
fnins-16-842635 March 18, 2022 Time: 12:30 # 1

ORIGINAL RESEARCH
published: 24 March 2022

doi: 10.3389/fnins.2022.842635

Edited by:
Jérémie Voix,

École de Technologie Supérieure
(ÉTS), Canada

Reviewed by:
Dan Zhang,

Tsinghua University, China
Vassiliy Tsytsarev,

University of Maryland, College Park,
United States

*Correspondence:
Han-Jeong Hwang

hwanghj@korea.ac.kr

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 23 December 2021
Accepted: 03 March 2022
Published: 24 March 2022

Citation:
Choi S-I, Lee J-Y, Lim KM and

Hwang H-J (2022) Evaluation of
Real-Time Endogenous

Brain-Computer Interface Developed
Using Ear-Electroencephalography.

Front. Neurosci. 16:842635.
doi: 10.3389/fnins.2022.842635

Evaluation of Real-Time Endogenous
Brain-Computer Interface Developed
Using Ear-Electroencephalography
Soo-In Choi1, Ji-Yoon Lee2,3, Ki Moo Lim1,4 and Han-Jeong Hwang2,3*

1 Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, South Korea,
2 Department of Electronics and Information Engineering, Korea University, Sejong City, South Korea, 3 Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong City, South Korea,
4 Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, South Korea

While previous studies have demonstrated the feasibility of using ear-
electroencephalography (ear-EEG) for the development of brain-computer interfaces
(BCIs), most of them have been performed using exogenous paradigms in offline
environments. To verify the reliable feasibility of constructing ear-EEG-based BCIs,
the feasibility of using ear-EEG should be further demonstrated using another BCI
paradigm, namely the endogenous paradigm, in real-time online environments.
Exogenous and endogenous BCIs are to use the EEG evoked by external stimuli and
induced by self-modulation, respectively. In this study, we investigated whether an
endogenous ear-EEG-based BCI with reasonable performance can be implemented
in online environments that mimic real-world scenarios. To this end, we used three
different mental tasks, i.e., mental arithmetic, word association, and mental singing, and
performed BCI experiments with fourteen subjects on three different days to investigate
not only the reliability of a real-time endogenous ear-EEG-based BCI, but also its test-
retest reliability. The mean online classification accuracy was almost 70%, which was
equivalent to a marginal accuracy for a practical two-class BCI (70%), demonstrating
the feasibility of using ear-EEG for the development of real-time endogenous BCIs, but
further studies should follow to improve its performance enough to be used for practical
ear-EEG-based BCI applications.

Keywords: electroencephalography (EEG), ear-EEG, brain-computer interface (BCI), endogenous BCI, test-retest
reliability

INTRODUCTION

A brain-computer interface (BCI) provides a potential alternative to the normal communication
method, which involves languages and body movements, for disabled patients such as those with
locked-in syndrome and aphasia (Bauer et al., 1979; Gao et al., 2021; Xu et al., 2021). It translates
neuronal brain activity measured invasively or non-invasively into commands for controlling
external devices, such as wheelchairs, robot arms, and computers (Hwang et al., 2013a).

Most BCIs have been realized using non-invasive neuroimaging modalities for measuring brain
activity on the scalp, such as electroencephalography (EEG), magnetoencephalography (Mellinger
et al., 2007), and near-infrared spectroscopy (Power et al., 2012). Among the modalities, EEG has
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been the most widely used owing to its reasonable cost,
portability, and high temporal resolution (Hwang et al., 2013a).
However, BCIs based on the traditional scalp-EEG have several
disadvantages from the viewpoint of their usability (Looney
et al., 2012; Debener et al., 2015; Goverdovsky et al., 2016).
They require measurement electrodes to be attached to the
scalp with conductive gels, which is time-consuming. Moreover,
the electrode attachment time increases with the number of
electrodes to be mounted on the scalp. For instance, it generally
exceeds 0.5 h for 30 electrodes, which leads to both the
subject and operator being exhausted during the preparation
for EEG. Furthermore, the electrodes mounted on the scalp are
unaesthetic, and subjects need to wash their hair to remove the
conductive gels after the BCI experiment. These disadvantages
of conventional scalp-EEG-based BCIs render BCI technology
difficult to be used outside laboratory environments. As an
alternative to the traditional scalp-EEG used in BCIs, some
researchers have proposed the use of EEG in which brain activity
is measured around or inside the ears; such EEG is termed
ear-EEG (Looney et al., 2012; Debener et al., 2015; Bleichner
and Debener, 2017; Choi et al., 2018; Kaveh et al., 2020), and
measurements can be obtained with a miniaturized and compact
hardware system.

