathological tau phosphorylation in AD [56, 57]. KIF5A is a motor protein that has

been reported to be upregulated in AD and may contribute to AD-related mitochondrial

defects [58, 59]. Another candidate gene is APOD, which has a neuroprotective role and is

upregulated in the aging and AD brain [60, 61]. Overall, the differential genes identified by

our analysis are involved in various biological processes in different cell types reflecting the

complexity of AD. Before we highlight some of these processes and discuss novel insights, we

first study and validate our integrative model in more detail.

The integrative statistic Ei consists of a non-structural component Hi and a structural com-

ponent Ui defined by the functional similarity gene network. If functionally related genes dem-

onstrate congruent up- or downregulation in AD, we expect to observe large absolute values

for Ui. To assess the importance of the network in our analysis, we approximated the fraction

of the variance of Ei that is contributed by Ui, Var(Ui)/(Var(Ui)+Var(Hi)) = 0.06. A fraction of

6% indicates that while Hi accounted for most of the observed differences between AD and

controls, some functionally related genes were jointly dysregulated in AD. The structural com-

ponent Ui alone was significant for a total of 6 genes.
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Assessment of specificity and sensitivity using simulated data

To validate our model and prior development, we simulated a dataset based on the 92 control

subjects, which were randomly split into 46 cases and 46 controls. A total of 10,000 genes were

randomly selected and assigned to 500 pathways with 20 genes each. Differences between cases

and controls were simulated for half of the pathways by adding or subtracting a value Δ to the

observed variables XðkÞij ; k ¼ 1; . . . ; 4, of all genes in the pathway in the case samples. Then, a

noisy gene network was simulated consisting of 47,500 correct edges between genes of the

same pathway and 99,800 incorrect edges between genes of different pathways.

Only 19 out of the 5,000 non-differential genes were falsely classified as differential based

on a 99% credible interval. The method correctly identified 1,173 of the 5,000 differential

genes resulting in an FDR of 0.016 and a sensitivity ranging from 0.027 to 0.535 depending on

the magnitude of the simulated difference Δ as depicted in Fig 2A. Notably, even the largest

simulated difference Δ = 0.15 corresponded to a small standardized effect size of 0.083

(Cohen’s d). Next, we compared the performance of our Bayesian model to alternative

approaches using our simulated dataset. For our Bayesian approach, we observed an area

under the receiver operating characteristic curve (AUC) of 0.84 (Fig 2B), which is a modest

improvement over the gene-wise one-sample t-tests applied to the Z values (AUC of 0.80). A

moderated t-test on the Z values as implemented in the limma software performed equally

well as the regular t-test (AUC of 0.80) [62]. All three approaches operate on the integrative

coefficient Z and therefore leverage information from all four data types and consider the

directionality of the effects observed in the different data types. Alternatively, an integrative

analysis can be performed as a meta-analysis on significance levels or rankings obtained from

separate analyses of the different data types. To implement this strategy, we first ran paired

two-tailed t-tests on the simulated XðkÞij and Y ðkÞij values separately for each of the k = 1,. . .,4 data

types to obtain a p-value per gene and data type. Subsequently, the results from the different

data types were combined by either calculating meta-p-values using the z-score method (AUC

of 0.76), or by calculating the genes’ mean ranks (AUC of 0.75), or by applying the Robust

Rank Aggregation method (AUC of 0.75). The latter method was specifically developed for

integrating multi-omic data [63]. However, when combining p-values or gene ranks, informa-

tion about the directionality of the effect sizes observed in the different datasets is lost resulting

Table 1. Top 10 differential genes ranked by jÊ ij.

