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Human ignitions on private lands 
drive USFS cross‑boundary wildfire 
transmission and community 
impacts in the western US
William M. Downing 1*, Christopher J. Dunn1, Matthew P. Thompson2, 
Michael D. Caggiano3 & Karen C. Short4

Wildfires in the western United States (US) are increasingly expensive, destructive, and deadly. 
Reducing wildfire losses is particularly challenging when fires frequently start on one land tenure and 
damage natural or developed assets on other ownerships. Managing wildfire risk in multijurisdictional 
landscapes has recently become a centerpiece of wildfire strategic planning, legislation, and risk 
research. However, important empirical knowledge gaps remain regarding cross‑boundary fire activity 
in the western US. Here, we use lands administered by the US Forest Service as a study system to 
assess the causes, ignition locations, structure loss, and social and biophysical factors associated with 
cross‑boundary fire activity over the past three decades. Results show that cross‑boundary fires were 
primarily caused by humans on private lands. Cross‑boundary ignitions, area burned, and structure 
losses were concentrated in California. Public lands managed by the US Forest Service were not 
the primary source of fires that destroyed the most structures. Cross‑boundary fire activity peaked 
in moderately populated landscapes with dense road and jurisdictional boundary networks. Fire 
transmission is increasing, and evidence suggests it will continue to do so in the future. Effective cross‑
boundary fire risk management will require cross‑scale risk co‑governance. Focusing on minimizing 
damages to high‑value assets may be more effective than excluding fire from multijurisdictional 
landscapes.

Global fire dynamics are shifting dramatically in the twenty-first century. Changing fire regimes are intersecting 
with the consequences of historical fire and forest management  practices1–3, as well as increasing expansion of 
the wildland urban interface (WUI)4. Rising temperatures, increased drought, longer fire seasons, and earlier 
snowmelt have all been associated with more burning in recent  decades5–7. In addition, the accumulation of wild-
land fuels resulting from fire suppression and other land management practices is further increasing fire activity. 
Prior to Anglo-European colonization in the western United States, fire burned with a wide range of extents, 
frequencies, and severities, limited by the availability of fuel, favorable fire weather, and ignition  sources8. As 
European colonization intensified, historical fire regimes were significantly altered by factors including the cessa-
tion of indigenous burning practices and the widespread adoption of aggressive fire  suppression9–11. Meanwhile, 
human development in and around wildlands expanded by 41% between 1990 and 2010, making the WUI the 
fastest growing land use type in the  US4. Increased development has resulted in both more risk and more loss. 
Millions of homes in the WUI are threatened by wildfires each  year12, and the annual number of structures lost 
to wildfire increased by 300% between 1990 and  201413.

As the WUI expands, there is often increased socio-ecological conflict, whereby anthropogenic pressures 
have negative impacts on natural resources; and natural disturbances, such as fire, have negative consequences 
for human  communities14,15. The dramatic expansion of the WUI has exacerbated the wildfire problem by result-
ing in more human-caused  ignitions16, which are now the dominant cause of fire in the  US17 and the primary 
source of fire risk to  communities12. Each year in the western United States (US) federal agencies undertake 
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increasingly costly (~ $5 billion  year−1) efforts to suppress wildfires and reduce social, economic, and ecological 
wildfire  damages18. However, increased fire suppression has not translated into decreased damages. Wildfires are 
getting bigger, more destructive, and more  deadly19–21. In California alone, the wildfires of 2018 burned 7,400 
 km2 and resulted in the deaths of 103 people, the loss of 22,000 structures, and estimated economic damages 
totaling $148.5  billion20,22.

The tension between ecological processes (e.g., fire) and social processes (e.g., WUI development) in mixed 
ownership landscapes is brought into stark relief when fire ignites on one land tenure and spreads to other 
ownerships, especially when it results in severe damages to communities on private lands and/or highly valued 
natural resources on publicly managed wildlands. These cross-boundary (CB) wildfires present particularly acute 
management challenges because the responsibilities for preventing ignitions, stopping fire spread, and reducing 
the vulnerability of at-risk, high-value assets are often dispersed among disparate public and private actors with 
different objectives, values, capacity, and risk  tolerances23–25. Some CB risk mitigation strategies exist, such as fire 
protection exchanges, which transfer suppression responsibility from one agency (e.g., state) to another (e.g., U.S. 
Forest Service), and CB fuel treatment agreements, which allow managers to influence components of wildfire 
risk beyond their jurisdictional  boundaries2,26. Improving CB wildfire risk management has been identified as a 
top national  priority27, but effective, landscape-scale solutions are not readily apparent.