The feasibility of using ear-EEG in BCIs has been verified in
many previous studies (Bleichner et al., 2015; Bleichner et al.,
2016; Fiedler et al., 2016; Fiedler et al., 2017; Choi et al., 2018;
Floriano et al., 2018; Wei et al., 2018). Most of the previous
studies on ear-EEG-based BCIs have used exogenous paradigms
involving external auditory or visual stimuli to evoke stimuli-
specific brain activity, such as auditory steady-state response
(ASSR) (Kidmose et al., 2012; Looney et al., 2012; Kidmose
et al., 2013a,b; Mikkelsen et al., 2015; Goverdovsky et al., 2016;
Bech Christensen et al., 2017; Goverdovsky et al., 2017), steady-
state visual evoked potential (SSVEP) (Norton et al., 2015;
Goverdovsky et al., 2016; Goverdovsky et al., 2017), and event-
related potential (ERP) (Kidmose et al., 2012; Bleichner et al.,
2015; Debener et al., 2015; Norton et al., 2015; Fiedler et al.,
2016; Pacharra et al., 2017). In our previous study (Choi et al.,
2018), we showed that an ear-EEG-based BCI can be developed
using an endogenous paradigm involving self-modulated brain
activity, without any external stimuli, and we classified two
different mental states induced during mental arithmetic (MA)
and resting state with an average accuracy of about 78%. We
also proposed an optimal re-referencing method to improve
the signal-to-noise ratio (SNR) of ear-EEG and used it to
improve the performance of an endogenous ear-EEG-based BCI
(Choi and Hwang, 2019).

Although previous studies have shown the feasibility of using
ear-EEG in BCIs, the practical usability of ear-EEG-based BCIs
should be verified via real-time online experiments that mimic
real-life scenarios. To the best of our knowledge, only two
studies have introduced online ear-EEG-based BCIs by using a
representative exogenous paradigm, SSVEP (Norton et al., 2015;
Wang et al., 2015). However, no study has verified the feasibility
of an endogenous BCI based on ear-EEG in online environments.
To further demonstrate the potential possibility of using ear-EEG
on the development of a practically usable BCI, the feasibility of

using ear-EEG in developing endogenous BCIs should be also
demonstrated, particularly in online experimental environments.

Accordingly, in the present study, we investigated whether an
endogenous ear-EEG-based BCI could be reliably implemented
with reasonable performance in real-world applications. We
developed an online endogenous ear-EEG-based BCI and tested
it on two days to investigate not only its reliability as a real-
time endogenous ear-EEG-based BCI, but also its test-retest
reliability. In the experiment, three mental tasks were employed:
MA, mental singing (MS), and word association (WA). An offline
experiment was first conducted to determine the best pair of
mental tasks for each subject, and online experiments were
then conducted on 2 days using individually selected best pairs
of mental tasks.

