
1688  |  	﻿�  Cancer Science. 2021;112:1688–1694.wileyonlinelibrary.com/journal/cas

1  | INTRODUC TION

Approximately 13% of cancers are caused by infection with viruses, 
bacterium, or parasites.1 Human T-cell leukemia virus type 1 is the 
causative agent of ATL as well as inflammatory diseases including 

HTLV-1-associated myelopathy/tropical spastic paraparesis. The 
presence of HTLV-1 is essential for the development of ATL. The 
same scenario is observed in oncogenesis by other viruses: EBV, 
HPV, and HBV. In this review, we redefine ATL in terms of viral gene 
expression.
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Abstract
Adult T-cell leukemia-lymphoma (ATL) is caused by human T-cell leukemia virus type 
1 (HTLV-1) infection. Among HTLV-1 encoded genes, HTLV-1 bZIP factor (HBZ) and 
tax are critical for the leukemogenesis of ATL. Adult T-cell leukemia-lymphoma needs 
a long latent period before onset, indicating that both viral genes and alterations (ge-
netic and epigenetic) of the host genome play important roles for leukemogenesis. 
Viral genes influence genetic and epigenetic changes of the host genome, indicating 
that the virus is of primary importance in leukemogenesis. HBZ is expressed in all 
ATL cases, whereas Tax expression is heterogeneous among ATL cases. Different 
patterns of viral gene expression in tumors are also observed for Epstein-Barr virus. 
We propose three subtypes of ATL cases based on Tax expression: high, intermittent, 
and lost expression. HBZ is detected in all ATL cases. Approximately 25% of all ATL 
cases lost Tax expression at infection of HTLV-1, indicating that HBZ is the only viral 
gene responsible for leukemogenesis in addition to genetic and epigenetic changes 
of the host genes in these ATL cases. The host immune responses to Tax are also im-
plicated in the heterogeneity of ATL. Thus, ATL is a heterogeneous disease in terms 
of its viral gene expression, which is important for pathogenesis of this intractable 
lymphomatous neoplasm.

K E Y W O R D S

ATL, CCR4, CTL, EBV, HBZ, HTLV-1, Tax

www.wileyonlinelibrary.com/journal/cas
mailto:﻿￼
https://orcid.org/0000-0001-6682-2451
mailto:﻿￼
https://orcid.org/0000-0002-0473-754X
http://creativecommons.org/licenses/by-nc/4.0/
mailto:mamatsu@kumamoto-u.ac.jp
mailto:knosaka@kumamoto-u.ac.jp


     |  1689NOSAKA and MATSUOKA

2  | VIR AL INFEC TION AND C ANCERS

The IARC, an agency of WHO, has defined several viruses, bacteria, 
and parasites as carcinogenic agents in humans and reports 2.2 mil-
lion incidences of cancer caused by infection with these pathogens.1 
Seven viruses were defined as carcinogenic agents in humans. Of 
these viruses, there are three different types. First are viruses that 
productively replicate in the host, causing inflammation that leads 
to the development of cancer. This type includes HBV and hepatitis 
C virus. Second are viruses that cause latent (often asymptomatic) 
infection, but become tumorigenic in vivo through genetic and 
epigenomic alterations. This group includes HTLV-1, EBV, Kaposi’s 
sarcoma-associated herpesvirus, and HPV. Although transcription of 
viral genes is observed in these virus-associated tumors, viral repli-
cation is not active in these tumors. Finally, HIV-1 does not directly 
cause cancer. However, it promotes cancerous growth by causing 
immunodeficiency in the host.

Adult T-cell leukemia-lymphoma is a poor prognostic T-cell lym-
phoma caused by HTLV-1 infection.2 The first human retrovirus dis-
covered, HTLV-1 was found to cause ATL and chronic inflammatory 
diseases.3,4 There are an estimated 10-20 million individuals with 
HTLV-1 infection worldwide, including endemic areas such as south-
western Japan, the Caribbean Islands, Africa, and South America.5 
The virus is mainly transmitted by breast feeding, sexual intercourse, 
blood transfusion, and needle sharing.6 Recently, it was reported 
that approximately 4000 people are newly infected annually by hor-
izontal infection routes in Japan.7 After a long latent period, ATL de-
velops in 4%-6% of men and 2.6% of women with HTLV-1 infection.8