A common narrative used to describe CB fire is as follows: a wildfire ignites on remote public lands (e.g., 
US Forest Service), spreads to a community, showers homes with embers, and results in structure loss and 
 fatalities23,25,28. In this framing, public land management agencies bear the primary responsibility for managing 
and mitigating CB fire risk, with effort focused on prevention, hazardous fuel reduction, and suppression—largely 
reinforcing the dominant management paradigm of fire  exclusion29,30. An alternative risk management framing 
of this challenge has emerged, starting with the axiom that CB fire transmission is inevitable in fire-prone mixed 
ownership landscapes and that private landowners and homeowners are the actors best positioned to reduce fire 
risk to homes and other high-value assets regardless of where the fire  starts31. In the absence of a broad-scale 
empirical assessment of CB fire transmission, it is difficult to determine which of these narratives more accurately 
reflects the nature of the problem, and whether CB fire risk management is best framed in terms of reducing 
fire transmission from public lands or decreasing the exposure and vulnerability of high-value developed assets 
on private lands.

Despite advances in simulated wildfire hazard assessments and legislation and policy promoting CB wildfire 
risk engagement, important knowledge gaps remain regarding the causes, ignition locations, structure loss, 
and social and biophysical factors associated with recent CB fire activity. One possibility is that all else being 
equal, CB fire activity simply increases proportionally with the number and extent of jurisdictional boundaries 
available for fires to cross. Alternatively, CB burning may be primarily controlled by the degree to which a land-
scape’s temperature, precipitation, and fuels promote ignition and fire  spread32,33. If biophysical drivers were 
dominant, we would expect that CB area burned would essentially mirror area burned by fire that did not cross 
jurisdictional boundaries, and we might anticipate that more CB fire would occur in areas where fire intensities 
often exceed the capacity of firefighters to prevent fire spread. A third possibility is that social factors such as 
population density and road networks may override climatic and fire behavior factors, as has been observed in a 
number of fire-prone  regions16,34,35. These uncertainties make it difficult to prioritize specific mitigation actions 
and identify the actors best positioned to manage different aspects of fire transmission risk. Understanding why 
there is more CB fire activity in some places and less in others could help target mitigations based on causal 
factors, but the social and biophysical factors associated with CB fire transmission have not been systematically 
explored across the western US.

In this paper we present an empirical assessment of recent CB fire activity in the western US. We use the 
United States Department of Agriculture Forest Service (USFS) National Forest System and surrounding owner-
ships as our focal domain, and define CB fires as those fires that burned both USFS lands and other land tenures. 
The USFS is the largest fire management organization in the US and administers approximately 75% of federal 
wildfire  appropriations18. We began by leveraging comprehensive fire occurrence, area burned, and structure 
loss datasets to undertake a spatially explicit, retrospective analysis of fire transmission across USFS jurisdic-
tional boundaries. Next, we analyzed these spatial data using a machine learning statistical modeling approach 
to evaluate the strength and shape of relationships between CB fire activity and suite of biophysical and social 
factors. Specifically, we asked: (1) How much CB fire has occurred, and how have fire transmission rates changed 
in the last three decades? (2) Where, and on what ownerships, is CB activity most common? (3) Do the most 
destructive wildfires originate primarily on public lands managed by the USFS and spread to communities? (4) 
What are the social and biophysical factors most strongly related to variability in CB area burned and CB igni-
tion densities on USFS and private lands, the two dominant sources and recipients of CB in our study domain?

Results
A total of 6.9 million ha burned in CB fires between 1992 and 2019, approximately half on USFS lands (3.5 
million ha) and half on other ownerships (3.4 million ha). CB area burned varied by five orders of magnitude 
(8 ha—351,625 ha) among the 74 national forests surveyed. Fire transmission was concentrated in a relatively 
small group of national forests located primarily in California (Figs. 1 and 2). We observed substantial variation in 
the relative amounts of area burned by fires ignited off USFS lands that spread to national forests (“inbound”) and 
area burned by fires that ignited on USFS lands and spread to other ownerships (“outbound”). CB area burned 
exhibited substantial inter-annual variability along with clear evidence of a general increase over the last three 
decades (Fig. 3). Inbound area burned on USFS lands increased at a higher rate (1,905 ha  year−1) than outbound 
area burned on lands the USFS has suppression responsibility according to protection exchanges (678 ha  year−1) 
and lands not protected by the USFS (732 ha  year−1).
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Approximately 11% of all fires on national forest lands burned across USFS boundaries. Most CB ignitions 
were human-caused (e.g., debris burning, equipment use, escaped campfires) and originated on private lands 
(Table 1). CB ignitions were most abundant in parts of southern California where USFS lands abut dense popu-
lation centers, and relatively rare in sparsely populated landscapes such as Wyoming and Nevada, and cool, wet 
environments such as northwest Washington (Fig. 4). We quantified a CB ignition zone based on the distance 
most (90%) CB ignitions occurred from a USFS boundary. The CB ignition zone extended 2.6 km within USFS 
lands and 4 km outside of USFS lands (Fig. 5).

