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Purpose: To assess which microstructural models best explain

the diffusion-weighted MRI signal in the human placenta.

Methods: The placentas of nine healthy pregnant subjects

were scanned with a multishell, multidirectional diffusion proto-

col at 3T. A range of multicompartment biophysical models

were fit to the data, and ranked using the Bayesian informa-

tion criterion.
Results: Anisotropic extensions to the intravoxel incoherent

motion model, which consider the effect of coherent orienta-

tion in both microvascular structure and tissue microstructure,

consistently had the lowest Bayesian information criterion val-

ues. Model parameter maps and model selection results were

consistent with the physiology of the placenta and surrounding

tissue.

Conclusion: Anisotropic intravoxel incoherent motion models

explain the placental diffusion signal better than apparent dif-

fusion coefficient, intravoxel incoherent motion, and diffusion

tensor models, in information theoretic terms, when using this

protocol. Future work will aim to determine if model-derived

parameters are sensitive to placental pathologies associated

with disorders, such as fetal growth restriction and early-onset

pre-eclampsia. Magn Reson Med 80:756–766, 2018. VC 2017
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INTRODUCTION

The placenta is a vitally important yet understudied organ
(1). Abnormalities in the microscopic and macroscopic
anatomy can disrupt the flow of blood, and therefore the
transfer of oxygen and nutrients from mother to fetus.
These effects are associated with major pregnancy compli-
cations such as fetal growth restriction (FGR) (2–4), and
early onset pre-eclampsia (5,6). FGR affects 5–10% of all
pregnancies (2); pre-eclampsia affects 2–8%, and both
increase with risk factors such as obesity (7–10). However
these abnormalities are difficult to detect before the onset
of symptoms. For example, diagnosis and monitoring of
FGR is currently limited to measuring fetal biometry and
heart rate, amniotic fluid volume, and assessment of blood
flow using Doppler ultrasound of the umbilical cord and
uterine arteries (11). However, at the point of diagnosis
with Doppler ultrasound there has already been substan-
tial inhibition of placental function, and damage to pla-
cental microstructure. Clinicians aim to identify FGR as
early as possible, so that the fetus can be closely moni-
tored and the delivery planned accordingly (12). Early
diagnosis is also vital for the management of pre-
eclampsia (13).

Imaging techniques capable of assessing early placental

development could offer an important new window for
the earlier detection of pregnancy complications. Develop-
ment of non-invasive, in vivo techniques for measuring
blood flow (beyond Doppler ultrasound) and oxygenation
is an active field of research. For example, maternal blood
oxygenation and maternal blood flow have been quanti-
fied with blood-oxygen-level dependent MRI (14,15) and
dynamic contrast-enhanced MRI (16), respectively.
Diffusion-weighted MRI (DWI) is also emerging as a prom-
ising technique for quantifying placental function (17,18),
but previous studies are limited to standard simple diffu-
sion models, such as apparent diffusion coefficient (ADC)
mapping, diffusion tensor imaging (DTI) (19), and intra-
voxel incoherent motion (IVIM) (20).

In this paper, we assess a variety of novel mathemati-
cal models of the diffusion MRI signal from in vivo
human placenta at 3T. In addition to ADC, DTI and
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IVIM we consider a range of multicompartment models
with the potential to provide additional information on
tissue structure and function. The aim is to find the best
models to underpin diffusion-based microstructure imag-
ing techniques to provide new information, and hence
enable earlier detection of placental abnormalities.

METHODS

Placenta Structure

The placenta is a highly vascular organ, consisting of

15–40 cotyledons separated by septa. Each cotyledon

contains one or more functional units, which usually

consist of a paired spiral artery and fetal villous tree.

Figure 1 summarizes the placental structure and princi-

ple routes of blood flow. There are two separate, non-

mixing compartments of blood: the intervillous space

(where maternal blood resides) and the fetal vasculature

(containing fetal blood). The flow of blood in these com-

partments has very different characteristics. Maternal

blood flows slowly through the large pools of intervil-

lous space, bathing the fetal villi and enabling oxygen

exchange across the villous tree surface. On the other

hand, fetal blood perfuses through a convoluted path of

fetal vessels. Although the placenta is a highly vascular

organ, it is immediately bounded by the uterine wall and

chorionic plate, which contain trophoblastic cells, and

various types of fibrous cells ((21), p. 158).