Gene Ê i [99% CI] ~ni Ø ωig +\- ZðexprsÞi� ZðH3K9acÞ
i� ZðmethPÞ

i� ZðmethEÞ
i�

SLC6A9 0.93 [0.49, 1.34] 1 1.05 69.5% 0.72 0.32 -0.07 0.06

KIF5A 0.77 [0.43, 1.12] 6 1.41 75.2% 0.69 0.21 -0.28 0.04

CRB2 0.76 [0.38, 1.14] 0 - 74.5% 0.53 0.28 -0.17 0.29

SLC6A12 0.74 [0.37, 1.13] 0 - 73.8% 0.98 0.33 0.10 0.08

PRELP 0.74 [0.40, 1.07] 2 1.13 72.3% 0.67 0.24 -0.07 0.10

DUSP6 -0.71 [-1.11, -0.30] 1 0.54 38.3% -0.18 -0.46 0.09 -0.03

MAP4K3-DT -0.70 [-1.04, -0.36] 0 - 24.8% -0.56 -0.28 0.07 -0.20

SLC14A1 -0.70 [-1.19, -0.16] 1 1.00 28.4% -1.01 -0.44 0.02 -0.09

APOD 0.69 [0.31, 1.06] 4 0.91 67.4% 0.34 0.24 -0.41 0.06

CDK18 0.68 [0.32, 1.06] 28 0.78 69.5% 0.68 0.32 -0.06 0.01

Columns from left to right show the gene symbol, estimated integrative statistic Ê i and its 99% credible interval, number of neighbors in the gene network, mean

weights of neighbors, percentage of subjects j with positive coefficient Zij. The last four columns show the mean coefficient Zi• calculated using only genes expression,

H3K9ac, promoter methylation, and exon methylation data.

https://doi.org/10.1371/journal.pcbi.1007771.t001
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in lower AUC values. Finally, we added the results obtained from applying a t-test to only one

data type (transcription data as example) to our comparison in Fig 2B. As expected, the AUC

of 0.71 was smaller compared to the integrative methods, since a large fraction of the data was

not used.

To study how the Bayesian method performs if a non-informative network is given, we ran-

domly permuted the edges of the simulated gene network. Fig 2C shows the results from the

Bayesian method with the random network (AUC of 0.80) next to the unchanged results from

the t-test for a better comparison. These results indicate that the improvement of the Bayesian

method depicted in Fig 2B stems from the information provided by the gene network, and that

if a random network is given, the Bayesian methods performs equally well as the t-test. Finally,

we studied the effect of different sample sizes on the methods by repeating the simulation

study on subsets of n = 46 (Fig 2D) and n = 20 (Fig 2E) samples. While the performance of all

methods declined with smaller sample sizes, the Bayesian method maintained an advantage as

more relative weight was given to the prior. In summary, the simulation study demonstrated

that the Bayesian model with the selected priors results in a small false positive rate, and, if an

appropriate network is given, performs better than simple gene-wise t-tests on the integrative

coefficients or methods that integrate p-values or ranks.

Fig 2. Sensitivity and specificity analysis. (A) The sensitivity achieved by the Bayesian model on the simulated dataset (n = 92) is shown on the x-axis for various

simulated differences Δ on the y-axis. The standardized effect size dC (Cohen’s d) is depicted next to the bars. (B) Sensitivity is plotted against 1—specificity as observed in

the simulated data for the Bayesian model and six alternative approaches. (C) Sensitivity is plotted against 1—specificity observed when using a random gene network. For

better comparison, the curve observed for the t-test identical as in (B) was added to the plot. (D, E) Sensitivity is plotted versus 1—specificity as in (B) using a smaller

sample size of n = 46 (D) and n = 20 (E).

https://doi.org/10.1371/journal.pcbi.1007771.g002
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Validation in independent datasets