Among T-cell lymphomas, ATL cells are similar to CTCL cells. 
Both malignant cells are CD4+CADM1+.9,10 The frequency of CTCL 
is reported to be quite low in Japan.11 However, the risk of devel-
opment of ATL among HTLV-1 carriers (~5%) is quite high. Taken to-
gether, these observations show that, although the oncogenic risk of 
CD4+CADM1+ T cells is low compared with mature B cells, HTLV-1 
infection dramatically increases the risk of cancer in this T cell sub-
population. Next, we will address why and how this virus transforms 
this type of T cell.

3  | TA X AND HBZ

The HTLV-1 provirus is integrated into the host genome and en-
codes several regulatory and accessory genes such as p12, p13, p30, 
rex, tax, and HBZ.12 The most striking feature of HTLV-1 is that this 
virus infects target cells exclusively by cell-to-cell contact through a 
specialized structure, the virological synapse, between an infected 
cell and a target cell.13 Therefore, to promote transmission, HTLV-1 
must increase the number of infected cells in vivo. It does so by two 
routes: (i) de novo infection of cells (the infectious route); and (ii) 
clonal proliferation of infected cells (the mitotic route). 14 After pri-
mary infection by HTLV-1, de novo infection occurs and afterwards, 
mitotic division is predominant in vivo. At the chronic phase, clonal 
proliferation of infected cells maintains a relatively steady state of 

infected cells. As most infected cells contain one provirus per cell, 
the copy number of the provirus (proviral load) reflects the number 
of infected cells.15

Viral genes are implicated in viral replication and the prolifer-
ation of infected cells. Of these genes, tax is essential for de novo 
infection as Tax is indispensable for activation of the sense-strand 
transcription of the provirus (Figure 1). HBZ plays important roles 
for the proliferation, survival, and special immunophenotype 
(CD4+CD45RO+CCR4+) of infected cells and ATL cells.14 Transgenic 
mice expressing Tax or HBZ develop malignant diseases, indicating 
that both viral genes are oncogenic.16,17 Tax induces different can-
cers depending on the promoter. With the lck promoter, Tax causes 
T-cell lymphomas, although their immunophenotypes differ from 
those of ATL cells.18 In contrast, HBZ causes T-cell lymphomas with 
an immunophenotype resembling that of ATL cells.

Although Tax is critical for viral replication, it is targeted by CTLs 
due to the high immunogenicity of the Tax protein.19,20 Therefore, 
Tax is transiently expressed in ATL cells, allowing expression of the 
immunogenic viral protein to be minimized.21 It was once believed 
that Tax promotes the proliferation of T cells. However, there are 
only a few reports to support this idea.22 In contrast, Tax expres-
sion is reported to suppress S phase of the cell cycle and induce 
senescence.21,23 As Tax expression of one quarter of ATL cases is 
lost at infection, Tax is not involved in the clonal proliferation of ATL 
cells. Rather, Tax induces genetic instability, which contributes to 
oncogenesis.24

The proliferation of expressing cells is promoted by HBZ through 
upregulation of E2F1.17 Approximately 40% of transgenic mice ex-
pressing HBZ developed T-cell lymphomas and inflammatory dis-
eases.17,25 Both ATL and HTLV-1 infected cells are CD4+CD45RO+ 
effector/memory T cells, and most of them are Foxp3+.26-28 HBZ 
is responsible for these immunophenotypes.29 For example, HBZ 
increases transcription of the Foxp3 gene through enhancing the 
TGF-β/Smad pathway.30 In contrast, Tax suppresses TGF-β/Smad 
signaling and Foxp3 expression.31,32 Furthermore, HBZ induces the 
expression of CCR4 and TIGIT, which are expressed on ATL cells and 

F I G U R E  1   Characteristics of Tax and human T-cell leukemia 
virus type 1 (HTLV-1) bZIP factor (HBZ) in HTLV-1 infection and 
adult T-cell leukemia-lymphoma (ATL). Tax is essential for de novo 
infection and intermittent expression of almost all viral proteins, 
and has high immunogenicity. HBZ is essential for proliferation, and 
shows constant expression and low immunogenicity

tax

HBZ

Essential for de novo infection
Intermittent expression
High immunogenicity

Essential for proliferation and survival of infected cells and ATL cells
Constant expression
Determines the immunophenotype (CCR4, Foxp3, effector/memory etc.)
Low immunogenicity