A systematic inventory of fire-induced structure loss from ICS-209 and ancillary spatial datasets resulted in 
a list of 91 fires that destroyed more than 50 buildings between 2000 and 2018 (Fig. 6). Fires starting on USFS 
lands represent (24%) of destructive fires, and these fires were responsible for 14.7% (5077) of the total structures 
destroyed (34,493). Only two destructive fires ignited on USFS lands were caused by lightning, the remainder 
were started by humans, including energy infrastructure. The majority (63) of destructive fires occurred in 
California, most of which were human-caused on private lands.

Boosted regression tree statistical modeling, a machine learning algorithm, demonstrated strong associa-
tions between CB fire activity and multiple social and biophysical factors (Table 2, Fig. 7). Models were fit for 
four response variables: (1) private CB ignitions, (2) USFS CB ignitions, (3) area burned by outbound CB fire, 
and (4) area burned by inbound CB fire. The performance of CB ignition models was very good (USFS deviance 
explained = 75%, cross-validated = 72%; private deviance explained = 84%, cross-validated = 75%). For the private 
ignitions model, population was the most important variable. Predicted ignitions displayed a hump-shaped 
response peaking at around 150,000 people within the CB ignition zone. Private ignitions increased sharply 
with jurisdictional boundary density and plateaued at moderate values. We observed a strong positive associa-
tion between private ignitions and road density, and a weak positive association with average temperature. For 
the USFS ignitions model, road density was the most important variable and demonstrated a strong positive 
association with ignitions. Predicted USFS ignitions peaked in hot, dry locations with moderate population 
levels. There was evidence of residual spatial autocorrelation in both ignition models that was resolved when a 
residual autocovariate was added.

Figure 1.  Area burned by CB fires that impacted USFS lands. Polygons represent USFS national forests. (a) 
USFS area burned by fires ignited on non-USFS lands (inbound). (b) Area burned outside of national forests 
by fires ignited on USFS lands (outbound). 1. Olympic, 2. Mt. Baker-Snoqualmie, 3. Okanogan-Wenatchee, 4. 
Colville, 5. Gifford Pinchot, 6. Mt. Hood, 7. Siuslaw, 8. Willamette, 9. Deschutes, 10. Ochoco, 11. Malheur, 12. 
Umatilla, 13. Wallowa-Whitman, 14. Umpqua, 15. Fremont-Winema, 16. Rogue River-Siskiyou, 17. Modoc, 18. 
Klamath, 19. Six Rivers, 20. Shasta-Trinity, 21. Mendocino, 22. Lassen, 23. Plumas, 24. Tahoe, 25. Eldorado, 26. 
Stanislaus, 27. Sierra, 28. Inyo, 29. Sequoia, 30. Los Padres, 31. Angeles, 32. San Bernardino, 33. Cleveland, 34. 
Humboldt-Toiyabe, 35. Boise, 36. Sawtooth, 37. Salmon-Challis, 38. Payette, 39. Nez Perce-Clearwater, 40. Idaho 
Panhandle, 41. Kootenai, 42. Lolo, 43. Flathead, 44. Helena-Lewis and Clark, 45. Beaverhead-Deerlodge, 46. 
Bitterroot, 47. Custer-Gallatin, 48. Caribou-Targhee, 48. Bighorn, 50. Shoshone, 51. Bridger-Teton, 52. Medicine 
Bow-Routt, 53. Uinta-Wasatch-Cache, 54. Ashley, 55. Manti-La Sal, 56. Fishlake, 57. Dixie, 58. Arapaho-
Roosevelt, 59. Pike-San Isabel, 60. Grand Mesa Uncompahgre-Gunnison, 61. White River, 62. Rio Grande, 63. 
San Juan, 64. Kaibab, 65. Coconino, 66. Prescott, 67. Tonto, 68. Apache-Sitgreaves, 69. Coronado, 71. Cibola, 72. 
Santa Fe, 73. Carson, 74. Lincoln.
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At the national forest scale, CB area burned model performance was comparatively worse (outbound devi-
ance explained = 44%, cross-validated = 42%; inbound deviance explained = 32%, cross-validated = 30%), but we 
did observe important correlations. For the outbound model, the most important variable was area burned by 
non-transmitted (NT) fire, which was positively associated with outbound area burned up to intermediate values 
(~ 300,000 ha). A similar, but weaker relationship was observed between outbound area burned and inholdings. 
Fire intensity, represented by conditional flame length, was negatively associated with outbound area burned 
up to six meters, beyond which the response leveled off. Similarly, outbound CB area burned peaked at around 
7 °C. CB area burned was relatively low at average annual temperatures greater than 15 °C. For the inbound area 
burned model, conditional flame length was the most important variable; CB area burned increased sharply as 
flame lengths increased from six to eight meters. Inbound area burned increased substantially between 12 and 
18 °C average annual temperature. Population exhibited a strong positive association with inbound area burned 
up to approximately 300,000 people. The relationship between inbound area burned and inholdings was similar 
to the outbound model. Evidence of residual spatial autocorrelation in the inbound model was addressed with 
the addition a residual autocovariate. The outbound model did not exhibit residual spatial autocorrelation.