Diffusion Models

It follows that there are a wide variety of structures and

processes which need to be considered in biophysical

models of water diffusion in the placenta. First, we

expect a slow-attenuating DWI signal component from

water diffusing within tissue, such as fetal vessel walls.
We also expect that fetal blood within the convoluted fetal

vasculature flows incoherently at the voxel scale, leading
to a pseudo-diffusion effect. This will contribute a fast-
attenuating component to the DWI signal. The characteris-
tics of maternal blood flow are very different, and it is not
immediately clear how these will affect the signal. Mater-
nal blood enters the placenta through spiral arteries, flows
through intervillous space, then returns to decidual veins
in the uterine wall. Within vasculature, i.e., spiral arteries
and decidual veins, maternal blood may exhibit fast inco-
herent flow on the voxel-scale, similar to fetal blood.
Therefore in uterine wall areas a fast-attenuating compo-
nent to the DWI signal is likely. On the other hand, coher-
ent flow of maternal blood in the intervillous space of the
placenta should cause little signal attenuation. However,
we do expect signal attenuation due to diffusion within
the flow, with a similar diffusivity to water at body tem-
perature (3 � 10�3 mm2 s�1). Additionally, flow through
highly convoluted spaces proximal to fetal villi may
appear incoherent at the MRI voxel scale, leading to a
pseudo-diffusion effect like microcirculatory perfusion.
We would expect this component to have pseudo-
diffusivity higher than 3 � 10�3 mm2 s�1—since the
maternal blood transit time through intervillous space is
estimated at 25 s (40)—but lower than that induced by
microcirculation. This idea is consistent with a study in
mice, where the estimated maternal blood ADC in the pla-
centa was 3:160:4� 10�3 mm2 s�1 (22).

Considering these observations about placental struc-

ture and microstructure, we constructed a set of 14 plau-

sible diffusion models. The models are summarized in

Table 1; they are named following the terminology of

Ref. 23. All models are multicompartment combinations

of the following: ball, stick, zeppelin, tensor, sphere; and

they all assume no water exchange between compart-

ments. The “ball” compartment models isotropic diffu-

sion (i.e., an ADC model). The “stick” compartment is

maximally anisotropic, assuming that water diffuses only

FIG. 1. Schematic representation of blood flow through the placenta and surrounding tissue. Blue and red arrows show the flow direc-

tions of oxygenated (red) and deoxygenated (blue) fetal blood through the placental vasculature. For clarity, only the largest villi are
included (for normal placentas terminal villi make up 40% of villous tree volume [21]). Dashed white arrows show idealized flow lines
through intervillous space for maternal blood. Idealized oxygenation states are represented by the red to blue color gradient.
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in a single direction; the signal is given by S ¼ exp
�bDvðn:GÞð Þ where n is the fiber direction and G is the

gradient direction. A “tensor” models the signal using
the full diffusion tensor, and “zeppelin” is a cylindri-
cally symmetric tensor (as (23)). Ball, stick, zeppelin,
and tensor are therefore all special cases of the diffusion
tensor model, i.e., a Gaussian displacement distribution,
and do not explicitly model restriction. On the other
hand the “sphere” compartment models water restricted
in impermeable spheres. There are many possible combi-
nations of these compartments that we have not
included in the 14 models. We limit the set to those that
are biologically plausible (e.g., we do not include models
with a stick compartment for extracellular diffusion),
and to those with a manageable number of parameters
(e.g., excluding the 13-parameter tensor-tensor model).

The motivation for compartment models is to capture the
properties of distinct water pools. Here, we expect that per-
fusion compartments (i.e., those associated with fast-
attenuating signal components) capture blood (fetal or
maternal) perfusing within vasculature. Diffusion compart-
ments (associated with slow-attenuating signal compo-
nents) capture signal primarily from: (i) diffusion within
tissue and (ii) diffusion within blood, but may also have a
contribution from (iii) slow, incoherent flow of maternal
blood. Despite the expectation for maternal blood perfusion
to affect both the perfusion and diffusion compartments, we
retain the labels “perfusion” and “diffusion,” as these
remain the dominant effects we expect each to capture.

In classical IVIM (we refer to this specific model from
now on as “ball-ball”), perfusion and diffusion compart-
ments are both treated as isotropic. However this may not
hold in areas containing fibrous cells, or in areas where
the vasculature has a coherent orientation, which is likely
in the placenta. Therefore, we explore models which sepa-
rately consider anisotropy in the fast- and slow-
attenuating signal components; we refer to this general
class of models as “anisotropic IVIM.” We also consider
further model refinements by splitting the diffusion

compartment, yielding a three-compartment model (simi-

lar to those used in cancer imaging, e.g., (24)). Such mod-

els include a restricted compartment, which assumes that

water is trapped in impermeable spheres, and an extra-

cellular extra-vascular compartment which has been pre-

viously modeled with a diffusion tensor (24). We have

therefore proposed extending ball-ball (i.e., IVIM) in two

ways: by allowing anisotropy in the diffusion and perfu-

sion compartments (yielding “anisotropic IVIM” models),

and also modeling the effect of diffusion restriction.
We also consider one-compartment models as a base-

line. In particular ADC and DTI models, which combine

perfusion, diffusion and restriction contributions into a

single compartment.
The proposed models broadly fall into five groups (see

Table 1). One group contains single compartment mod-

els; the remaining four groups are categorized according

to the anisotropy of the perfusion and diffusion compart-

ments. For example, “anisotropic-isotropic” refers to

models with anisotropic perfusion compartment and iso-

tropic diffusion compartment.