MATERIALS AND METHODS

Subjects
Fourteen healthy subjects (average age: 25.57 ± 1.70 years; eight
males and six females) participated in this study. All of them
had normal or corrected-to-normal vision and hearing. None
of them reported previous neurological, psychiatric, or other
related diseases that could have affected the outcomes of this
study. To minimize the impact of the subjects’ physical condition
on the experiment, the subjects were asked to sleep for at least
6 h on the day preceding the experiment and to avoid alcohol
intake for at least 24 h before the experiment. Information
regarding the detailed procedure of this study was provided
before the experiment. All subjects gave informed consent prior
to the beginning of the experiments and received monetary
compensation after the experiment. This study was approved by
the Institutional Review Board of the Kumoh National Institute
of Technology (No. 6250), and was performed in accordance with
relevant guidelines and regulations.

Ear-Electroencephalography (EEG)
Measurement
The experiment was conducted in a soundproof room, and the
subjects were seated in comfortable armchairs in front of a 21-
in. monitor (LG, 24MP58VQ, Seoul, South Korea) and binaural
speakers (Britz, BR-1000A, Cuve Black 2, Paju, South Korea). Ear-
EEG data were recorded using eight electrodes attached behind
the ears (four electrodes for each ear), as shown in Figure 1A, at
a sampling rate of 1,000 Hz (actiCHamp, Brain Products GmbH
Ltd., Gilching, Germany). In accordance with the international
10–20 system, the reference and ground electrodes were attached
at the FCz and Fpz positions, respectively, but the reference effect
was removed by re-referencing with only ear-EEG (Figure 1B),
which is explained later in this paper. The impedance was
maintained below 10 k� throughout the experiment.

Experimental Paradigm
Offline Experiment Conducted on Day 1
The objective of the offline experiment was to select the best pair
of mental tasks for each subject, which was used in the subsequent
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FIGURE 1 | (A) Schematic of electrode positions used to record ear-EEG data. (B) Schematic sketch of the re-referencing method used to remove the impact of the
original reference electrode (FCz). Re-referencing was performed by subtracting the mean value of the opposite ear’s electrodes from the value of an electrode of
interest for every time point.

online experiments conducted on two different days. The offline
experiment was hence performed by considering the following
three mental tasks:

(i) MA: Continuously subtracting a single-digit number
(between 5 and 9) from a three-digit number (e.g., 477
− 8 = 469, 469 − 8 = 461, . . .), with both numbers being
randomly presented (Shin et al., 2016; Choi et al., 2018).

(ii) WA: Generating words beginning with a letter provided to
the subjects in their native language (Korean; e.g., Apple,
Arrow, Aerospace, . . . for “A”) (Friedrich et al., 2012, 2013).
The subjects had to generate as many words as they could.

(iii) MS: Mentally singing the English alphabet song from
A to Z at a constant speed of 1 Hz, which induced
relatively lower cognitive load compared with MA and WA
(Shin et al., 2016).

Figure 2A shows the experimental paradigm of the offline
experiment. Each subject completed five experimental sessions.
At the beginning of each session, a blank image was presented
for 5 s, during which the subjects were instructed to relax and
prepare to act according to the upcoming instruction. After the
rest period, eyes-closed (EC) and eyes-open (EO) tasks were
sequentially performed, each for 15 s, with the aim of verifying
the reliability of ear-EEG measurements based on alpha activity
changes (Looney et al., 2012; Goverdovsky et al., 2016; Choi
et al., 2018; Choi and Hwang, 2019). Subsequently, the three
mental tasks were randomly performed, with each task being
performed 10 times, in a single session. A single trial comprised
task presentation for 5 s, subsequent task execution for 10 s,
and a variable rest period that ranged from 8 to 13 s. During
the task presentation period, a combination of three-digit and
one-digit numbers for MA (e.g., 477 – 8), a single letter for WA
(e.g., “A”), or the string “ABC” for MS was randomly presented
on the monitor. The corresponding mental task was performed
for the following 10 s, during which time the subjects gazed
at a fixation mark presented at the center of the monitor to
minimize eye movements. During the variable rest period, the

word “rest” and an asterisk were presented on the monitor, and
the subjects were instructed to gaze at the asterisk with a blank
mind to minimize eye movements. The three mental tasks were
randomly presented in a session, and each session was ended
with EC and EO tasks. Each subject completed five sessions,
performing 50 trials for each of the three mental tasks. There
was a break of 3 to 5 min between the sessions to allow the
subjects to rest.

