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Abstract
Aims/hypothesis Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage
function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflam-
mation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism
are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean
and obese conditions.
Methods F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific
Hif1α−/− mice was used to examine the role of hypoxia-inducible factor-1α (HIF-1α) in ATMs part of obese adipose tissue.
In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced
changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches
were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes
were inhibited to determine their relevance for cytokine production.
Results Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in
obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in
obese individuals was associatedwith diabetes outcome. These changes were not observed in peritoneal macrophages from obese
vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages
was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using
metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that
contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proin-
flammatory trait of macrophages in obese adipose tissue. HIF-1α, a key regulator of glycolysis, nonetheless appeared to play no
critical role in proinflammatory activation of ATMs during early stages of obesity.
Conclusions/interpretation Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory
cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets
to curtail inflammatory responses in obesity.
Data availability Microarray data of ATMs isolated from obese or lean mice have been submitted to the Gene Expression
Omnibus (accession no. GSE84000).
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KC Chemokine (C-X-C motif) ligand-1
LFD Low-fat diet
LPS Lipopolysaccharide
OCR Oxygen consumption rate
OXPHOS Oxidative phosphorylation
PCA Principal component analysis
PS Penicillin/streptomycin
qRT-PCR Quantitative reverse-transcription PCR
SRC Spare respiratory capacity

Introduction

In obesity, macrophages accumulate in adipose tissue and
trigger chronic low-grade inflammation which promotes the
development of systemic insulin resistance [1–3]. Based on
transcriptional profiles and expression markers derived from
in vitro experiments, macrophages are generally classified as
classically/inflammatory (M1) or alternatively/anti-
inflammatory (M2) activated [4, 5]. Applying this phenotyp-
ical classification to adipose tissue macrophages (ATMs) has
led to the identification of M2 macrophages in lean adipose
tissue vs M1 macrophages in obese adipose tissue [6]. In re-
cent years, however, the two-dimensional M1/M2 spectrum
has been challenged and macrophages in different tissue en-
vironments have been shown to adopt a variety of inflamma-
tory phenotypes that fall outside this classification [7, 8].
Indeed, macrophages in obese adipose tissue display
surface-proteins that resemble neither classical nor alternative

activation, but rather represent a state of metabolic activation
[9]. Intracellularly, ATMs in obese adipose tissue are
characterised by lysosomal activity [10], suggestive of robust
changes in intracellular energymetabolism of ATM in obesity.

Recent developments in the field of immunology have iden-
tified macrophage intracellular energy metabolism as a funda-
mental determinant of its functional response.M1macrophages
are characterised by a high glycolytic rate whereas M2 macro-
phages rely mainly on oxidative phosphorylation (OXPHOS)
[11, 12]. A central role in driving macrophage polarisation has
been appointed to hypoxia-inducible factor-1α (HIF-1α), a
master regulator of glycolysis that is critically involved in the
development of the M1 phenotype [13, 14]. Profiling of intra-
cellular metabolism in ATMs, as well as identifying key regu-
lators involved, is expected to further the understanding of their
metabolic functions and may ultimately bring forward targets
for modulating their inflammatory traits. Using various ap-
proaches, we identified unique metabolic activation of ATMs
in obesity that does not resemble M1 or M2 macrophages.
Metabolic activation of macrophages, characterised by in-
creased OXPHOS and glycolysis, was dose-dependently in-
duced during a co-culture with adipose tissue and translated
into increased cytokine secretion. Although various metabolic
pathways contributed to cytokine release by ATMs, glycolysis
accounted mostly for the higher cytokine production by ATMs
from obese mice. Inflammatory activation of ATMs during ear-
ly stages of obesity, however, appeared to be independent of
HIF-1α. Further understanding of the functional consequences
of metabolic programming in macrophages in lean adipose
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tissue and metabolic activation in ATMs residing in obese ad-
ipose tissue is expected to lead to novel therapeutic targets to
curtail inflammatory responses that will ultimately reduce
obesity-induced metabolic complications.

Methods

Mice

Male C57Bl/6mice (Harlan, Horst, Germany) were on a high-fat
diet (HFD) containing either 45% (D12451) or 60% energy de-
rived from fat (D12492), or on a low-fat diet (LFD) containing
10% energy derived from fat and matching most other compo-
nents present in either the 45% HFD (D12450B) or 60% HFD
(D12450J), for 16 weeks. Mice were stratified based upon body
weight at the start of the LFD or HFD intervention. All proce-
dures were approved by the ethics committee for animal exper-
iments at Wageningen University.