Discussion
Our study provides the first region-wide empirical assessment of CB fire transmission patterns in the western US. 
By leveraging multiple fire databases, we were able to identify ownership at ignition for CB fires that burned both 
USFS lands and other ownerships. The magnitude and directionality of CB fire transmission varied substantially 
across our study area, but overall, CB fires were more likely to originate on private lands than USFS lands. CB 
ignitions, area burned, and structure loss were all concentrated in parts of California, where approximately two-
thirds of CB fire activity occurred on USFS lands from fires originating on other ownerships. Our findings do 
not support the assertion that a majority of the most destructive fires spread from USFS-managed wildlands to 
communities. Broad-scale statistical modeling of CB ignitions and area burned provided evidence that human 
development patterns are strongly associated with CB fire activity. The population of the CB ignition zone sur-
rounding national forests in our study area increased by 39% between 1990 and 2010, and our results indicate that 
CB fire risk will likely continue to increase as human development expands into sparsely populated  landscapes4. 
Our findings highlight the need for increased cross-scale multiparty risk governance and CB pre-fire planning 
to minimize the social and economic damages of CB fire while maintaining ecologically beneficial  burning37,38.

Our analysis provides an important empirical compliment to simulation studies based on large numbers of 
hypothetical fire events. Consistent with our results, modeling studies report that CB fire risk to communities is 

Figure 2.  (a) National forests ranked according to area burned by CB fire between 1992 and 2019. Some forests 
are net receivers of inbound fire (e.g., Los Padres), while others are net transmitters (e.g., Custer-Gallatin). (b) 
Total non-transmitted fire load and the ratio of CB area burned (inbound and outbound) to the area burned by 
non-transmitted fire (CB/NT). CB fire is a major contributor to area burned in and around some national forests 
(e.g., Mendicino) and not others (e.g., Payette).
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highest in parts of  California23,39,40, and that community/private land tenures, rather than public lands, contrib-
ute the most fire risk to structures in the western  US24,41. In contrast, our results differ in some important ways 
from simulation modeling studies. For instance, Palaiologou et al. 2019 reported high rates of simulated USFS to 
private fire transmission around the perimeters of the Gila, Apache-Sitgreaves, Tonto, Prescott, Coconino, and 
Kaibab national forests in the southwestern  US24. Our analysis does not provide empirical evidence of substantial 
USFS to private fire transmission in these areas. A similar study reported that over 500 structures were exposed 
(but not necessarily lost) to fires spreading from these southwestern national forests each year23. However, our 
structure loss analysis only identified two fires that resulted in > 50 structures lost that involved these national 
forests between 2000 and 2018 (Yarnell Hill, 2013; Rodeo-Chediski, 2002). In their most recent comparison of 
empirical versus simulated wildfire impacts in the West, Ager et al. (2021)39 found good alignment in annual area 
burned estimates, while building exposure was substantially overestimated in  simulations37. Of course, asking 
what did happen and what might happen are different endeavors. The relevant empirical record for the former 
is necessarily limited to occurrences within the past few decades, while wildfire simulation systems provide 
realizations of tens of thousands of hypothetical contemporary fire-seasons, including some far more extreme 

Figure 3.  Area burned by CB fires derived from FIRESTAT data and binned by ownership category. Blue dots 
represent decadal averages of inbound and outbound acres combined. CB fire activity increased substantially 
during our study period. Area burned on USFS lands by fires originating on other ownerships (“inbound”, gray) 
has increased more rapidly than area burned on non-USFS lands. Ownership categories are described in more 
detail in the Methods.