Data Acquisition

DWI was performed on volunteers using a 3T Philips

Achieva scanner with a 32-channel cardiac coil. The study

involved a cohort of nine healthy pregnant subjects with

gestational age (GA) between 27þ5 (weeksþdays) and

38þ0. For posterior placentas we found that the SNR was

inadequate, due to the distance between the placenta and

receiver coil. Therefore all subjects included in this study

had an anterior placenta. Informed consent was obtained

for all scans (REC number 14/LO/1169). All subjects were

scanned in the supine position during free breathing.

Medical records were reviewed after delivery, with eight

subjects delivering infants with birth weight between the

7th and 95th percentiles. The birth details for one subject

were not available, as they were lost to follow-up. We

implemented a previously published single-shot spin

Table 1
Summary of Multicompartment Models Fitted to the Diffusion-Weighted MRI Signal. The Columns “Perfusion,” “Diffusion,” and

“Restricted” Denote the Compartment Used to Model Each Contribution to the Signal. Columns are Merged When Contributions are
Combined, e.g., Ball-Ball Combines Separate Diffusion and Restricted Compartments into a Single “Diffusion” Compartment.

Model compartments

Model type Perfusion Diffusion Restricted Parameters

Single compartment Ball Dv

Stick Dv;f; u

Tensor D
k
v;D

?
v1
;D?v2

;f; u;c

Iso-iso Ball Ball Dv;D; fv
Ball Sphere Dv;Dsphere; r; fsphere

Ball Ball Sphere Dv;D;Dsphere; r; fv; fsphere

Aniso-iso Stick Ball Dv;D;f; u; fv
Tensor Ball D

k
v;D

?
v1
;D?v2

;f; u;c;D; fv
Zeppelin Ball D

k
v;D

?
v ;fv; uv;D; fv

Stick Ball Sphere Dv;f; u;D; r; fv; fsphere

Iso-aniso Ball Zeppelin Dv;D
k;D?;f; u; fv

Ball Tensor Dv;D
k;D?1 ;D

?
2 ;f; u;c; fv

Aniso-aniso Stick Zeppelin Dv;fv; uv;D
k;D?; u;f; fv

Zeppelin Zeppelin D
k
v;D

?
v ;fv; uv;D

k;D?; u;f; fv
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echo EPI sequence which is optimized for reduced acoustic

noise, peripheral nerve stimulation, and RF heating (25).

Reduction of these effects is an important safety consider-

ation during fetal scans. We developed a rich protocol

spanning a wider range of b-values and gradient directions

than would typically be available, to identify the most

expressive model that the signal potentially supports.
The three principal gradient directions were scanned at

b¼ 15, 25, 80, 115, 206, 246, and 346 s mm�2, and eight

directions were obtained at b¼ 40, 400, 1000, 2000 s mm�2.

Six b¼0 images were also obtained. For all scans the b¼ 0
volumes were distributed throughout the acquisition. Other
settings were as follows: TR¼ 3792 ms, TE¼ 132 ms,
FOV¼300 � 300 � 44 mm3, 2.2 mm isotropic voxels, 20–
25 contiguous slices, gradient duration¼0.0224 s, diffusion
time¼ 0.0656 s. The slices were acquired in the axial direc-
tion (with respect to the mother) for seven subjects, and
coronally for two subjects. For five scans the diffusion-
weighted images were obtained in ascending b-value order
(scan duration: 3 min 55 s). For the remaining four scans we
used a protocol with interspersed high and low b-value sli-
ces (scan duration: 4 min 1 s). The latter protocol aims to
improve the suitability of the data for subsequent respira-
tory motion correction (26) in the future.

Model Fitting

A placental region of interest (ROI) and uterine wall ROI

were manually defined on the first b¼ 0 image. These

ROIs are not segmentations of tissue types, which would be

very difficult at this resolution, but rather correspond to

broad anatomical areas. We fit 14 models (Table 1) voxel-

by-voxel to the complete set (all b-values) of DWI measure-

ments within the masked regions. The model parameters

were fit to the normalized DWI signal with maximum log-

likelihood estimation assuming Rician noise, as previously

described (23,27). Specifically, the log-likelihood is

ln L̂ ¼
XN
i¼1

ln Si � 2ln s� S2
i � ~S

2

i

2s2
þ ln I0

Si
~Si

s2

 !" #
[1]

where f~SigN
i¼1 are the measured signals, fSigN

i¼1 are the

model predicted signals, r is the standard deviation on the
real and imaginary parts of the signal, and I0 is the modi-
fied Bessel function of the first kind. To fit models within
this framework we require constraints on the parameter
values. We constrained the parameters over a range of bio-
logically plausible values (Supporting Table S1). For mul-
ticompartment models, we constrain the diffusivities of
the perfusion and diffusion compartments above and
below 5 � 10�3 mm2 s�1, respectively. This is slightly
higher than the diffusion coefficient of water at 37�C (3 �
10�3 mm2 s�1), because the diffusion compartment poten-
tially includes some slow perfusion of maternal blood.
Following (28) we estimate the SNR accounting for Rician
noise bias to be around 20 on average. We therefore chose
to fix the SNR at 20 for all model fits.