For studying the role of HIF-1α in ATMs during the devel-
opment of obesity, 9- to 12-week-old male C57/Bl6 mice with
floxed Hif-1α (also known as Hif1a) (exon 2) crossed into a
background of lysozyme M-driven cre recombinase (LysM
Hif-1α−/−) or C57/Bl6 controls not carrying lysozyme M-
driven cre recombinase (LysM Hif-1α+/+) [15] were exposed
to an HFD (D12492) for 8 weeks. After 7 weeks, an insulin
tolerance test was performed in mice fasted for 5 h, by
injecting insulin (1 U/kg body weight) intraperitoneally.
Blood was taken from the tail at specific time points and
glucose was measured using Accu-check glucose meters
(Roche Diagnostics, Almere, the Netherlands). The study
was carried out in accordance with recommendations in the
Guide for the Care and Use of Laboratory Animals of the
National Research Council. The protocol was approved by
the Dartmouth IACUC.

All mice were individually housed and had ad libitum access
to food and water. All diets were obtained from Research Diets
(New Brunswick, NJ, USA). Experimenters were not blinded to
group assignment and outcome assessment.

Cell culture

ATMs and peritoneal macrophages were isolated from male,
wildtype C57Bl/6 mice (Harlan). For details of tissue and cell
collection, see ESM Methods.

ATMs Freshly isolated ATMs were cultured in RPMI 1640
(Lonza, Verviers, Belgium) supplemented with 10% (vol./vol.)
FCS and 1% (vol./vol.) penicillin/streptomycin (PS)
(RPMI/FCS/PS) for 24 h (200,000 cells/well). The contribution
of various metabolic pathways to cytokine release was examined
by providing 5.5 mmol/l 2-deoxy glucose (2-DG) (Merck,
Darmstadt, Germany), 50 μmol/l Etomoxir (Merck), 10 μmol/l

UK5099 (Merck) or 10 μmol/l BPTES (Merck) 2 h after plating
until the end of the 24 h culture period.

Bone marrow-derived macrophages Bone marrow cells were
cultured in DMEM (Lonza) supplemented with 10% (vol./
vol.) FCS and 1% (vol./vol.) PS (DMEM/FCS/PS) and 5%
(vol./vol.) L929-conditioned medium (L929). After 3–4 days,
adherent bone marrow-derived macrophages (BMDMs) were
re-plated and exposed for 3 days to an insert containing 25 mg
or 100 mg of minced epididymal adipose tissue collected from
LFD-fed or HFD-fed mice. Control BMDMs were held in
DMEM/FCS/PS containing 5% (vol./vol.) L929 with an emp-
ty insert for the same length of time. M1 andM2macrophages
were generated by 24 h incubation with 10 ng/ml lipopolysac-
charide (LPS) (M1) or 25 ng/ml IL-4 (M2). For measuring
cytokine and lactate production of BMDMs after adipose tis-
sue priming, inserts were removed and BMDMs were held in
fresh DMEM/FCS/PS for an additional 24 h. For extracellular
flux analysis, BMDMs were scraped, counted and re-plated in
a 96-well Seahorse microplate (Seahorse Bioscience, Santa
Clara, CA, USA).

Adipose tissue Epididymal adipose tissue was brought
into culture and exposed to 17.5 nmol/ml insulin in
DMEM/PS for 20 min to measure insulin sensitivity.
The tissue was kept in DMEM/FCS/PS with or without
LPS (10 ng/ml) for 24 h to measure IL-6 release or was
cultured in DMEM/FCS/PS for 3 days for leptin and
lactate measurements.

Extracellular flux analysis

The real-time oxygen consumption rate (OCR) and extracel-
lular acidification rate (ECAR) of ATMs and BMDMs were
analysed using an XF-96 Extracellular Flux Analyzer
(Seahorse). See ESM Methods for further details.

Cytokine and lactate measurements

Levels of IL-6, chemokine (C-X-C motif) ligand-1 (KC),
TNF-α, IL-1β, IL-10 and leptin in cell culture supernatant
fractions were measured with murine DuoSet ELISA
Development kits (R&D Systems, Abingdon, UK). An enzy-
matic assay adapted from the Lactate Assay kit (Merck) was
used to determine lactate levels.