We first studied whether genes with consistent differences in epigenomic and transcriptomic

data identified by our analysis also presented differences at the protein level. To do this, we uti-

lized a targeted proteomics dataset generated from the same sample type and sample collection

as our multi-omic data: DLPFC samples of ROS/MAP participants (Synapse ID:

syn10468856). The targeted proteins were candidate genes from previous AD studies [64] and

measured by liquid chromatography-selected reaction monitoring [65]. We applied the same

case/control definition as for the main analysis resulting in 393 AD cases and 214 control sub-

jects. Each protein was tested for difference in abundance in AD versus control subjects,

adjusting for gender, age and postmortem interval (S1 File). Overall, we observed a positive

correlation (Pearson’s r = 0.54) between the integrative statistic Êi and the observed differences

in the protein data based on 98 proteins encoded by genes considered in our integrative analy-

sis (Fig 3A). Out of 18 differential genes from our integrative analysis, 9 genes demonstrated

significantly altered protein levels in AD (family-wise error rate� 0.05); the direction of effect

was consistent between the two sets of results.

Since the protein data is limited to selected AD candidate genes and was not generated

from an independent cohort, we additionally validated our findings in two RNA-seq datasets

from other AD sample collections. The first dataset consisted of 79 AD samples and 37 control

samples from the inferior frontal gyrus included in the MSBB study [47]. We identified 747

genes that were classified as differential in our integrative analysis and passed the detection

threshold in the inferior frontal gyrus samples of the MSBB dataset (S1 File). When comparing

AD to control samples, a majority of 601 out of the 747 genes showed a change in transcription

consistent with the results from the integrative analysis (Fig 3B). These changes were signifi-

cant at an unadjusted p-value of 0.05 for 102 out of 354 upregulated genes and for 97 out of the

393 downregulated genes. Similar results were observed for the second dataset of temporal cor-

tex samples from the Mayo LOAD study (n = 71 control samples, n = 80 AD samples) [4]. We

detected 759 of our differential genes in the temporal cortex (S1 File), and 553 of these genes

showed a consistent increase or decrease in AD (Fig 3C). At an unadjusted p-value of 0.05, 154

out of 359 upregulated and 200 out of 400 downregulated genes were validated in the Mayo

LOAD study.

Differential subnetworks

When we analyzed the posterior distributions we found that about 6% of the variance of Ei is

contributed by Ui, suggesting that some parts of the gene network are collectively dysregulated

in AD. Such a subnetwork of jointly differential genes often represents a disease-related bio-

logical process and is easier to interpret than single genes. To identify differential subnetworks

post hoc, we applied a prize-collecting Steiner tree (PCST) algorithm [48, 66]. The objective of

the PCST algorithm was to find a subnetwork that maximizes the sum of jÊij of the genes in

the subnetwork minus the costs for the edges c(ωij) needed to construct the subnetwork.

Three differential subnetworks with at least 10 genes were identified. The first subnetwork

(Fig 4A) was enriched with genes involved in myeloid cell differentiation (S4 Table) and

reflected the immune component of AD [67]. The network included myeloid transcription

factors such as NFIC [68], and cytokines such as CSF1 and the corresponding receptor CSF1R,

which have recently been studied in the context of microglia activation [69–71]. Cellular func-

tions of the upregulated genes RHOQ and TRIP10 include endocytosis and regulation of cell

shape and motility [72, 73]. To verify that this gene network is transcribed by myeloid cells, we

compared the genes’ transcription levels in an external RNA-seq dataset of purified human

brain cells (Fig 4B) [45]. Further, all five significant genes in the network were also
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differentially transcribed in the MSBB or the Mayo LOAD dataset (Fig 4C). We note that the

myeloid genes that we prioritize are different from the well-validated myeloid AD susceptibil-

ity genes that have emerged from genome-wide association studies.