Table 1.  We identified a total of 22,026 CB fires that impacted USFS lands. The majority (88%) originated on 
either USFS or private lands, and the remainder started on other ownerships (e.g., state, city, other federal). 
Most CB fires were caused by humans (e.g., debris burning, equipment use, escaped campfires) on private 
lands.

Ignition location

Lightning-caused Human-caused Total

# fires % of total # fires % of total # fires % of total

Private 3036 14 10,235 46 13,271 60

USFS 2059 9 4052 18 6111 28

Other 997 5 1647 7 2644 12

Total 6092 28 15,934 72 22,026 100
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Figure 4.  CB ignition densities derived from FPA FOD and FIRESTAT databases for fires originating on (a) 
USFS and (b) private lands between 1992 and 2017. Private ignition data are restricted to fires that impacted 
USFS lands; fires that originated on private land and spread to other state or federal jurisdictions are not 
included.

Figure 5.  Distance from CB ignitions to USFS national forest borders for fires ignited on (a) USFS and (b) 
private lands between 1992 and 2017. To improve figure interpretability, the maximum distance shown here is 
constrained by the 90th percentile (2.62 km) of distance between a USFS ignition and national forest boundary. 
Private ignition data are restricted to fires that impacted USFS lands; fires that originated on private land and 
spread to other state or federal jurisdictions are not included.
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than observed. Moreover, the nuances of fire protection efforts specific to the WUI and associated communities 
are not well captured in simulation systems, but likely help lessen actual  exposure39. Clearly both empirical and 
simulated data are important for assessing CB fire risk. When combined, empirical and simulation analyses can 
contribute to holistic representations of where socio-ecological CB fire linkages have emerged in the past, and 
where they may be likely to develop or be reinforced in the future.

CB fire risk transmission is strongly mediated by human development patterns as a function of human-
caused ignitions, road and boundary networks, and the distribution of high-value assets potentially exposed to 
CB  fire23–25,41. In our analysis, CB ignitions peaked at intermediate population values, and CB area burned was 
low in very sparsely populated landscapes. These findings are consistent with observations that fire occurrence 
increases with population up to a threshold beyond which fire activity declines—a phenomenon attributed to 
frequent human-caused ignitions in moderately populated areas and reduced fire activity associated with highly 
fragmented fuels and abundant fire suppression resources in densely populated  areas16,34. Likewise, CB ignitions 
increased with jurisdictional boundary density up to a certain point, but declined where boundaries were dens-
est, which again may be attributable to the decreased potential for fire spread in discontinuous fuels and greater 
suppression effort around extensive human development. National forests with abundant inholdings experienced 
more CB fire than those with few inholdings, indicating that smaller land tenures like inholdings are not only 
more likely to receive incoming  fire24, they also appear to be sources of fire transmission to national forest lands. 

Figure 6.  Location of destructive wildfires (> 50 structures lost) between 2000 and 2018 that originated on (a) 
USFS lands, and (b) non-USFS lands. Fire locations are symbolized by magnitude of structure loss. Relatively 
few destructive fires originated on USFS lands. The most destructive USFS and non-USFS fires during this time 
are the Cedar fire and the Camp fire, respectively.

Table 2.  Predictor variables for boosted regression tree (BRT) analyses. a For CB area burned models, these 
variables were only sampled in the 4-km external buffers around national forests. b Variables only included in 
CB area burned models.

Variable Description Source

Populationa Population within each sample area, averaged from 1990, 2000, and 2010 datasets Radeloff et al.4

Road density Data were rasterized; “road” cells were summed and divided by the area of the sample https:// www. here. com/

Boundary  densitya Data were rasterized; “boundary” cells were summed and divided by the area of the sample https:// wfdss. usgs. gov/

Conditional flame length Most likely flame length (m) at a given location if a fire occurs, based on wildfire simulations. Averaged across each 
sample area Scott et al.34

Precipitation Average annual precipitation (mm, 1981–2010) averaged across each sample area PRISM

Temperature Average daily mean temperature (°C, 1981–2010) averaged across each sample area PRISM

Inholdingsb Area of non-USFS lands within national forest boundaries (ha) derived from jurisdictional spatial data https:// wfdss. usgs. gov/