To visualize broad trends in the DWI signal across b-

values we also fit the diffusion tensor model (using the

non-linear fitting option in Camino (29)) to each of the

eight-gradient shells (b¼ 40, 400, 1000, 2000 s mm�2)

individually. We hence computed mean diffusivity (MD)

and fractional anisotropy (FA) parameter maps specific

to each of these b-value shells.

Model Selection

We use standard statistical model-selection techniques to

determine which models are best supported by the DWI
signal in the placenta. Specifically, in each voxel, and

for each model, we calculated the Bayesian information

criterion (BIC),

BIC ¼ �2ln L̂ þ kln n; [2]

where ln L̂ is the maximized value of the log-likelihood
function given in Eq. [1] (ln L̂ is proportional to the fit-
ting error), k is the number of model parameters (Table
1), and n is the number of observations (i.e., the total
number of diffusion-weighted images - 59). The model
with the lowest BIC value best explains the data, i.e.,
provides the best trade off between model complexity
and goodness of fit. Additionally the strength of prefer-
ence between a pair of models can be assessed with
DBIC ¼ BIC1 � BIC2, where BICi is the BIC for model i.
A DBIC of 10 or more implies “decisive” preference for
the model with lower BIC (30).

RESULTS

Figures 2 and 3 present standard DTI and ball-ball
parameter maps over the nine subjects. We then examine
model selection results across all 14 models (Figs. 4 and
5), showing that the classical models are outperformed
by the new models. Next, we display parameter maps
(Fig. 6) and a bootstrapping analysis for a single model
which performed very well in model selection. Finally,
we comment on the relationship between derived param-
eters and GA for a range of models.

The first column in Figure 2 displays three slices from a
b¼ 0 volume for a single subject, scanned axially. The pla-

centa, uterine wall, fetal brain, and amniotic fluid can all

be distinguished. The remaining columns show the MD
maps specific to the b¼ 40, 400, 1000, and 2000 s mm�2

shells. Contrast across different areas of the maps is clearly
visible. For example, at lower b values (b¼ 40 s mm�2 and
b¼ 400 s mm�2 shells) the MD is significantly higher in
the uterine wall ROI than the placental ROI, potentially
reflecting high levels of perfusion in maternal arteries and
veins. There is also contrast across different areas of the
placenta. Notably, some contrast remains even at higher
(1000, 2000 s mm�2) b-values. For example, at b¼2000 s
mm�2 the inner (i.e., fetal) placenta has a noticeably lower
MD than the outer placenta and amniotic fluid.

Figure 3 shows DTI (fit to all b-values) and ball-ball

parameter maps for four subjects, and Supporting Figure
S1 displays the same data for all nine subjects. These
maps are consistent with the known physiology. For
example MD maps, in common with single-shell maps in
Figure 2, show patches of higher diffusivity along the
uterine wall and chorionic plate. These patches corre-
spond with areas of higher perfusion fraction in ball-ball
maps (Fig. 3 and Supporting Fig. S1, 4th column), sug-
gesting that they reflect areas with a high volume of
blood flowing through blood vessels. FA (Fig. 3 and Sup-
porting Fig. S1, 2nd column) and direction encoded
color (Fig. 3 and Supporting Fig. S1, 3rd column) maps

Placenta Microstructure and Microcirculation Imaging 759



clearly show that there are high levels of anisotropy, par-
ticularly in the regions of tissue at the boundary of the
placenta. This is likely due to fibrous cells in the uterine
wall and chorionic plate, as well as the coherent orienta-
tion of vasculature in these areas. These observations are
consistent across axial and coronal scanning planes.

Figure 4 shows the proportion of voxels where each

model has the lowest BIC value, and hence reveals broad

trends in model preference. We plotted this proportion

for the placenta and uterine wall ROIs separately, and

grouped models depending on the isotropy of the perfu-
sion and diffusion compartments. We present the same
data in Supporting Tables S2 and S3, and additionally
highlight the top three models for each scan. For the pla-
centa and uterine wall ROIs, and in all subjects, the sig-
nal is best explained by two-compartment, non-
restriction models incorporating some level of anisotropy
(“anisotropic IVIM” models). The dominant model cate-
gories are anisotropic-isotropic and anisotropic-
anisotropic. In other words, the models which best

explain the DWI signal have an anisotropic perfusion
compartment, and either an isotropic or anisotropic dif-
fusion compartment. For the placenta and uterine wall
ROIs, and for most subjects, stick-zeppelin and zeppelin-
zeppelin models are in the top three models ranked by
the proportion of voxels with the lowest BIC value.
Additionally, in voxels where a model other than stick-
zeppelin or zeppelin-zeppelin best explained the data,
they are still close to the best model (Supporting Fig.
S2). Stick-ball and tensor-ball models are also preferred
in a significant proportion of voxels, with the former bet-
ter in the placenta and the latter in the uterine wall. Of
the three models with a restricted compartment stick-
ball-sphere is by far the best, having the lowest BIC in
5–22% of voxels depending on the subject and ROI.
There is no noticeable difference in model preference
between coronal and axial scans.