The second differential network (S3 Fig) was enriched for the Gene Ontology term protein
phosphorylation (S5 Table). Protein phosphorylation regulates various cellular processes by

altering protein activity, localization and stability, and this mechanism has been implicated in

AD [74]. For example, the gene PRKAA2 (alias AMPK) encodes a kinase that regulates cellular

energy homeostasis, is activated by amyloid-β, and phosphorylates tau at multiple sites [75–

77]. Another kinase directly involved in the phosphorylation and accumulation of tau is

TTBK1 [78, 79]. Interestingly, TTBK1 also phosphorylates TDP-43, a protein which forms

pathologic aggregates in aged and AD brains [80, 81]. MAP2K4 (alias MKK4) has been sug-

gested to phosphorylate tau [82] and to modulate amyloid-β toxicity [83]. Most kinases and

phosphatases were depicted in the right half of the network (S3 Fig). The lower left part of the

network included two genes, TUBA1B and TUBB2A, that encode major constituents of micro-

tubules, which are disrupted by hyperphosphorylated tau in AD [84]. The tubulin genes were

connected to the mitochondrial fission gene DNM1L (alias DRP1) in the network. The protein

DNM1L interacts with amyloid-β and hyperphosphorylated tau, causing mitochondria frag-

mentation and thereby affecting mitochondrial health and axonal transport in AD neurons

[85–87]. Thus, the lower left part of the network reflected impaired energy metabolism in AD

synapses. The upper left part of the network consisted of dysregulated genes of the ubiquitin

proteasomal system, such as PSMD2, BTRC, CUL9 and UBQLN1 [88]. UBQLN1 is involved in

the degradation of PSEN1 and APP, two proteins which are essential for the generation of

amyloid-β peptides (APP is the gene that encodes the amyloid-β peptide) [89, 90]. Overexpres-

sion of UBQLN1 alleviates symptoms in some AD mouse models [91]. Thus, while this

Fig 3. Validation of differential genes identified by the integrative analysis. (A) The integrative statistic for 98 genes that were included in a targeted proteomic dataset

is plotted on the x-axis versus the observed differences between AD and control cases in the protein data on the y-axis. Red color indicates genes that were detected as

differential in the integrative analysis (n = 233 samples). Squares indicate significant differences in the protein data (n = 607 samples) at a family-wise error rate of 0.05. (B)

Differences in gene transcription between AD and controls observed in the MSBB RNA-seq study (inferior frontal gyrus, n = 116 samples) are shown separately for genes

identified as up- or downregulated in the integrative analysis. (C) Similarly, differences in gene transcription between AD and controls observed in the Mayo LOAD RNA-

seq study (temporal cortex, n = 151 samples) are shown separately for genes identified as up- or downregulated.

https://doi.org/10.1371/journal.pcbi.1007771.g003
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complex network captures several different processes, we refer to the network as protein phos-

phorylation network because of the enrichment with kinases and phosphatases (S5 Table).

Many genes of this network were transcribed by neurons (S3B Fig).

The third differential network was characterized by the GO term synaptic signaling (S6

Table) and mainly consisted of downregulated synaptic genes (S4 Fig). For example, RGS7 reg-

ulates synaptic plasticity by modulating the signaling pathway downstream of the GABAB

receptor [92]. RPH3A, another downregulated gene involved in synaptic signaling, correlates

with cognitive decline and is specifically downregulated by amyloid-β [93]. Similarly, the gluta-

mate receptors GRIA2 (alias GluR2) and GRIN2A (alias GluN2A) have been shown to be

reduced in the postsynaptic density in AD and are associated with memory deficit [94, 95].

Overall, this network, which is mainly transcribed by neurons (S4B Fig), reflects abnormalities

in synaptic signaling and a reduction of synaptic density, which is a hallmark of AD and occurs

before neuronal cell death [96, 97].