Non-transmitted area  burnedb Area burned (ha) by fires that did not spread beyond national forest borders to other ownerships FIRESTAT 

https://www.here.com/
https://wfdss.usgs.gov/
https://wfdss.usgs.gov/
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Figure 7.  Partial dependence plots and relative influence of variables used to model (a) CB ignitions and (b) 
CB area burned. Note that the scales vary on the y axes, which represent each variable’s effect on (a) ignition 
counts and (b) CB area burned after accounting for the influence of other predictor variables. Predictions were 
center-scaled by subtracting the mean from each value. Partial dependence plots are shown in descending order 
of importance (left to right) determined by averaging variable relative importance (RI) values between models. 
Uninfluential variables (RI < 2.5) are not shown.
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CB ignitions and area burned increased with road density, which we attribute to increased human-caused igni-
tions along road corridors that provide easy access to flammable vegetation in and around national  forests42. 
The USFS has increasingly resorted to restricting access to entire national forests and even entire national forest 
regions to reduce the likelihood of human-caused ignitions during periods of high fire  danger43. Decommis-
sioning or limiting public access to roads may be another approach to limiting human-caused ignitions, but 
successful implementation would require input from fire managers who frequently utilize roads for access, fuel 
breaks, and pre-fire operational  planning44, as well as buy-in from the public who use roads for recreation access 
and other purposes.

Biophysical gradients were strongly associated with CB fire activity after accounting for social factors. CB 
ignitions were more common in hotter and drier climates, with some indication that CB fire occurrence was 
limited by fuel availability in the least productive, hot, dry  locations45. Non-transmitted fire activity was a strong 
predictor for outbound area burned, but only weakly associated with inbound area burned, indicating that 
national forest fire load may not be an appropriate metric for prioritizing CB fire risk mitigations designed to 
protect valued natural resources on public lands. We were surprised to find that outbound and inbound area 
burned were associated with substantially different biophysical contexts. Outbound fire activity increased at 
simulated low fire intensities (i.e., light, flashy fuels) in hot, dry environments, while inbound fire increased 
at simulated high fire intensities (i.e., tall brush and timber fuels) in cooler, moister contexts. Both of these 
fire behavior environments present challenges to fire managers (e.g., high rates of spread; intense, long dura-
tion burning), but it is not clear why they would differentially influence fire  transmission46. It is likely that our 
broadscale analysis of CB area burned was partly confounded by variability at spatial scales smaller than those 
 measured47. Presently, comprehensive USFS CB fire activity data are not available at smaller spatial scales, and 
additional research is needed to determine the influence of a more comprehensive suite of biophysical factors 
on CB area burned at finer resolutions.

An empirical understanding of the geography of CB fire activity can provide a common operating picture for 
multiparty risk management oriented around which actors can most efficiently reduce aspects of  risk48. One of 
the wildfire risk reduction strategies commonly proposed to prevent fires from spreading from federally-managed 
wildlands to communities is the reduction of hazardous  fuels49,50. In some contexts, strategically placed fuel treat-
ments can reduce fire severity and local fire  spread51,52. However, fuel treatments are not ecologically appropriate 
in many fire-prone ecosystems and their effectiveness at landscape scales is  limited2,31. Wildfires rarely interact 
with treatments before fuels recover to hazardous  levels53–55, and treatments are generally not designed to be 
effective during the extreme weather and fire behavior conditions associated with the small number of large, 
destructive fires that escape initial  containment31. Federal agencies can also influence management on state and 
private lands through recently established collaborative authorities and strategic frameworks (e.g., Wyden Act, 
National Cohesive Strategy, Good Neighbor Authority, Shared Stewardship), but federal land managers are poorly 
positioned to incentivize community fire adaptation relative to state and local  actors56,57.