Figure 5 and Supporting Figure S3 map the category of
the model with the lowest BIC, which largely reflects

spatial patterns in the isotropy of the diffusion

FIG. 2. Mean diffusivity maps for three slices of a single placental diffusion-weighted MRI scan. Gestational age: 35þ6 (weeksþdays).
The columns b¼40 s mm�2 to b¼2000 s mm�2 show the mean diffusivities derived from a diffusion tensor fit only to the images at

that nonzero b-value and b¼0. Red and black outline the uterine wall and placenta ROIs respectively. Color represents mean diffusivity
in mm2 s�1 (note that the scale is a factor of 10 higher for the b¼40 s mm�2 maps).
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compartment. In accordance with Figure 4, anisotropic
IVIM models almost always explain the signal best,
although different model categories tend to be favored in
different areas. Models with isotropic diffusion compart-
ment generally perform better within the placenta,

whereas models with anisotropic diffusion compartment
are best at the boundaries of the placenta, i.e., within the
uterine wall and chorionic plate.

Figure 6 and Supporting Figure S4 show parameter
maps for the stick-zeppelin model, since this performed

FIG. 3. Parameter maps derived from diffusion tensor and ball-ball model fits. Each row displays maps for a single slice from one sub-

ject, labeled by gestational age (weeksþdays). Slices are displayed in the EPI acquisition plane, corresponding to the coronal plane
(row 1) and axial plane (remaining rows). Arrows in row 3 highlight areas of high diffusivity and high perfusion at the boundary of the pla-
centa. Supporting Figure S1 is the complete version of this figure, containing these maps for all subjects.

FIG. 4. Model selection results across all subjects. Bar plots showing the proportion of voxels where each model had the lowest Bayes-

ian information criterion for nine placental scans. Subjects are labeled by gestational age, with “-cor” indicating that the placenta was
scanned coronally. The perfusion model compartment is emphasized in the legend text. a: Placenta ROI. b: Uterine wall ROI.
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consistently well in model selection, both in the pla-
centa and the uterine wall. They reveal additional infor-
mation, specific to perfusion and diffusion
compartments, that can be accessed using anisotropic
IVIM models. Zeppelin diffusivity maps appear to reveal
cotyledon structure for some subjects (e.g., Fig. 6 1st col-
umn, final row). Stick diffusivity maps (2nd column)
show much variability, with very high parameter values
in many voxels. The 4th column shows the FA of the
diffusion compartment, the results mirror those in Figure
5 and Supporting Figure S3: there is mostly low FA
within the placenta, and high FA in the uterine wall and
chorionic plate.

We performed a bootstrapping analysis to estimate the
standard deviations of stick-zeppelin model parameters
(Supporting Fig. S5). The ratio of parameter values to
parameter standard deviations is typically around 10.
Parameter standard deviations are much lower than the
difference in values between regions; we can therefore
confidently infer contrast across these regions in stick-
zeppelin parameter maps.

Finally, we made an initial exploration into the rela-
tionship between model-derived parameters and GA.
Supporting Figure S6 plots the DTI-derived MD against
GA, and Supporting Figure S7 plots the perfusion frac-
tion for three models against GA. Both parameters
decreased across gestation, and interestingly these corre-
lations were higher in the uterine wall than the placenta.

Encouragingly, although we emphasize that we only

have nine cross-sectional samples, these trends are con-

sistent with previous reports for the ADC (31) and ball-

ball perfusion fraction (32).

DISCUSSION

This article demonstrates 3T DWI of the human placenta

and uterine wall using a multishell, multidirectional

imaging protocol. We fit a range of microstructural mod-

els to the DWI signal, and assess which models best

explain the data. Encouragingly, even though the achiev-

able resolution is limited as we did not correct for respi-

ratory motion, we observe consistent patterns in

parameters and model selection statistics across a cohort

of nine subjects. These trends can be summarized as

follows:

1. Anisotropic IVIM models describe the in vivo

human placenta diffusion MRI signal better than

ADC, ball-ball (i.e., IVIM) and DTI models.
2. The fast-attenuating signal component is anisotropic

in nearly all voxels.
3. The slow-attenuating signal component is aniso-

tropic in 20–70% of voxels, depending on ROI and

subject. This anisotropy is most prevalent in the

uterine wall and chorionic plate.