Online Experiment Conducted on Day 2 and 3
On the basis of the classification accuracies of all combinations
of the three mental tasks performed in the offline experiment
(i.e., MA vs. MS, MA vs. WA, and MS vs. WA), we selected
the best pair of mental tasks for each subject and used
them for the following online experiments performed on
two different days. The online experiment comprised three
training and two test sessions, where we collected training
data (30 trials for each task) using an individually selected
best pair of mental tasks to construct an online classifier and
we tested the classifier for new inputs (test data: 20 trials
for each task) in real-time, respectively. The experimental
paradigm of the online experiments was identical to that of
the offline experiment, except that the best pair of mental
tasks was employed for each subject and real-time feedback
was provided in the two test sessions immediately following
the task execution period, on the basis of the classification
results (Figure 2B). In the first online experiment conducted
on day 2, three training sessions were first performed. No
feedback was provided during mental tasks in these sessions,
whereas auditory feedback was provided on the basis of real-
time classification results in the two test sessions following
the task execution period. The experimental paradigm of the
online experiment conducted on day 3 was identical to that
used for the first online experiment conducted on day 2, except
that the two test sessions were repeated thrice independently
using three different online classifiers. We tested these three
classifiers that were constructed using different training data
sets, namely, the data set obtained on day 2, that acquired
on day 3, and the combination of these two data sets, to
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FIGURE 2 | (A) Schematic of the offline experimental paradigm. At the beginning of each session, a 5 s rest period was provided for preparing for the upcoming
task. Before and after performing three mental tasks, the eyes were closed and opened for 15 s each to check the reliability of ear-EEG data related to alpha activity
changes. A single trial comprised a 5 s task presentation period, a 10 s task execution period, and an 8 to 13 s rest period. During a task presentation period, a
mental task that was to be performed was displayed for 5 s (e.g., 477 – 8 for MA, the string “ABC” for MS, and a Korean character for WA). During a task execution
period, subjects were instructed to perform an indicated mental task for 10 s while focusing on a black fixation cross displayed at the center of a screen, to minimize
eye movements. During a rest period, the word “rest” was presented along with an asterisk on the screen, and the subject was instructed to take a break without
any thought and movement while staring at the asterisk. A short beep was presented at every screen transition (red speaker icons) to explicitly indicate the transition.
(B) Schematic of the online experimental paradigm. The online experiment paradigm was identical to that of the offline experimental paradigm, except that an
individually selected best pair of mental tasks was used for each subject and auditory feedback was provided on the basis of real-time classification results after task
execution.

investigate the impact of different training data on their
classification performance.

Ear-Electroencephalography (EEG) Data
Analysis
Preprocessing
Data analysis was performed using MATLAB (MathWorks,
Natick, MA, United States) along with the EEGLAB (Delorme
and Makeig, 2004) and BBCI toolboxes (Blankertz et al., 2016),
and the same analysis method was applied to the ear-EEG data
measured in both offline and online experiments. Ear-EEG data
were first band-pass filtered from 1 to 50 Hz using a zero-
phase third-order Butterworth filter, and then down-sampled to
200 Hz to reduce the computation time. As the ear-EEG data
were recorded using a reference at FCz, for the removal of the
impact of the original reference electrode, all ear-EEG data were

re-referenced using the mean value of the ear-EEG channels
on the opposite ear because of the superior SNR of the re-
referencing method (Choi and Hwang, 2019). Then, 10 s-epochs
based on the task onset were extracted for each of the three mental
tasks for classification. Figure 1B shows an example of the re-
referencing method for one channel denoted by turquoise blue
color on the left ear, and each of all channels were re-referenced
by the same method.