Immunohistochemistry

Paraffin-embedded sections of epididymal adipose tissue were
stained with an F4/80 antibody (Bio-Rad, Veenendaal, the
Netherlands) and counterstained with haematoxylin.
Macrophages were visualised with 3,3-diaminobenzidene
(Merck).
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Western blot

Primary antibodies for actin (Merck), AMP-activated protein ki-
nase (AMPK) (no. 2532L), phospho-AMPK Thr172 (no. 2531)
and p-Akt Ser473 (no. 4060) (Cell Signalling, Leiden, the
Netherlands) were all used at a ratio of 1:1000 according to
manufacturers’ instructions, and incubated overnight at 4°C.
See ESM Methods for further details.

RNA isolation and qRT-PCR

RNA from ATMs and peritoneal macrophages isolated from
HFD-fed or LFD-fed mice, or from BMDMs, was used for
quantitative reverse-transcription PCR analysis (qRT-PCR).
The following genes were measured: Cd11c (also known as
Itgax), Cd206 (also known as Mrc1), Cd36, Cd68, Glut1, Hk2,
Hif-1α,Ldhα (also known asLdha),Lipa,Pdk4,Plin2 andVegfα
(also known as Vegfa), normalised against 36b4 (also known as
Rplp0) (ESM Table 1). For further details, see ESM Methods.

Microarray analysis and interpretation

Four pools of ATMs isolated from epididymal adipose tissue of
male C57Bl/6 mice fed an LFD or HFD in four separate exper-
iments were subjected to expression profiling by microarray. In
addition, raw transcriptome data from various tissue macro-
phages, including ATMs (GEO accession no. GSE56682), from
LPS-stimulated BMDMs (GSE53986) and from obese diabetic
and obese non-diabetic humans (GSE54350)were obtained from
theGene ExpressionOmnibus. Details of themicroarray analysis
and interpretation are in the ESMMethods.Microarray data have
been submitted to the Gene Expression Omnibus (accession
number GSE84000).

Statistical analysis

Results are shown as mean ± SEM. Statistically significant
differences between two groups were calculated using
Student’s t test. For comparisons between more than two
groups, a one-way ANOVA and post hoc Bonferroni’s multi-
ple comparison test was done.When comparing diet and treat-
ment effects within one experiment, data were analysed with a
two-way ANOVAwith post hoc Bonferroni test (treatment vs
control). A p value ≤0.05 was considered significant.

Results

Unique metabolic and inflammatory activation
of ATMs in obesity

To examine whether macrophages residing in adipose tissue are
transcriptionally distinct from other tissue macrophages, we

performed a principal component analysis (PCA) using public-
ly available gene expression profiles of macrophages isolated
from the peritoneal cavity, liver, spleen, lung, intestine and ad-
ipose tissue [16]. Indeed, ATMs exhibited unique
transcriptomes (Fig. 1a). The presence of obesity clearly affect-
ed complete transcriptomes of ATMs further as demonstrated
by distinct clustering of ATMs sorted from obese vs lean mice
by the pan macrophage-membrane marker Emr1-F4/80 [17,
18] (Fig. 1b). Traditionally, macrophages in obese adipose tis-
sue are characterised by an enhanced inflammatory state [2].
Using inflammatory genes (ESM Table 2) as input for PCA
confirmed distinctive inflammatory activation of macrophages
residing in obese adipose tissue (Fig. 1c). Interestingly, expres-
sion data for genes involved in glycolysis, OXPHOS and amino
acid metabolism (ESM Table 2) were also sufficient to distin-
guish ATMs of obese mice from ATMs of lean mice (Fig. 1d),
suggestive of robust changes in energy metabolism of ATMs in
obesity. In fact, many genes involved in glycolysis and
OXPHOS were upregulated in ATMs from obese vs lean mice
(Fig. 1e, f). Noticeably, strong metabolic rewiring upon obesity
was specific for ATMs, as these changes were not observed in
peritoneal macrophages (Fig. 1g, i). Indeed, metabolic genes
were expressed at much higher levels in ATMs than in perito-
neal macrophages and were upregulated in obesity (Fig. 1g). In
support of our gene expression data, ATMs derived from obese
vs lean animals produced more lactate ex vivo (Fig. 1h), reflec-
tive of higher glycolytic rates. By contrast, no robust difference
in lactate secretion was found in peritoneal macrophages isolat-
ed from obese vs lean mice (Fig. 1i).