FIG. 5. Mapping the spatial pattern of model selection results. Each row displays three slices for a single subject, labeled by gestational
age (weeksþdays). Voxels are colored according to the category of the model with the lowest Bayesian information criterion in that

voxel. Models are labeled according to the isotropy of the perfusion and diffusion compartments, respectively, for example “aniso-iso”
refers to models with anisotropic perfusion compartment and isotropic diffusion compartment. Slices are displayed in the EPI acquisition
plane (coronal plane for row 1, axial plane for other rows). Supporting Figure S3 is the complete version of this figure, containing these

maps for all subjects.
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As we discuss in the following sections, these patterns

are consistent with the structure and physiology of the

placenta and surrounding tissue. This suggests that the

DWI signal is sensitive to anatomically linked micro-

structural and microvascular features.

Anisotropic IVIM

The ball-ball (i.e., IVIM) model (20) assumes that blood

is flowing in capillaries with uniformly distributed ori-

entation giving rise to isotropic signal attenuation.

Recently, there have been multiple extensions proposed

which model the effect of more coherent microvascular

orientation, by considering anisotropy in the perfusion

(and sometimes diffusion) signal. These methods have

been applied in kidney (33,34), heart (35), skeletal mus-

cle (36), brain (37), and cancer (24) imaging.
Here, we fit a range of multicompartment models

which contain an anisotropic perfusion or diffusion com-

partment (or both). Figure 4 and Supporting Figure S3

show that there is anisotropy in the fast-attenuating sig-

nal component for the vast majority of voxels in the pla-

centa and surrounding tissue. Models with stick

compartments—the most anisotropic possible—also

show consistently good performance (Fig. 4). These

observations match the interpretation that there is a

coherent orientation of the vasculature. This may be nec-

essary in order to facilitate the transport of large volumes

of maternal and fetal blood into and out of the placenta

(e.g., Fig. 1). The data shows anisotropy in the slow-

attenuating signal component that varies—both spatially

and across subjects (Supporting Figs. S3 and S4, 4th col-

umn). For most scans, we observed anisotropy in the

slow-attenuating signal component within the uterine

wall and chorionic plate. This is consistent with an

assignment of the slow-attenuating signal component to

water in tissue, as tissue in these areas contains highly

ordered smooth muscle and fibrous cell types. The low

anisotropy in the slow-attenuating signal component

within placental areas may arise from large maternal

blood pools in intervillous space exhibiting isotropic dif-

fusion during flow; it could also arise from the fact that,

at the voxel scale, tissue consisting of highly convoluted

villi has less coherent orientation.

Areas with Diffusion Restriction

The diffusion signal persists at relatively high b-values

(Fig. 2), and restriction models fit the DWI signal best in

5–22% of voxels, depending on tissue type and subject

(Fig. 4, Supporting Tables S2 and S3). These effects are

correlated: areas where signal persists at high b-values

often correspond with stick-ball-sphere being the pre-

ferred model (Supporting Fig. S8, circled areas in 1st

and 2nd columns). Supporting Figure S8 also shows

sphere volume fraction maps; notably there are many

areas within the placenta with zero sphere fraction, sug-

gesting no detectable restriction (Supporting Fig. S8,

FIG. 6. Parameter maps derived from stick-zeppelin model. Each row displays maps for a single axial slice from one subject, labeled by
gestational age (weeksþdays). Slices are displayed in the EPI acquisition plane (coronal plane for row 1, axial plane for other rows).

Supporting Figure S4 is the complete version of this figure, containing these maps for all subjects.
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arrows). This may correspond to areas dominated by
maternal blood within intervillous space. We also plot-
ted sphere radius maps (Supporting Fig. S8, 4th column)
that reveal areas with low sphere radius and non-zero
sphere volume fraction (Supporting Fig. S8, circled areas
in 3rd and 4th columns), suggesting diffusion restriction.
This is consistent with higher cellularity in these areas,
although we emphasize that, despite our use of a spheri-
cal restriction model, outer cell membranes are not the
only structures that can cause restriction.

Our initial observations suggest some evidence for
restricted diffusion, but it does not appear to be a domi-
nant effect. This interpretation is consistent with the pla-
cental anatomy, which contains large areas of
intervillous space where restriction is unlikely to occur.
Quantification of restriction may have applications in
early assessment of placental abnormalities; for example,
the invasion of trophoblast cells into the uterine wall
plays an important role in the normal remodeling of spi-
ral arteries during early pregnancy (38–40). Future acqui-
sition protocols with higher b-values and SNR may
provide better access to this compartment.