Classification
A multiband common spatial pattern (CSP) was used to
determine discriminative features for classification in five
frequency bands (δ-band: 1–3 Hz, θ-band: 4–7 Hz, α-band: 8–
13 Hz, β-band: 14–29 HZ, and γ-band: 30–50 Hz) (Ramoser et al.,
2000; Lemm et al., 2005). A multiband CSP was independently
applied to the 10-s epochs of the three mental tasks, respectively,
for each of the five frequency bands, where the log-variances
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TABLE 1 | Classification accuracies (%) of each pair of mental tasks for each
subject in the offline experiment. The bold-font indicates the classification
accuracies for the best pair of mental tasks for each subject.

MA vs. MS MA vs. WA MS vs. WA Best pair

Sub 1 55.2 55.1 42 55.2

Sub 2 76.7 80.6 64.7 80.6

Sub 3 80.8 65.3 70.6 80.8

Sub 4 63.7 70.2 75.6 75.6

Sub 5 51.4 67.3 77.6 77.6

Sub 6 97.7 96.8 93.6 97.7

Sub 7 55.8 54.2 65.4 65.4

Sub 8 87.1 48.4 83.5 87.1

Sub 9 71.1 65.8 58.7 71.1

Sub 10 81.4 81.5 72.2 81.5

Sub 11 91.5 83 79.1 91.5

Sub 12 74.9 82.9 67.5 82.9

Sub 13 69.6 51.2 61.7 69.6

Sub 14 66.8 71.2 60.7 71.2

Average 73.1 ± 13.9 69.5 ± 14.2 69.5 ± 12.5 77.7 ± 10.9

of the first and last CSP components were extracted for
each frequency band as classification features. Shrinkage linear
discriminant analysis (sLDA; Peck and Ness, 1982; Schäfer and
Strimmer, 2005; Blankertz et al., 2011) was used as a classifier.
Offline classification accuracies were obtained using 10-fold
cross-validation for all possible pairs of the three mental tasks
(MA vs. WA, MA vs. MS, and WA vs. MS) and they were
used to select the best pair of mental tasks for each subject on
day 1. Online classification accuracies were estimated using real-
time outputs obtained immediately after performing a single trial
in the two test sessions on days 2 and 3. As mentioned, two
test sessions were performed thrice independently in the online
experiment conducted on day 3. In the sessions, three different
sLDA classifiers were constructed using different training data
(data obtained on day 2, data acquired on day 3, and the
combination of data obtained on these 2 days), and the online
classification accuracies were independently estimated for each of
the three classifiers.

Statistical Test
To investigate the feasibility of constructing an ear-EEG-based
online BCI, we compared the online classification performance of
our ear-EEG-based BCI with a theoretical 95% confidence limit
of a chance accuracy on the basis of the number of trials for a
two-class BCI (e.g., 59.61% for 50 trials of each task) (Müller-
Putz et al., 2008). Furthermore, we employed a non-parametric
statistical method, the Friedman test, for performing multiple
comparisons with the Wilcoxon signed-rank test for post hoc
in terms of the classification performance since the number of
samples was insufficient (<30) for using parametric methods (i.e.,
RM-ANOVA) (Hesterberg, 2015).

Event-Related (de)Synchronization
To visually inspect task-specific brain activity in terms of event-
related (de)synchronization (ERD/ERS), event-related spectral
perturbation (ERSP) of each mental task was estimated for

each epoch extracted from −2 to 10 s on the basis of the
task onset for each channel and subject (baseline period: −2
to 0 s), and ERSPs were averaged over all subjects (Friedrich
et al., 2012). To quantitatively investigate changes in ERSP values
over three experimental days, we estimated ERSP values of three
experimental days for five frequency bands (δ-band: 1–3 Hz, θ-
band: 4–7 Hz, α-band: 8–13 Hz, β-band: 14–29 HZ, and γ-band:
30–50 Hz) for each of three mental tasks.