Upregulation of the myeloid network is associated with amyloid-β
pathology and promoted by CSF1 expressing astrocytes

To further investigate the role of the biological processes underlying the three differential net-

works in neurodegeneration, we leveraged the RNA-seq data from the Mayo LOAD study. In

addition to 80 AD and 71 control samples, the dataset from the Mayo LOAD study also

included 30 samples with a post mortem diagnosis of pathologic aging [4]. Individuals with

pathologic aging have widespread cortical amyloid-β plaque deposits but demonstrate no or

Fig 4. Myeloid cell differentiation network. (A) Graph shows the subnetwork of differential genes largely involved in myeloid cell differentiation. Color encodes the

value of the integrative statistic from green (upregulated in AD) to red (downregulated in AD). Squares indicate significantly differential genes (99% credible interval). The

gene NFIC is represented twice reflecting two alternative active promoters. (B) Boxplots depict the transcription levels of the subnetwork’s genes in each of five major

brain cell types obtained from an external RNA-seq dataset of purified cell types. (C) Table shows the value of the integrative statistic Ê i and the unadjusted p-value from

the two external validation datasets for each significant gene in the subnetwork. The directionality in the validation studies (up- or downregulated in AD) is given if the p-

value was less than 0.1.

https://doi.org/10.1371/journal.pcbi.1007771.g004
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only minimal neurofibrillary tau pathology and are cognitively non-impaired [98]. It is unclear

whether pathologic aging is an early stage of AD or whether this condition develops in individ-

uals who have protective factors that block processes downstream of amyloid-β pathology

[99]. We summarized the transcriptional activity of a network in the Mayo cohort by calculat-

ing the first principal component of the normalized RNA-seq transcription profiles of the net-

work’s genes (S1 File). First, we verified that the three networks were differentially transcribed

between AD and controls in this independent cohort (Fig 5A–5C). As expected, the myeloid

cell differentiation network was significantly upregulated in AD compared to controls

(p = 0.001, Wilcoxon rank-sum test), and the protein phosphorylation (p = 0.002, Wilcoxon

rank-sum test) and the synaptic signaling (p<0.001, Wilcoxon rank-sum test) networks were

significantly downregulated in AD. Interestingly, the individuals diagnosed with pathologic

aging demonstrated an upregulation of the myeloid cell differentiation network (p = 0.047,

Wilcoxon test) to a level similar to that seen in AD subjects (Fig 5A), whereas the protein phos-

phorylation and synaptic signaling networks were not dysregulated in this group of samples

(Fig 5B and 5C). These findings indicate that the upregulation of the myeloid cell differentia-

tion network does not require tau pathology and is probably an early event in the pathogenesis

of AD preceding tau pathology and neuronal dysfunction that manifest as impairment in cog-

nitive function. These results are consistent with a recent study suggesting that microglia inter-

act with amyloid-β pathology to contribute to tau proteinopathy and downstream cognitive

decline [100].

The myeloid cell differentiation network consisted of 14 genes of which 5 were classified as

differential (Fig 4A). The cytokine CSF1, one of the 5 differential genes, is an interesting candi-

date gene, because of its role as a regulator of myeloid cell frequency and function during

homeostasis and inflammation [69, 101]. Previous studies of the corresponding receptor

CSF1R in AD mouse models showed that blocking CSF1R reduced microglia density and

attenuated the burden of AD pathology in the animals [70, 102]. To investigate which cell

types trigger CSF1 signaling, we employed single-nucleus RNA-sequencing (snRNA-seq) data

from n = 48 subjects from the ROS/MAP study (S1 File) [103]. As shown in Fig 5D, CSF1 was

primarily transcribed in astrocytes, oligodendrocytes and oligodendrocyte progenitor cells.

Next, we confirmed that CSF1R was exclusively transcribed by myeloid cells in the human pre-

frontal cortex (Fig 5E). Finally, we tested which of the three cell types that transcribed CSF1
contributed to the differences between AD and controls observed at the tissue level. Interest-

ingly, an upregulation of CSF1 in AD was only observed in astrocytes (p = 0.016, Wilcoxon

rank-sum test), but not in oligodendrocytes or oligodendrocyte progenitor cells (Fig 5F).

Although the sample size of the snRNA-seq data is limited, these findings suggest that astro-

cytes activate microglia cells via CSF1 signaling. The alternative CSF1R ligand IL34 was not

detected as differential in our integrative analysis (S3 Table).