HTLV-1 provirus
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HTLV-1 infected cells.33,34 Thus, the immunophenotypes of these 
cells are attributed to the actions of HBZ. HBZ converts express-
ing cells to Treg-like cells, which means Foxp3+CCR4+ cells. Foxp3 
is a master gene of Treg cells and induces the expression of many 
immunosuppressive molecules including GITR, CTLA4, and CD39, 
which are also expressed on ATL cells.35,36 This character helps in-
fected cells and ATL cells to evade the host immune system. Thus, 
Treg-like cells are suitable vehicles for this virus to hide from host 
immunosurveillance and transfer to breast milk and semen to enable 
its transmission.

4  | VIR AL GENES IN ATL C A SES

The expression pattern and immunogenicity of Tax and HBZ are 
contrasting.37 HBZ is constantly expressed with low immunogenic-
ity. Cytotoxic T-lymphocyte responses are weak due to low immu-
nogenicity and low expression level of HBZ protein.38 Contrary to 
HBZ, the highly immunogenic viral protein Tax is transiently ex-
pressed (Figure 2A). Among ATL cases, Tax expression is lost in ap-
proximately half of all cases due to three mechanisms39: (a) deletion 
of the 5′-LTR40; (b) nonsense mutations or deletions/insertions in the 
tax gene41,42; and (c) DNA methylation of the 5′-LTR (Figure 2B).43,44 
Importantly, most nonsense mutations in the tax gene are gener-
ated by APOBEC3G during reverse transcription.42 Furthermore, 
approximately half of proviruses lacking the 5′-LTR are generated 
before their integration.45 Taken together, these observations mean 
that approximately 25% of ATL cases are derived from infected cells 
that could not produce Tax from the moment of their infection of 
HTLV-1, indicating that these ATL cells transform without Tax. In 
these cases, leukemogenesis is clearly not dependent on Tax. In con-
trast, Tax expression is silenced or lost during progression to ATL in 

approximately one quarter of ATL cases. This loss of Tax expression 
is caused by DNA methylation and/or deletion of the 5′-LTR. In this 
type of ATL, Tax might be necessary at the early stage of leukemo-
genesis, and then ATL cells lose Tax expression to escape from host 
immune surveillance.

The other half of ATL cases can express Tax. Among these cases, 
there are two different Tax expression patterns. First, Tax is highly 
expressed in a small number of ATL cases.39,46 Second, most ATL 
cells maintain the provirus structure that can express Tax but appear 
to express it only intermittently or at very low levels. It has been re-
ported that Tax is transiently expressed in ATL cell lines and HTLV-1 
infected cell lines.21 Therefore, it is speculated that ATL cells with an 
intact tax gene and unmethylated 5′-LTR express Tax intermittently, 
like MT-1 cells do.

These data indicate that there are three ATL subtypes with ref-
erence to Tax expression (Figure 3 and Table 1). In contrast, the HBZ 
coding region and 3′-LTR remain intact in all ATL cases.45,46 HBZ is 
critical for the proliferation and survival of ATL cells and the deter-
mination of their immunophenotype.

5  | SIMIL ARIT Y BET WEEN EBV AND 
HTLV-1 IN ONCOGENESIS

Epstein-Barr virus latently infects most human populations.47 
Epstein-Barr virus causes lymphomas, nasopharyngeal cancers, and 
gastric cancers in a limited number of infected individuals. After in-
fecting B cells, EBV resides in the nucleus in the form of an episome. 
Epstein-Barr virus encodes viral genes associated with latency: 
EBNA-1, -2, -3A, -3B, -3C, and -LP, LMP-1 and -2, BARTs, EBERs, and 
other genes. The latency of EBV is classified into four subtypes (0, I, 
IIa, b, and III) (Table 2).48,49 Infected B cells express highly antigenic 