RESULTS

Offline Experimental Results
Table 1 shows the classification accuracies for each pair of the
three mental tasks and the best pairs of mental tasks for each
subject. The average classification accuracies of MA vs. MS, MA
vs. WA, and MS vs. WA were 73.1 ± 13.9%, 69.5 ± 14.2%, and
69.5 ± 12.5%, respectively. The mean classification accuracy of
the best pairs of mental tasks for each subject was 77.7 ± 10.9%
(last column of Table 1), which was similar to that of our previous
study (Choi and Hwang, 2019). Statistical test results showed that
the mean classification accuracy of individually selected best pairs
of mental tasks was significantly higher than those of MA vs.
WA and MS vs. WA (Friedman: χ2(3) = 15.88, p = 0.0012, best
pair > MA vs. WA = MS vs. WA), whereas the mean classification
accuracy of MA vs. MS was not statistically different from the
others. The combination of MA and MS was mostly selected as
the best pair of mental tasks: MA vs. MS = 7, MA vs. WA = 4,
and WA vs. MS = 3.

Online Experimental Results
Figure 3 shows the mean classification accuracies for the two
online experimental days (days 2 and 3), along with the best
mean offline classification accuracy shown in Table 1 (day 1:
77.7± 10.9%). The mean online classification accuracies for days
2 and 3 were 69.1± 14.5% and 65.7± 12.7% (when only training
data measured on day 3 was used), respectively, which were
not statistically different from the best mean offline classification
accuracy, despite the reduced performances. The mean online
classification accuracy for day 3 decreased when the training data
obtained on a different day (day 2) was used to build a classifier
(61.9 ± 13.2%); by contrast, it increased when a combination
of the training data acquired on two days (day 2 + day 3) was
used (69.5 ± 14.7%). Despite the inter-experimental variability
of the classification accuracies, all the mean online classification
accuracies were higher than the theoretical 95% confidence limit
of a chance accuracy (59.61%), and a classification accuracy of
nearly 70% (marginal classification accuracy for a practical two-
class BCI) was obtained for two online experimental days (for
day 3, when a combination of training data obtained on days 2
and 3 was used).

Event-Related (de)Synchronization Maps
Figure 4 shows the grand-average ERD/ERS maps of all subjects
for each mental task over the 3 days; the maps were obtained
by averaging all channels. Overall, for all three mental tasks,
on day 1 (offline experiment), widespread ERS was observed
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FIGURE 3 | Mean classification accuracies of the offline experiment (day 1) and the two online experiments (days 2 and 3). The mean offline classification accuracy
was obtained by averaging the offline classification accuracies for the best pairs of mental tasks for each subject (day 1). The mean classification accuracies of day 3
were obtained using three different training data sets (day 2, day 3, and day 2 + day 3). An asterisk indicates a statistically significant difference.

FIGURE 4 | ERD/ERS pattern maps averaged over all channels and subjects over the three experimental days. The x-axis indicates the task period between −2 to
10 s on the basis of the task onset, and the y-axis represents the frequency ranging from 1 to 50 Hz. The task onset at t = 0 s is marked by a dotted line.

in a middle frequency band (7–30 Hz), while relatively strong
ERD was observed in the other frequency band (first row of
Figure 4). However, despite the similar ERD/ERS patterns, each
mental task showed relatively distinct ERD/ERS patterns, making
it possible to distinguish each of the tasks, such as relatively
stronger δ- and θ-ERD for MA than MS while stronger γ-
ERD for MS than MA. Moreover, relatively small changes were
observed in ERD/ERS for WA compared with MA and MS.
The ERD/ERS pattern for MA— α- and β-ERS and γ-ERD—
tended to become stronger from the first experimental day
to the last experimental day (day 1 → day 2 → day 3 in

the first column of Figure 4). Furthermore, WA particularly
started to show its unique ERD/ERS pattern from the first
online experiment (day 2), namely, widespread strong ERS over
the entire frequency band along with strong γ-ERD. However,
small changes in ERD/ERS were observed for MS over the
three experimental days. The quantitative analysis results for
ERD/ERS pattern changes over three experimental days are
provided with respect to five frequency bands (δ-band: 1–
3 Hz, θ-band: 4–7 Hz, α-band: 8–13 Hz, β-band: 14–29 Hz,
and γ-band: 30–50 Hz) for each of three mental tasks in
Supplementary Figure 1.