Future Work

The sensitivity of DWI to microstructure shows promise
for early assessment of placental abnormalities. Diagno-
sis of FGR currently relies on Doppler ultrasound of the
umbilical cord and uterine artery, along with fetal biom-
etry (11,12). Pre-eclampsia is diagnosed upon presenta-
tion of maternal symptoms (13). In both cases, there has
already been substantial inhibition of placental function
at the point of diagnosis. Thus far, the utility of monitor-
ing placental health with DWI has been investigated
using ADC (31,41,42), ball-ball (i.e., IVIM) (32,43–46)
and DTI (47) models. The ADC model may be useful as a
diagnostic tool for FGR, but the evidence is limited to a
single study (41). Ball-ball is the most frequently used
model in the placenta, and has been fairly successful in
relating DWI signals to pathologies, with the perfusion
fraction (an estimate of the relative volume of flowing
blood) being significantly lower in FGR (43,45,46) and
early onset pre-eclampsia (32). The DWI models pre-
sented in this paper show potential for improved charac-
terization of placental microstructure, although there are
a number of challenges still to be addressed.

A clear area for further development is data acquisi-
tion. For example, scanning at higher resolution would
bring many advantages, such as sensitivity to higher spa-
tial frequency changes in tissue microstructure. Clini-
cally limited acquisition times are another important
consideration, especially since DWI is often part of a
larger multimodal scan. Therefore development of tech-
niques which offer speed ups, such as interleaving of b-
values (26) and multiband acceleration (48,49), are bene-
ficial. Once a particular model or set of models is cho-
sen, we can also use experimental design optimization,
e.g., as in (50), to reduce acquisition time and increase
sensitivity to key parameters.

Better image post-processing also offers further
improvements in placental microstructure imaging. In
this paper, we perform no motion correction, but assume

alignment across DWI volumes. This undoubtedly affects
the visual quality of DWI parameter maps (51), limiting
our ability to image small-scale structures, such as spiral
arteries. Motion correction in the placenta is a difficult
and little studied problem, and requires consideration of
non-rigid motion (both inter-slice and inter-volume) (15).
In the future, we aim to develop algorithms for motion
correction in conjunction with protocols interspersing
high and low b-value slices, as used for four subjects
here, since these improve registration between diffusion
weighted volumes.

In this paper, we assessed a broad range of biophysical
models, but future work will concentrate on models
which quantify placental microstructure and microcircu-
lation well. Stick-zeppelin and zeppelin-zeppelin show
the most promise, due to their consistently high-ranking
across the placenta and uterine wall in model selection
analysis. Zeppelin-zeppelin is the more general model,
since a zeppelin compartment can capture isotropic dif-
fusion when the parallel and perpendicular diffusivities
are equal (unlike the strict anisotropy of the stick com-
partment). It also has more parameters, and generally
explains the placental data better when it is not the best
model (Supporting Fig. S2A). These reasons lead us to
prefer zeppelin-zeppelin for rich multishell, multidirec-
tion acquisition protocols, such as the one presented
here. For sparser imaging protocols stick-zeppelin would
be easier to fit to the data, having three fewer parame-
ters, and may be a more robust choice. We observed that
stick diffusivity estimates are very variable with high
values in many voxels (Supporting Fig. S4, 2nd column).
This is likely due to the difficulty in accurately quantify-
ing fast diffusion, since measurements of fast-attenuating
voxels are highly sensitive to noise. Any real anatomical
variation in these maps would be very difficult to distin-
guish from the high variance due to the aforementioned
effect. In future studies it may be better to fix this param-
eter to a physiologically reasonable value.

Our models assume that relaxivity values are constant
across compartments, but it is highly likely that T1, T2,
and T�2 values vary across compartments, e.g., due to
oxygenation levels of blood and tissue. This would cause
a weighting of the inferred volume fractions by the corre-
sponding relaxivities. Future studies could address this
by using complementary relaxivity and diffusivity meas-
urements to improve placental microstructure characteri-
zation, as in Ref. 52. This is an important consideration
within the placenta as there is a gradient in the oxygena-
tion of maternal blood from spiral arteries to decidual
veins, which affects the T�2 value.

Finally, the key area for future work is to translate the
findings in this paper on suitable models for placental
diffusion into biomedical applications of quantitative
imaging. Although it was not the main purpose of this
study, we made an initial assessment into the extent to
which model-derived parameters reflect changes in
microstructure throughout gestation. The observation of
model parameter changes with GA motivates future work
investigating and quantifying this dependence more
directly. Longitudinal studies would give a more direct
assessment of the relationship between model-derived
parameters and GA. Compartment models offer potential
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improvements over earlier studies of diffusion parame-

ters against GA, by modeling specific biophysical fea-

tures. Supporting Figure S6 shows that MD, both in the

placenta and uterine wall, is the parameter that corre-

lates best with GA. However, this observation does not

have an obvious biophysical interpretation, as MD aver-

ages over perfusion and diffusion effects. Supporting Fig-

ure S7 reveals that the large decrease in MD may be due

to the compounding of separate effects: a reduction in

the volume of flowing blood, and a reduction in diffusiv-

ity. In other situations, strong effects that act in opposite

directions on MD can cancel out, but compartment mod-

els can still reveal them. The clear next step after a

wider study quantifying microstructural changes across

gestation is to extend to pathological placentas. By scan-

ning subjects with pregnancy complications such as FGR

and pre-eclampsia, we will investigate parameter values

in these placentas, and therefore assess the efficacy of

model-based DWI for quantifying placental pathologies.