F I G U R E  2   Human T-cell leukemia virus type 1 (HTLV-1) provirus and the expression pattern of Tax. A, Complete HTLV-1 provirus. Adult 
T-cell leukemia-lymphoma (ATL) cells with intact provirus can intermittently express Tax along with constant expression of HTLV-1 bZIP 
factor (HBZ). B, Provirus with inactivated Tax expression. Tax expression is absent due to: (a) nonsense mutation of the tax gene; (b) deletion 
of the 5′-long terminal repeat (LTR); or (c) DNA methylation of the 5′-LTR. ATL cells with these proviruses cannot express Tax, whereas they 
constantly express HBZ. The frequencies of the different kinds of proviruses among ATL cases are shown on the right
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virus-associated genes such as EBNA-1, -2, -3A, -B, and -3C for pro-
liferation, and are eliminated by host immune surveillance. This 
expression pattern is known as Latency III. Some infected B cells 

become memory B cells that express only nonprotein-coding genes 
(Latency 0). Latency I is characterized by the expression of EBNA1, 
EBER, and BART-miRNA, whereas the expression of these genes plus 
LMP-1, LMP-2A, and LMP-2B is observed in Latency IIa. Loss of LMP-
1 expression in Latency IIa is classified as Latency IIb (Table 2). The 
EBV-associated cancers are classified based on this latency pattern. 
Hodgkin lymphoma has a Latency IIa pattern of EBV infection, and 
Burkitt lymphoma has a Latency I pattern.50,51

As described above, ATL cases can be similarly classified into 
three subtypes according to Tax expression (Table 1). HBZ is ex-
pressed in all three subtypes. Tax is highly expressed in a small 
number of cases (type III ATL cases), which correspond to the 
Latency III pattern of EBV-associated tumors. Approximately half 
of ATL cases (type II ATL cases) maintain the provirus that can 
express Tax (intact 5′-LTR and coding region), yet their tax gene 
transcripts are barely detected. This phenomenon is reminiscent 
of the intermittent expression pattern observed in MT-1 cells.21 
It is speculated that Tax is intermittently expressed in these ATL 
cases. The third ATL subtype, type I, is that in which Tax expres-
sion is disrupted by one of the three mechanisms described above 
(Figure  2B). Importantly, half of proviruses without 5′-LTR and 
most nonsense mutations in the tax gene occur prior to integration 
(Figure  2B). Accordingly, half of type I ATL cases are likely gen-
erated during the clinical course of leukemogenesis and/or ATL. 
In sum, there are three expression patterns of Tax in ATL and in 
HTLV-1 infected cells in the carrier state. Thus, ATL is heteroge-
nous with regard to the expression pattern of the tax gene.

The analogy between ATL and EBV-associated tumors reflects 
our thinking about the possible roles of the viruses in these can-
cers. These cancers are caused by exogenic viruses, which means 
that host immune surveillance plays a critical effect on oncogenesis. 
Interestingly, expression of EBERs and BART-miRNA (for EBV) or 
HBZ (for HTLV-1) is detected in all EBV- or HTLV-1-associated tu-
mors. These viral genes function as RNA, which is not recognized by 
the host immune system. This is a foxy strategy of these oncogenic 
viruses.

F I G U R E  3   Different human T-cell leukemia virus type 1 
(HTLV-1) proviruses and expression patterns of tax and HTLV-1 
bZIP factor (HBZ) in carriers and adult T-cell leukemia-lymphoma 
(ATL). In carriers, multiple different proviruses exist. In ATL, Tax 
expression is disrupted in approximately half of cases by one 
of three mechanisms: (a) nonsense mutation of the tax gene; (b) 
deletion of the 5′-long terminal repeat (LTR); or (c) DNA methylation 
of the 5′-LTR. In most other cases, Tax is transiently expressed as it 
is in MT-1 cells

Type III 

Type II

Type I

Tax   +++
HBZ    +

Tax     + (intermittent)
HBZ    +

Tax      –
HBZ    +

Carrier  ATL 

Nonsense mutation of tax

Deletion of 5′-LTR

Deletion of 5′-LTRIntact LTRs and tax

DNA methylation of 5′-LTR

TA B L E  1   Three subtypes of adult T-cell leukemia-lymphoma

Type I Type II
Type 
III

Tax − ±~+ ++

HBZ + + +

Note: Tax expression is quantified by semiquantitative PCR as reported 
previously.38

Abbreviation: HBZ, human T-cell leukemia virus type 1 bZIP factor.