Metabolic and inflammatory activation
of macrophages in obese adipose tissue is distinct
from classical activation by LPS and associates
with the presence of type 2 diabetes in obese humans

To gain further insight into functional properties of metabolic
and inflammatory rewiring found in ATMs, gene set enrich-
ment analysis (GSEA) was performed using metabolic and
inflammatory gene sets as input (ESM Table 3). Overall, far
more gene sets were significantly (p < 0.01) enriched than
depleted (30 vs 2) in ATMs from obese vs lean mice and none
of the depleted gene sets reflected metabolic pathways.
Interestingly, metabolic gene sets including glycolysis and
OXPHOS were strongly enriched in ATMs upon obesity
(Fig. 2a). Noticeably, transcriptional regulation in ATMs in
obesity was very distinct from classical macrophage activation
by LPS. Although some pathways were similarly regulated,
most metabolic routes, including OXPHOS, glycolysis and
the pentose phosphate pathway, were less or inversely regu-
lated in LPS-activated macrophages compared with ATMs
from obese vs lean mice (Fig. 2b). In line with different met-
abolic regulation in ATMs vs classically activated macro-
phages, we found diverse regulation of various pro- and
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anti-inflammatory genes, including Cd11c, Myd88, Arg1 and
Il-10 (also known as Il10) in ATMs from obese vs lean mice
not resembling M1 (nor M2) macrophages (Fig. 2c).
Interestingly, metabolic activation as found in the ATM part
of obese adipose tissue was also apparent in CD14+ cells
isolated from visceral adipose tissue of obese humans with
diabetes compared with obese non-diabetic individuals (Fig.
2a, d).

Functional consequences of metabolic activation
of ATMs in obesity

Next, we evaluated whether transcriptional changes in ATMs
translated into differences in energy metabolism. To that end,
OXPHOS and glycolysis rates of freshly isolated ATMs were
examined by measuring OCR and ECAR. In line with in-
creased expression of metabolic genes, ATMs from obese
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mice in (e, f)
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mice displayed higher rates of OXPHOS (Fig. 3a). Moreover,
a higher glycolytic rate was seen in ATMs from obese mice
(Fig. 3b). Although this difference did not reach statistical
significance, it corroborated the significantly higher levels of
lactate in supernatant fractions of ATMs from obese vs lean
mice after a 24 h culture period (Fig. 1h). As expected based
on previous findings [2, 19–21], ATMs from obese mice pro-
duced more IL-6 and KC than macrophages isolated from lean
adipose tissue (Fig. 3c, d). In contrast, less TNF-αwas secret-
ed by ATMs from obese vs lean mice (Fig. 3e), even though

expression of Tnf was increased in ATMs (Fig. 2c). Of note,
neither IL-1β nor IL-10 could be detected in the supernatant
fractions of ATMs.

Exposing macrophages to adipose tissue explants
ex vivo dose-dependently induces metabolic
activation and cytokine release

To examine whether changes in the adipose tissue environ-
ment drive metabolic and inflammatory activation of ATMs in
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obesity, we co-cultured BMDMs with lean or obese adipose
tissue for 3 days, removed the adipose tissue and examined the
adipose tissue-induced activation of BMDMs in comparison
with classically (LPS) or alternatively (IL-4) activated
BMDMs both directly (metabolism) and after 24 h in fresh
medium (cytokines). As observed with the ATMs from obese
mice, BMDMs exposed to obese adipose tissue exhibited en-
hanced glycolysis and OXPHOS compared with BMDMs ex-
posed to lean adipose tissue, reflected by increased OCR (Fig.