CONCLUSIONS

In this paper, we demonstrate that anisotropic IVIM

models explain the in vivo human placenta DWI signal

better than ADC, ball-ball (i.e., IVIM) and DTI models

when using a rich, multishell, multidirectional protocol.

These models can extract quantitative values related to

the diffusivity, anisotropy, and relative fractions of the

fast- and slow-attenuating components of the diffusion

signal. Parameters derived from model fits could poten-

tially capture changes in placental microstructure across

gestation. Initial observations were consistent with the

previous literature—diffusivity and perfusion fraction

decreased with GA. The identification of models which

best explain the placental diffusion signal will underpin

future development of scanning protocols. We anticipate

that these optimized protocols will further elucidate

which model-derived parameters best quantify variation

in placental microstructure. This approach naturally

extends to pathological placentas, where we will aim to

assess which image-derived biomarkers capture the dif-

ferences between normal and pathological tissue.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. Parameter maps derived from DTI and ball-ball model fits. Each
row displays maps for a single slice from one subject, labelled by GA. Sli-
ces are displayed in the EPI acquisition plane, corresponding to the coronal
plane (row 1 and 3) and axial plane (remaining rows). Arrows in row 7 high-
light areas of high diffusivity and high perfusion at the boundary of the
placenta.
Fig. S2. Stick-zeppelin and zeppelin-zeppelin are close to the best model
in most voxels. Cumulative histograms of the difference between stick-
zeppelin and zeppelin-zeppelin BICs, and the lowest BIC across all models
in that voxel. A) Placenta ROI, B) uterine wall ROI.
Fig. S3. Mapping the spatial pattern of model selection results. Each row
displays three slices for a single subject, labelled by GA. Voxels are col-
oured according to the category of the model with the lowest BIC in that
voxel. Models are labelled according to the isotropy of the perfusion and
diffusion compartments respectively, for example “aniso-iso” refers to mod-
els with anisotropic perfusion compartment and isotropic diffusion com-
partment. Slices are displayed in the EPI acquisition plane (coronal plane
for rows 1 and 3, axial plane for other rows).
Fig. S4. Parameter maps derived from stick-zeppelin model. Each row dis-
plays maps for a single axial slice from one subject, labelled by GA. Slices
are displayed in the EPI acquisition plane (coronal plane for rows 1 and 3,
axial plane for other rows).
Fig. S5. Standard deviation of stick-zeppelin parameters from bootstrap-
ping analysis. The data (i.e. 59 diffusion-weighted images) was resampled
with replacement 100 times, and the stick-zeppelin model was fit to each
resampled dataset. This enabled estimation of the standard deviation of
stick-zeppelin model parameters (note that the color scales are 5 times
lower than those in Fig. 6 and Supporting Fig. S4). Each row displays
maps for a single axial slice from one subject, labelled by GA. Slices are
displayed in the EPI acquisition plane (coronal plane for rows 1 and 3, axial
plane for other rows).
Fig. S6. MD decreases as a function of GA. Scatter plot showing the
median value of the MD within two ROIs against GA, A) Placenta ROI, B)
uterine wall ROI.
Fig. S7. Perfusion fraction decreases as a function of GA. As Supporting
Figure S6 except plotting the median value of the perfusion fraction for
three models.
Fig. S8. Stick-ball-sphere parameter maps. Each row displays maps for a
single axial slice from one subject, labelled by GA. Slices are displayed in
the acquisition plane. The second column shows the MD calculated from a
DTI fit only to the images at b50 and b52000 s mm– 2. In the 5th row an
area where stick-ball-sphere was the preferred model and the signal per-
sisted at high b-values is circled, and arrows show areas with zero sphere
volume fraction. In the 7th row an area with low sphere radius and non-
zero sphere volume fraction is circled.
Table S1. Constraints on parameters when fitting models to the DWI signal.
D denotes a diffusion coefficient which was constrained to reasonable val-
ues for water diffusion. Dv was constrained at a much higher value, and
can hence model water flowing within vascular structures. Dv has a
reduced lower threshold in models where the perfusion and diffusion com-
partments are combined (i.e. single compartment models and ball-sphere).
There is one additional constraint for all models: the volume fractions for all
compartments sum to 1.
Table S2. Proportion of voxels in the placenta ROI where each model had
the lowest BIC value. The three models with the highest proportions for
each scan are highlighted. Subjects are labelled by GA, with “-cor” indicat-
ing that the placenta was scanned coronally.
Table S3. Proportion of voxels in the uterine wall ROI where each model
had the lowest BIC value. As Supporting Table S2, but for the uterine wall
ROI.
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