Discussion

Large multi-omic datasets are becoming more common in biomedical research and require

novel integrative bioinformatics approaches to fully harness their potential. We developed an

integrative method to detect genes consistently altered in multiple data types in case-control

studies. In addition to integrating information from different data types, our method also uti-

lizes functional gene similarity to share information across genes and thereby improve statisti-

cal inference.

Information from different data types is aggregated by the integrative coefficient given in

Eq (1) at the gene level. Data was matched to genes based on genome annotation in our AD

study, however, other data types, e.g. some enhancer marks, may require a more complex
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matching strategy as outlined elsewhere [38, 104]. After matching, we observed primarily posi-

tive gene-wise correlations between transcription and H3K9ac, whereas no clear trend was

observed for promoter or exon methylation (Fig 1B). This may reflect the complex relation

between DNA methylation and transcriptional activity in the brain, including the role of

hydroxymethylation in neurons [105], but we also note that a large correlation between the

residuals of different data types should generally not be expected, since we regressed out the

effects of major factors such as age, gender and proportion of neurons that impose a correla-

tion structure on the data. The remaining correlation structure was likely caused by unknown

genetic and environmental factors as well as the AD status, which may not affect many genes

in all data types. To limit the effect of data types that are not associated with the outcome, we

modelled an additive instead of a multiplicative coefficient suggested by previous studies [24,

25]. Further, multiplicative coefficients follow a more complex product distribution and the

sign of the coefficient is difficult to interpret if more than two data types are involved. In Eq

(1), the factors S(k) model the relationship between data types so that the sign of the coefficient

corresponds to an up- or downregulation, respectively. The factors S(k) can often be chosen

Fig 5. Increased CSF1 transcription in astrocytes contributes to amyloid-β-related activation of the myeloid cell differentiation network. (A) Boxplots show

transcription levels of the myeloid cell differentiation network (first principal component) in control, AD, and pathological aging samples from the Mayo LOAD study

(Wilcoxon rank-sum tests, unadjusted p-values). (B, C) Similarly, network transcription levels are shown for the protein phosphorylation network (B), and for the synaptic

signaling network (C). (D, E) Boxplots depict transcription levels of CSF1 (D) and CSF1R (E) in six major human brain cell types measured in the prefrontal cortex from

48 individuals. (F) CSF1 transcription levels are shown separately for controls and AD cases in astrocytes, oligodendrocytes and oligodendrocyte progenitor cells

(Wilcoxon rank-sum tests, unadjusted p-values).

https://doi.org/10.1371/journal.pcbi.1007771.g005
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based on prior knowledge derived from studies like Encode or Roadmap Epigenomics [106,

107].

A hierarchical Bayesian model is used to study the distribution of the integrative coefficient.

An innovation of the model is the representation of the differences between AD cases and con-

trols by a non-structural component Hi and a structural component Ui which shares informa-

tion between functionally related genes. Based on the results in a recent comparative review,

we selected the HumanNet to define functional similarity [108]. Functional similarity net-

works are constructed from various datasets from different tissues and organisms and are not

brain specific. Thus, we had to customize the network and prune edges which were not sup-

ported by an external brain RNA-seq dataset in order to better utilize the information con-

tained in the network for our specific analysis. After pruning the network, we observed that

overall approximately 6% of the AD effects were contributed by Ui indicating that parts of the

gene network were jointly dysregulated in AD. The fraction of variation attributable to the

structural component depends on the gene network and the structure of the studied data and

may vary between diseases and tissues. In other domains like spatial epidemiology, a wide

range of values has been observed that can be as large as 71% in extreme cases [109]. Future

studies will have to show whether a fraction of 6% as observed in this study is a common value

for genome-wide molecular data.