4a) and ECAR (Fig. 4b). Moreover, BMDMs exposed to
obese adipose tissue secreted more IL-6 and KC and less
TNF-α than BMDMs exposed to lean adipose tissue (Fig.
4c–e), like ATMs from obese vs lean mice (Fig. 3c–e).
Interestingly, inflammatory activation was found to be dose-
dependently induced by the adipose tissue explants and ap-
peared distinct from either LPS- or IL-4-activated macro-
phages (Fig. 4c–e). It is worth noting that metabolic rewiring
followed a similar trend, with a dose-dependent increase in
glycolysis in macrophages exposed to either lean or obese
adipose tissue (ESM Fig. 1a) and higher OXPHOS specifical-
ly in macrophages exposed to 100 mg of obese adipose tissue
(ESM Fig. 1b). Our observation of dose-dependent adipose
tissue-induced activation of macrophages, different from clas-
sical activation, points to a role for specific environmental
cues in driving the unique ATM signatures. Adipose tissue is
a source of leptin [22] and lactate [23] which are known to
affect immune cell metabolism and function [24–26]. Despite
higher levels of both lactate and leptin in the supernatant frac-
tions of adipose tissue explants isolated from obese vs lean
mice (ESM Fig. 1c,d), application of neither leptin nor lactate
could induce metabolic activation comparable with that seen
in macrophages exposed to obese adipose tissue (ESM Fig.
1e,f). Of note, as with ATMs, neither IL-1β nor IL-10 were
detected in supernatant fractions of BMDMs after exposure to
adipose tissue.

Glycolysis largely controls cytokine release by ATMs
in obesity

To examine the contribution of metabolic routes for cytokine
production by ATMs wemeasured IL-6, KC and TNF-α upon
inhibition of glucose uptake (2-DG), fatty acid oxidation
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(Etomoxir), glucose oxidation (UK5099) or glutamine influx
into the tricarboxylic acid cycle (BPTES). Minimal morpho-
logical changes were observed in ATMs after treatment with
these compounds. Although several metabolic routes ap-
peared to contribute to cytokine release in ATMs from lean
mice, overall, 2-DG treatment had the most profound effects
on cytokine release in ATMs from both lean and obese mice
(Fig. 5a–c). Importantly, inhibition of glycolysis with 2-DG
abolished basal differences in cytokine release by ATMs from
obese vs lean mice, demonstrating that glycolysis makes an
important contribution to the increased inflammatory cytokine
production by ATMs in obese adipose tissue (Fig. 5a–c). By
competing with glucose, 2-DG may reduce both lactate pro-
duction and glucose oxidation. Because UK5099 affected cy-
tokine release by ATMs to a lesser extent than 2-DG, likely
anaerobic glycolysis and not glucose oxidation is important
for cytokine secretion by ATMs, especially in the obese state.
Indeed 2-DG was the only inhibitor that strongly reduced
lactate secretion byATMs (Fig. 5d), supporting a link between
lactate production and cytokine release by ATMs, particularly
in obese conditions.

Myeloid-specific Hif-1α does not affect adipose tissue
inflammation in HFD-fed mice

Key metabolic regulators such as AMPK and HIF-1α link
intracellular metabolism to inflammatory activation [14,

27] . Metabol ic s t ress- react ive AMPK enhances
OXPHOS and fatty acid oxidation upon its activation
through phosphorylation and was clearly induced in mac-
rophages in an obese adipose tissue environment (ESM
Fig. 2a). The transcription factor HIF-1α, a regulator of
genes involved in glycolysis, was predicted to be activat-
ed in ATMs part of obese adipose tissue as well
(Ingenuity Pathway Analysis: z score 2.460, p value over-
lap <0.01). Moreover, Hif-1α itself and its target genes
were upregulated in macrophages in an obese adipose
tissue environment, with higher levels in BMDMs ex-
posed to obese vs lean adipose tissue (Fig. 6a).
Unexpectedly, however, deletion of Hif-1α in myeloid
cells did not affect the inflammatory state of obese adi-
pose tissue after 8 weeks of HFD feeding, as demonstrat-
ed by equal IL-6 secretion by complete adipose tissue
isolated from LysM Hif-1α−/− and LysM Hif-1α+/+ mice,
both basally (Fig. 6b) and upon LPS stimulation (Fig. 6c).
Analysis of macrophage and inflammatory marker expres-
sion (Cd68, Cd11c, Cd206) in the adipose tissue revealed
no protection against adipose tissue inflammation in
HFD-fed mice lacking Hif-1α in the myeloid compart-
ment (data not shown). Moreover, no robust differences
were found in either total body insulin sensitivity (Fig.
6d) or in adipose tissue-specific insulin sensitivity (Fig.
6e) in LysM Hif-1α−/− vs LysM Hif-1α+/+ mice after
8 weeks of HFD feeding. We did observe slightly higher
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glucose levels, as well as a steeper rebound phase of the
insulin tolerance test, in LysM Hif-1α−/− vs LysM Hif-
1α+/+ mice (Fig. 6d), pointing to impaired fasting glucose.
However, the LysM Hif-1α−/− mice were heavier than the
LysM Hif-1α+/+ mice (ESM Fig. 2b,c), resulting in higher
adipose tissue weight (ESM Fig. 2d), which may have
accounted for the higher fasting glucose. It is worth not-
ing that differences in body weight could not be explained
by food intake, which was similar in both genotypes (data
not shown), and may rather be due to differences in loco-
motor activity or energy absorption, although this requires
further study.