“The USFS manages over 67 million hectares interspersed among other land tenures across the western US, 
necessitating the agency’s engagement in CB wildfire risk management. However, the USFS could benefit from 
a critical evaluation of where it can meaningfully direct its resources to mitigate risks within the context of its 
mission, span of control, and authority. Rather than direct a majority of resources to the structure loss prob-
lem, which can be fundamentally decoupled from the land management  problem31,58, the USFS could instead 
emphasize forest health, resilience, and the natural amenity values that sustain communities and livelihoods. 
Given that (1) most CB ignitions are caused by humans on private lands, (2) high structure loss fires ignited on 
USFS lands are relatively rare, and (3) fire-induced structure loss is increasing despite substantial suppression 
and fuel reduction  expenditures31,59, CB fire risk to communities in particular may be best defined in terms of 
minimizing potential damages to developed high value assets like homes, and best oriented towards private 
lands, homeowners, and  communities31,58. Prevention, hazardous fuel treatments, and suppression will remain 
important components of CB fire risk management strategies in many landscapes. However, based on the near 
ubiquity of fire transmission in fire-prone landscapes, escalating suppression expenditures, WUI expansion, and 
positive feedbacks between human development and CB fire risk, eliminating CB fire transmission is probably not 
operationally feasible and may not be ecologically desirable or socially effective31. There are a multitude of high-
value assets on federally managed wildlands, such as water supplies, critical habitat, recreation infrastructure, 
and other natural and cultural resources, which may be better protected or enhanced through the reintroduction 
of fire rather than continued emphasis on  control2”.

Land managers and communities may be best served by adapting to increasing CB wildfire in the western 
US, rather than attempting to minimize fire  transmission2,38. Based on the empirical evidence presented here, 
reducing exposure and increasing the resilience of fire-adapted communities with the assumption that wildfire 
is inevitable seems like a more realistic approach than attempting to exclude fire based on the mistaken assump-
tion that more fire suppression expenditures will result in less fire  activity30,31. Community wildfire protection 
plans (CWPPs) are one of the key mechanisms designed to accomplish the National Cohesive Strategy’s goal of 
human populations and infrastructure that can withstand wildfire without loss of life and  property27,60. Nearly all 
CWPPs focus on fuels reduction and the creation of fire breaks designed to prevent wildfire from spreading from 
wildlands to communities, instead of efforts to reduce the ignitability of homes and other values at risk when fires 
do spread to populated areas. In contrast to these CWPP implementations, our findings and others’ suggest that 
private landowners and communities are best positioned to develop and maintain communities that can with-
stand wildfire by minimizing the likelihood of home ignition, preventing human-caused fires from occurring in 
the WUI, and limiting development in high risk areas through land use planning and zoning regulations 31,58,61,62.

While communities and private land owners appear to occupy the nexus of CB fire risk management, the 
social and ecological linkages created by CB fire necessitate engagement from all stakeholders at multiple 
 scales25. Effective CB fire risk management strategies will likely require different strategies tailored to specific 
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multijurisdictional contexts and based on localized systemic analyses, including, but not limited to, fuel treat-
ments on public lands, exposure reduction on private lands, and the prevention and suppression of human-
caused ignitions in high-risk locations on all ownerships. This shift in risk management emphasis may call for a 
reexamination of the most appropriate role for the USFS in some areas, perhaps to a mode of leveraging wildfire 
risk science to better frame problems and convening dialogues around co-management of wildfire risk.

Recent advances in wildfire risk science used in conjunction with empirical assessments of CB fire activity 
can help align risk management with the wildfire reality in multijurisdictional landscapes. When combined with 
local experiential knowledge, spatially explicit decision support tools like quantitative risk  assessments63, sup-
pression difficulty  maps64, and potential control location atlases provide stakeholders with a common operating 
picture that can be used as the basis for co-managing  risk30,65. Mapping the components of fire risk allows all 
landowners to simultaneously assess their exposure to wildfire and their contribution to the exposure of adjoin-
ing  jurisdictions66,67. Transparency in pre-fire planning and risk governance can help build consensus around 
which actors are responsible for managing specific components of CB fire risk. Additionally, a shared CB fire risk 
knowledge base can be leveraged across state, county, and local scales to develop land use planning and zoning 
regulations designed to prevent development in areas where wildfire risk is unacceptably  high30,68.

That much of the research on CB fire has focused on community  exposure23,25,69 stems from the inherent 
imbalance between the values at risk in communities and the values at risk in publicly managed wildlands. Often 
it is considered more important to protect homes than it is to protect wildland  ecosystems31. Rebuilding com-
munities after wildfire is a challenging, complex process that can take  years70. Meanwhile, post-fire ecological 
recovery can take  decades71, or never occur at all if pre-fire vegetation can’t reestablish due to repeat burning, 
unfavorable climate, or a lack of surviving seed  sources72,73. Our analysis was not designed to evaluate the eco-
logical impacts of CB fire activity, and future empirical work on CB wildfire risk may therefore wish to consider 
the impacts of CB fire on a broader set of ecosystem processes and functions.