We validated our model using simulated and independent data from other studies. The

simulation study was important to demonstrate that our prior choices result in a reasonable

small FDR of 0.016 when using 99% credible intervals to classify genes. Further, the simulation

study showed that our method outperforms a one-sample t-test on the integrative coefficients,

if an appropriate network is given. The one-sample t-test on the integrative coefficient resem-

bles a paired t-test as the coefficient is the sum of the differences between the matched samples

across data types, and thus, can be expected to be powerful in the setting of a matched case-

control study. Consequently, when a random network was given, both methods performed

equally well indicating that the advantage of the Bayesian method stemmed from the informa-

tion provided by the network. Methods that integrate results from separate analyses were infe-

rior as these methods ignore the directionality of the observed differences in the different data

types. Further, these methods do not provide a statistical framework for assessing significance

and controlling error rates. For example, the z-score approach as included in the comparison

will likely result in inflated p-values since the data sets are not independent.

Comparing our results from the integrative analysis with the protein data and the external

transcription data revealed that a majority of our findings can be reproduced at the protein

level and at the mRNA level in an independent cohort, even though the aim of our method

was not to predict differences at the protein or transcription level, but to identify genes with

consistent differences across the given data types. In line with the validation results, we found

that many of the differential genes given in Table 1 have been studied as candidate genes for

AD. Thus, we anticipate that the complete result from the gene-wise analysis (S3 Table) is a

useful resource for AD candidate genes. However, we take these results further, prioritizing a

subset of genes that may be of greater interest: based on the gene-wise results, we studied

which parts of the gene similarity network were collectively dysregulated in AD. Three differ-

ent dysregulated AD subnetworks were identified: myeloid cell differentiation, protein phos-
phorylation, and synaptic signaling. Similar network-based approaches have been suggested to

reveal disease related pathways which may not become obvious in a gene-wise analyses [110].

In contrast to single genes, a network signature can usually be replicated more robustly in

model systems or independent datasets, and thus, can be helpful in follow-up studies to

address questions such as the temporal progression of these three processes during the course

of AD.
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In this study, we further investigated the status of the three differential networks in patho-

logic aging, which is characterized by high amyloid-β loads similar as in AD but a lack of dis-

tinct tau pathology [98]. Consistent with the normal cognition of individuals with pathologic

aging, the synaptic signaling network was not altered compared to controls. We also found no

evidence for altered transcription of the protein phosphorylation network; however, the mye-

loid cell differentiation network was upregulated to a similar level as observed in AD. Although

it is unclear whether the amyloid-β aggregation in pathologic aging reflects an early stage of

AD, these findings support the hypothesis that microglia are already activated at the preclinical

stage of AD before accumulation of hyperphosphorylated tau. An interesting member of the

myeloid cell differentiation network is CSF1 because of its role as a regulator of myeloid cell

numbers and functions [101]. A few studies of AD focused on the corresponding receptor

CSF1R as a potential therapeutic target. Microglia cells depend on CSF1R signaling [111, 112]

and treatment of AD mice with CSF1R inhibitors results in reduced microglia activation and

improved memory function [70, 113], but little is known about the cells that contribute to

CSF1R triggering in AD. Using snRNA-seq data, we showed that the upregulation of CSF1
observed at the tissue level is primarily caused by astrocytes in human AD brains. Altogether,

our findings suggest that astrocytes contribute to microglial activation by expressing CSF1 at

an early stage of AD preceding tau accumulation. Whether CSF1 overexpression by astrocytes

is directly provoked by amyloid-β cannot be concluded from our data. Interestingly, activated

microglia in return secrete signals that induce reactive astrocytes illustrating the complex rela-

tionship between these two cell types during the pathogenesis of AD [114].