Latency I Latency IIa Latency IIb
Latency 
III

EBERs + + + +

EBNA 1 + + + +

EBNA 2 − − + +

EBNA 3s − − + +

EBNA LP − − + +

LMP-1 − + − +

LMP-2A/B − + − +

BART miRNA + + + +

Disease BL HL HIV-associated lymphoma LPD

Abbreviations: BART, BamHI-A rightward transcript; BL, Burkitt lymphoma; EBER, EBV-encoded 
small RNA; EBNA, EBV nuclear antigen; HL, Hodgkin lymphoma; LMP, latent membrane protein; 
LPD, lymphoproliferative disorder.

TA B L E  2   Latency pattern of EBV genes 
expression in hematological neoplasms
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6  | IMMUNE RESPONSES AND 
TRE ATMENT

Because Tax is an immunogenic viral protein, immunotherapy that 
targets Tax protein is considered to be a novel therapy against ATL. 
Indeed, a Tax-peptide pulsed dendritic cell vaccine effectively sup-
presses ATL.52 It is speculated that this therapy is effective on type 
II and III ATL cases, as these ATL cases depend on Tax. Type I ATL 
cases are likely resistant to this therapy. It is noteworthy that Tax 
expression was lost in a relapsed case after the vaccination.52 Thus, 
it could be important to consider the ATL subtypes regarding viral 
gene expression when contemplating a therapeutic approach.

Adult T-cell leukemia-lymphoma cells express CCR4, which re-
flects their Treg-like character.53 Mogamulizumab, a humanized mAb 
to CCR4, has been developed for the treatment of ATL, and shows 
significant clinical efficacy.54 Mogamulizumab not only kills ATL cells 
through enhanced Ab-dependent cell cytotoxicity, but also enhances 
antiviral immunity through suppression of Treg cells.37 The clinical 
effects of mogamulizumab are sometimes long-lasting,54 which sug-
gests that augmented immune responses to the viral antigens Tax 
and HBZ are closely associated with anti-ATL effects. Enhanced CTL 
responses to Tax and HBZ were reported in mogamulizumab-treated 
ATL patients.37 Spontaneous remission of ATL has been reported.55 
Although the mechanism is unclear, increased CD8+ cells and higher 
CTL activity in ATL patients have been reported to associate with 
spontaneous remission, suggesting the involvement of an immuno-
logical mechanism.56,57

Combination regimens of various anticancer drugs have been 
used for aggressive ATLs. However, the median survival period 
is very limited (~13  months), and only approximately 10% of pa-
tients show a long-term response even with the most effective 
regimen.58 Therefore, high-dose chemotherapy with auto-HSCT 
has been attempted. It was tried for only 10 cases, all of whom re-
lapsed early or died from infection.59-61 These findings indicate that 
this intensive chemotherapy is not effective for ATL, unlike other 
types of malignant lymphoma or multiple myeloma. As auto-HSCT 
suppresses acquired immune responses to pathogens, impaired im-
mune responses to HTLV-1 could possibly be associated with the 
deterioration of ATL patients. In contrast to auto-HSCT, allogeneic 
HSCT is effective for ATL patients. In a recent systematic review 
of 18 studies, the overall survival rate after transplantation was 
approximately 40% and the relapse rate was 36%.62 Adult T-cell 
leukemia-lymphoma patients with chronic GVHD show a better 
prognosis than those without chronic GVHD, indicating that host 
immune responses play critical roles.63 Thus, immune responses 
are critical for treatment of ATL.

7  | CONCLUSION

In this review, we redefined ATL as a viral disease. Tax and HBZ are 
implicated in leukemogenesis by HTLV-1. However, Tax expression is 
diverse among ATL cases whereas HBZ is constantly expressed. We 

propose three ATL subtypes in terms of Tax expression. Furthermore, 
we emphasize the similarity between ATL and EBV-related malignan-
cies based on the expression pattern of viral genes. The heterogene-
ity of ATL is possibly linked to responsiveness to therapy. Further 
studies are needed to develop better strategies of treatment.
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