Frontiers in Neuroscience | www.frontiersin.org 6 March 2022 | Volume 16 | Article 842635

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-842635 March 18, 2022 Time: 12:30 # 7

Choi et al. Real-Time Endogenous BCI Using Ear-EEG

DISCUSSION

Recently, ear-EEG has gained considerable attention for its
potential use in the development of BCIs owing to its high
usability and portability for brain activity measurement, despite
its relatively low performance compared with scalp-EEG-based
BCIs (Pacharra et al., 2017; Denk et al., 2018; Kaongoen et al.,
2021). Most of the previously proposed ear-EEG-based BCIs have
involved exogenous paradigms, such as SSVEP (Norton et al.,
2015; Goverdovsky et al., 2016; Goverdovsky et al., 2017), ASSR
(Mikkelsen et al., 2015; Bech Christensen et al., 2017), and ERP
(Looney et al., 2012; Debener et al., 2015; Fiedler et al., 2016;
Pacharra et al., 2017), and their feasibility has been demonstrated
via offline experiments in general. However, the feasibility of
using ear-EEG in the development of endogenous BCIs should
be also demonstrated, especially in online experimental settings
that mimic real-world scenarios, in order to extend the feasibility
of using ear-EEG in the development of BCIs. In this study, we
investigated the feasibility of an ear-EEG-based BCI involving
self-modulated EEG by using an endogenous paradigm in an
online environment, and we demonstrated that a real-time
endogenous BCI can be implemented using ear-EEG, despite
its decreased classification performance compared with that in
offline experiments.

The offline classification accuracy of each mental task pair
differed among the subjects. The mean offline classification
accuracy for the best pair of mental tasks (77.7 ± 10.9%) was
significantly higher than those of the other two pairs of mental
tasks (Table 1), namely MA vs. WA (69.5 ± 14.2%) and MS
vs. WA (69.5 ± 12.5%), indicating the importance of using
individualized mental tasks for the development of reliable BCIs
(Hwang et al., 2014). The mean online classification accuracies for
days 2 and 3 were lower by about 8 and 12% (day 2: 69.1± 14.5%;
day 3: 65.7 ± 12.7%), respectively, compared with that of
the offline experiment (77.7 ± 10.9%). The lower classification
performance in the online experiment was probably because
of the difference in the experimental environment between the
training and test sessions; the difference depended on whether
real-time feedback regarding classification results was provided
(Shenoy et al., 2006). In general, the environmental difference
between offline and online experiments gave rise to the inherent
non-stationarity of EEG data, thereby resulting in a shift in
the data distributions in feature space and ultimately degrading
the BCI classification performance (Shenoy et al., 2006). On
the other hand, real-time feedback provided in the online
experiment reduced the impact of inter-day (session) variability
on classification performance because the subject could adapt a
given classifier by chaining a control strategy based on real-time
feedback (Hwang et al., 2017); two classifiers trained using the
EEG data measured on days 2 and 3, respectively, showed a small
difference of classification accuracy when testing the EEG data
measured on day 3 (61.9 ± 13.2% vs. 65.7 ± 12.7%). Despite
the reduced classification performance in the online experiment,
we obtained a meaningful mean classification accuracy of nearly
70%, which is a marginal classification accuracy for practical
communication in two-class BCIs. Thus, we demonstrated
that ear-EEG could be used to realize real-time endogenous