In summary, we proposed a novel method for the joint analysis of multiple genome-wide

datasets that utilizes external information about functional gene similarity. We applied the

method to transcription, histone acetylation and DNA methylation data from a large AD

study and discovered multiple well-known and new target genes as well as AD processes. Fur-

ther study of one of these processes indicated that astrocytes may contribute to microglia acti-

vation by CSF1 expression at early stages of AD. Our approach can be adapted to analyze other

multi-omic case-control datasets and thereby promotes integrative analyses to fully utilize

these complex datasets.

Supporting information

S1 Fig. Schematic overview of the integrative multi-omic analysis. Blue boxes indicate input

datasets, red boxes indicate our novel integrative analysis, and green boxes indicate the explor-

ative post hoc analysis of differential subnetworks. The genomic data from our AD case-con-

trol study consisted of four different data types, which were matched to genes and summarized

by the integrative coefficient Zij. Zij modeled the differences observed across data types for

gene i when comparing sample j to its matched control sample. The distribution of Zij was

modeled by a hierarchical Bayesian model to identify consistently differential genes. The

Bayesian model incorporated a gene network (HumanNet) to share information between

functionally related genes. Genes with consistent differences in the epigenomic and transcrip-

tomic data between AD and control samples were the primary result of our integrative analysis

(S3 Table). To further analyze and interpret the results, we subsequently employed an explor-

ative network-based approach to detect AD-related subnetworks (green boxes). Therefore, we

annotated the genes in the HumanNet with the integrative statistic Êi derived from our Bayes-

ian model and used a prize-collecting Steiner tree (PCST) algorithm to identify subnetworks

enriched with consistently differential genes.

(TIF)
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S2 Fig. Trace plots of MCMC draws. (A) Trace plot for parameter β0 after removing the

burn-in period. A thinning of 200 was applied. (B) Trace plot for parameter νH after removing

the burn-in period. A thinning of 200 was applied. (C) Trace plot for parameter ~n after remov-

ing the burn-in period. A thinning of 200 was applied.

(TIF)

S3 Fig. Protein phosphorylation network. (A) Graph shows the subnetwork of differential

genes largely involved in protein phosphorylation. Color encodes the value of the integrative

statistic from green (upregulated in AD) to red (downregulated in AD). Squares indicate sig-

nificantly differential genes (99% credible interval). (B) Boxplots depict the transcription levels

of the subnetwork’s genes in each of five major brain cell types obtained from an external

RNA-seq dataset of purified cell types. (C) Table shows the value of the integrative statistic Êi

and the unadjusted p-value from the two external validation datasets for each significant gene

in the subnetwork. The directionality in the validation studies (up- or downregulated in AD)

is given if the p-value was less than 0.1.

(TIF)

S4 Fig. Synaptic signaling network. (A) Graph shows the subnetwork of differential genes

largely involved in synaptic signaling. Color encodes the value of the integrative statistic from

green (upregulated in AD) to red (downregulated in AD). Squares indicate significantly differ-

ential genes (99% credible interval). The gene ANK2 is represented twice reflecting two alter-

native active promoters. (B) Boxplots depict the transcription levels of the subnetwork’s genes

in each of five major brain cell types obtained from an external RNA-seq dataset of purified

cell types. (C) Table shows the value of the integrative statistic Êi and the unadjusted p-value

from the two external validation datasets for each significant gene in the subnetwork. The

directionality in the validation studies (up- or downregulated in AD) is given if the p-value

was less than 0.1.

(TIF)

S1 Table. Hyperparameters of the hierarchical Bayesian model.

(DOCX)

S2 Table. Parameter estimates of the hierarchical Bayesian model.

(DOCX)

S3 Table. Analysis results for all 10,857 genes.

(XLSX)

S4 Table. GO analysis of the myeloid cell differentiation subnetwork.

(DOCX)

S5 Table. GO analysis of the protein phosphorylation network.

(DOCX)

S6 Table. GO analysis of the synaptic signaling network.

(DOCX)

S1 File. Detailed description of the datasets used in this study including data preprocess-

ing. BUGS code for the hierarchical Bayesian model.

(PDF)
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