We observed increased spare respiratory capacity (SRC) of
macrophages in an adipose tissue environment compared with
control macrophages (Fig. 6f), indicative of enhanced cellular
flexibility and capacity to manage stressful situations [28, 29].
Interestingly, macrophages lacking Hif-1α had lower SRC
than wild-type BMDMs (Fig. 6g) and appeared to be less
glycolytic (Fig. 6h, i). The absence of compensation for lower
glycolytic rates by Hif-1α−/− BMDMs (i.e. by increasing ox-
ygen consumption) (Fig. 6j), is suggestive of reduced meta-
bolic capacity and flexibility in the absence of Hif-1α and this
may outweigh the potential anti-inflammatory effects of lower
glycolysis in an adipose tissue environment.
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950 Diabetologia (2018) 61:942–953



Discussion

In obesity, macrophages fuel adipose tissue inflammation,
promoting the development of insulin resistance and type 2
diabetes [30]. The inflammatory state of ATMs has been stud-
ied extensively. To our knowledge, however, we are the first to
measure real-time metabolic fluxes in freshly isolated ATMs.
Interestingly, our data strongly point to unique metabolic ac-
tivation that drives cytokine release by ATMs in obesity, re-
sembling neither the metabolic nor inflammatory signatures
seen in M1- or M2-primed macrophages or peritoneal
macrophages.

Cumulative evidence from the field of immunology shows
that robust metabolic rewiring fuels differential inflammatory
activation of macrophages. On the one hand, M2 macro-
phages require OXPHOS for responses, whereas M1 macro-
phages rely on aerobic glycolysis [11, 12]. In contrast to these
two extremes, we found that macrophages in an adipose tissue
environment adopt a unique metabolic profile in obesity,
characterised by activation of various metabolic routes includ-
ing both OXPHOS and glycolysis. Metabolic and inflamma-
tory adaptations in obesity were specific for ATMs, as no
metabolic rewiring was found in peritoneal macrophages. In
line with our finding of unique metabolic rewiring in ATMs
and supportive of various studies reporting diverse inflamma-
tory activation of ATMs in obese adipose tissue [9, 16, 31, 32],
we found inflammatory activation of ATMs to be different
from that of classically activated macrophages.

Interestingly, macrophages co-cultured with obese adipose
tissue developed similar phenotypical adaptations in a dose-
dependent manner, suggestive of obesity-induced changes in
the adipose tissue microenvironment shaping the ATM phe-
notype. Indeed, the composition of adipose tissue is impor-
tantly affected in obesity, with resultant adipocyte hypertrophy
and both accumulation and phenotypical changes of immune
cells including macrophages. In our co-culture system we
have used lean and obese adipose tissue explants of equal
weight. This may not have accounted for all the shifts in rel-
ative cell numbers occurring in obese adipose tissue, yet
strongly points toward the existence of divergent factors se-
creted by obese vs lean adipose tissue that may critically in-
fluence the macrophage phenotype in a dose-dependent man-
ner. Potential factors may include adipokines, cytokines, fatty
acids or other metabolites [30]. Interestingly, leptin [24, 25]
and lactate [26] have been shown capable of remodelling in-
tracellular metabolism and changing the inflammatory state of
macrophages. We found both to be secreted more by obese
adipose tissue than by lean adipose tissue, yet neither leptin
nor lactate induced metabolic rewiring similar to that seen in
macrophages in an adipose tissue environment. Additionally,
differences in cell death between lean and obese adipose tissue
in vivo may have an effect on metabolic rewiring in macro-
phages. Most likely, a mixture of signals is responsible for

shaping ATM metabolic phenotypes in the lean and obese
state, although this needs further investigation.