BCIs. Nevertheless, the overall classification performance of
our proposed ear-EEG-based BCI should be improved in order
to increase the reliability of an ear-EEG-based endogenous
BCI. Because the classification performance drop was partly
compensated when the amount of training data was increased
on day 3 (65.7 ± 12.7% → 69.5 ± 14.7% when a combination
of training data of days 2 and 3 was used), it is expected that
the classification accuracy will naturally increase and stabilize as
a user uses a BCI over several days, owing to the cumulative
data. Another approach to prevent the classification performance
drop in the online experiment would be to introduce adaptive
algorithms that use new data measured in real-time feedback
sessions for classifier adaptation (Blankertz et al., 2007). We
intend to work toward enhancing the performance of the
proposed real-time ear-EEG-based BCI with the objective of
developing reliable practical ear-EEG-based BCIs.

In this study, we employed three mental tasks (MA, MS,
and WA) that have been widely used in previous BCI studies,
and they showed somewhat overlapping but unique ERD/ERS
patterns. MA showed relatively strong ERS in α- and β-bands
and widespread ERD in a high frequency band (γ-band), which
were similar to observations made in our previous studies
(Choi et al., 2018; Choi and Hwang, 2019). Interestingly, the
ERD/ERS pattern of MA became more dominant with the
passage of time; from a neurophysiological viewpoint, this can
be attributed to learning through real-time feedback in the
online experiment, which led to better facilitation of brain
activity (Duan et al., 2021). The ERD/ERS pattern of WA
somewhat overlapped with that of MA in terms of α- and
β-ERS with γ-ERD, but was also different from MA (e.g.,
relatively stronger θ- and α-ERS and shorter period of γ-
ERD compared with MA). In particular, θ- and α-ERS became
considerably stronger over the days for WA, which could
be attributed to the learning, similar to MA. Unlike MA
and WA, however, MS did not show significant changes in
ERD/ERS patterns over the days, which could be explained by
MS being the mental task originally designed to induce low
cognitive load without intensively involving the brain resources
during the mental task (Choi et al., 2018; Choi and Hwang,
2019). The qualitative results shown in Figure 4 were also
confirmed by the quantitative results shown in Supplementary
Figure 1, such as an increasing trend of γ-ERD for MA
and that of α-ERS for WA over three experimental days.
Although the unique ERD/ERS patterns of each mental task
tended to become stronger over the days because of learning
through real-time feedback, as mentioned above, the overall
classification performance rather decreased from day 1 to
day 3, which might be because of the overlapping ERD/ERS
patterns between the mental tasks despite their unique ERD/ERS
patterns, such as the relatively strong ERS and ERD in the
low- and high-frequency bands, respectively, as well as increased
non-stationarity of EEG data between the training and test
sessions in the online experiment. Therefore, it is necessary
to develop more advanced algorithms that can fully utilize
task-specific ERD/ERS patterns that change over the days,
to improve the overall performance of endogenous ear-EEG-
based BCIs.
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Because BCI technology was introduced to help paralyzed
patients to communicate with the outside world, BCI spellers
have been widely developed, mainly using exogenous paradigms,
such as SSVEP (Hwang et al., 2013b; Lim et al., 2015) and
ERP (Gong et al., 2020; Miao et al., 2020). As an alternative
to exogenous BCI spellers that require auditory or visual
stimuli, imagined speech has been also actively studied for
communication purposes. The auditory cortex close to the ears is
responsible for speech and has shown task-specific brain activity
during imagined speech (Kaongoen et al., 2021). In this study,
we used three mental tasks that have been most widely used
in BCI studies, but imagined speech might be the mental task
most suitable for implementing ear-EEG-based BCIs since ear-
EEG can capture task-specific brain activity generated from the
auditory cortex more reliably compared with other brain areas
owing to the adjacency effect. Therefore, it would be interesting
to investigate the feasibility of using imagined speech in ear-EEG-
based endogenous BCIs.
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