Importantly, metabolic activation of ATMs contributes to
their inflammatory cytokine release. First, metabolically ac-
tive ATMs from obese mice secreted far more IL-6 and KC
than the less metabolically active ATMs isolated from lean
mice. Second, we found that interference with metabolic
routes directly affected cytokine release by ATMs.
Especially in ATMs from lean mice, several metabolic routes
including fatty acid oxidation, glycolysis and glutaminolysis
contribute to cytokine release. Glycolysis appears to play a
dominant role in fuelling the inflammatory trait of ATMs from
obese adipose tissue, since inhibiting glycolysis with 2-DG
almost completely abolished the greater basal cytokine secre-
tion by ATMs from obese vs lean mice.

Our finding of lower TNF-α secretion by ATMs from
obese vs lean mice was unexpected, as was the lower level
of TNF-α in supernatant fractions of macrophages exposed to
obese vs lean adipose tissue. Despite lower cytokine levels,
we found Tnf upregulated at the mRNA level. A similar dis-
crepancy between mRNA and protein level has been reported
in ATMs before [10]. In obese adipose tissue, however, mac-
rophage influx and proliferation as well as an increase in other
immune cell populations likely overrules lower TNF-α secre-
tion per macrophage and might be responsible for higher
TNF-α levels found in the adipose tissue and circulation of
obese individuals [6, 33–35]. Alternatively, enhanced auto-
crine TNF signalling in ATMs may explain the lower levels
of TNF-α measured in ATM supernatant fractions.

Next to cytokine release, intracellular metabolism most
likely controls several other macrophage functions. For exam-
ple, OXPHOS has been found to contribute to phagocytosis
by human monocytes [36], and lysosomal biogenesis and
function in T cells [37]. Both phagocytic and lysosomal genes
were found to be strongly upregulated in ATMs of obese mice
and in obese individuals with type 2 diabetes. Phagocytosis of
dead adipocytes bymacrophages [38–40] and lysosomal func-
tion of ATMs [10, 39] are considered to be important for
maintaining adipose tissue homeostasis. Hence, the obesity-
induced increase in OXPHOS might fuel ATM functions in
expanding adipose tissue, not directly related to inflammatory
cytokine release yet may greatly affect adipose tissue function.

Our data show that interfering with metabolic routes alters
the inflammatory phenotype of ATMs and that glycolysis im-
portantly contributes to inflammatory cytokine release by
ATMs. Unexpectedly, however, myeloid-specific deletion of
a previously identified key regulator of glycolysis, Hif-1α, did
not alleviate inflammatory activation of ATMs during the ear-
ly stages of obesity. Because mice lacking Hif-1α in myeloid
cells were significantly heavier yet did not display increased
adipose tissue inflammation or insulin resistance, one could
speculate that HIF-1α may be partly protective for the devel-
opment of obesity-induced adipose tissue inflammation, as
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has been reported before in mice fed an HFD for 18 weeks
[41]. One might also hypothesise that during the earlier
stages of HFD-induced obesity HIF-1α is important for
controlling other metabolic properties of macrophages not
related to cytokine production. For example, our data re-
vealed a decreased SRC in BMDMs from Hif-1α−/− mice,
suggestive of a role for HIF-1α in maintaining metabolic
flexibility of macrophages. Indeed, despite decreased ca-
pability of using glycolysis as an energy source, Hif-1α−/−

macrophages lack the flexibility to increase their oxidative
capacity [15]. Metabolic flexibility is probably needed for
ATMs, as we observed enhanced SRC in macrophages in
an adipose tissue environment which was even further in-
creased upon exposure to obese adipose tissue. Reduced
metabolic flexibility in macrophages lacking Hif-1α in
expanding adipose tissue might have overruled effects on
cytokine release during the development of obesity.

In conclusion, we identified unique metabolic activa-
tion of ATMs in obesity, characterised by increased
OXPHOS and glycolysis. Blocking metabolic routes in
isolated ATMs led to the identification of glycolysis as a
main contributor to their proinflammatory trait, especially
in obesity. Interestingly, metabolic signatures, similar to
those found in ATMs upon obesity, including the induc-
tion of OXPHOS and lysosomal genes, were observed in
human macrophages isolated from adipose tissue of obese
individuals with type 2 diabetes. Further understanding of
metabolic programming in ATMs will most likely lead to
novel therapeutic targets to modulate macrophage metab-
olism and curtail inflammatory responses that drive insu-
lin resistance and type 2 diabetes in obese individuals.
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