Future work could also add clarity on the prevention and response dimensions of CB fire risk. For instance, are 
closures and restrictions on non-USFS lands viable and would they measurably affect patterns of human-caused 
ignitions? Recognizing that fire response on mixed ownership landscapes entails a patchwork of entities, factors 
not explored here relate to the authorities, objectives, capacities, and capabilities of various response organizations 
(see Artley 2009)26. It may be the case that the USFS can effectively manage risk of outbound transmission due 
to factors like more robust planning and information systems and dedicated fire staff. Mapping a topography of 
the response system, how these and other factors vary, and how response to federal versus non-federal ignitions 
vary could be illuminating in this regard.

Wildfire and its controls are non-stationary, and the utility of past trends for forecasting future CB fire activ-
ity is probably  limited74. In some ways, simulation modeling studies share this limitation because these models 
are parameterized with historical fuels, weather, and ignitions  data40. While not taking historical patterns as 
givens, we anticipate fire transmission will continue to increase given directional trends in climate, the number 
of human-caused large fires, and human development near national forest  boundaries7,17. Structure loss is also 
 increasing59, but this trend may not be inevitable if the focus of wildfire governance can be shifted away from 
fire exclusion and towards reducing the likelihood of losses when fires invariably  occur31,58.

Conclusion
Our empirical assessment of CB fire activity can support the development of strategies designed to foster fire-
adapted communities, successful wildfire response, and ecologically resilient landscapes. Adapting to increas-
ing CB wildfire in the western US will require viewing socio-ecological risk linkages between CB fire sources 
and recipients as management assets rather than liabilities. We believe that a shared understanding of CB fire 
dynamics, based on empirical data, can strengthen the social component of these linkages and promote effec-
tive governance. The current wildfire management system is highly  fragmented74, and increased social and 
ecological alignment between actors at multiple scales is necessary for effective wildfire risk  governance14,30. 
Cross-boundary fire activity can contribute to multijurisdictional alignment when fire transmission incentiv-
izes actors to collaboratively manage components of risk that manifest outside their respective  ownerships15. A 
broader acknowledgement that CB is inevitable in some fire-prone landscapes will ideally shift the focus away 
from excluding fire in multijurisdictional settings towards improved cross-jurisdictional pre-fire planning and 
reducing the vulnerability of high-value assets in and around  wildlands30,31. Federal agencies like the USFS can 
provide capacity, analytics, and funding, but given that private lands are where most high-value assets are located 
and where most CB fires originate, communities and private landowners may be best positioned to reduce losses 
from CB wildfire.

Methods
Study area. We analyzed CB fire transmission to and from 74 national forests in 11 western US states. Lands 
managed by the USFS not designated as national forests were excluded (e.g., Lake Tahoe Basin Management 
Unit). National forest lands in the western US are part of a diverse mosaic of land tenures consisting of private, 
state, and tribal and other federal ownerships. National forest lands in our study area cover 57 million ha and 
contain a wide variety of forest and rangeland ecosystems spanning broad climatic and fire regime gradients.

Data sources. Cross‑boundary wildfires. We identified CB fires using data from the Fire Statistics System 
(FIRESTAT). The FIRESTAT database contains a record for every fire with which the USFS was involved. FIR-
ESTAT area burned data are classified into three coarse ownership categories: USFS lands, non-USFS lands not 
protected by the USFS, and non-USFS lands for which the USFS has protection responsibility pursuant to inter-
agency protection exchange agreements. FIRESTAT records have spatial location information for the reported 
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points of origin for most fires, but those data vary in format and precision (i.e., ranging from only Public Land 
Survey System subsection attributions to GPS-based latitude and longitudes). It also includes NFS unit (i.e., for-
est) codes and names that have changed over time. We therefore leveraged standardization and quality control 
procedures used to produce the national Fire Program Analysis Fire-Occurrence Database (FPA FOD), which 
is a compilation of wildfire records from local, state, and federal fire reporting systems, including FIRESTAT 
(Short 2017)75. At the time of our analysis, data were only available for fires that occurred between 1992 and 
2017. FPA FOD procedures and data were used to attribute spatial ignition and nominal NFS unit data to CB 
fires. We restricted our FIRESTAT analysis to fires that occurred between 1992 and 2019 to align with the start 
year of the FPA FOD timespan, which is 1992 due to concerns about completeness and quality of spatial data 
prior to that  year76.

Incident Status Summaries. Incident Command System Incident Status Summary Forms (ICS-209) report daily 
fire and suppression resource characteristics for significant wildfires. We used ICS-209 reports to identify the 
most destructive incidents between 2000 and 2018 using a threshold of 50 or more structures lost. We assigned 
a total structure loss count to each wildfire as well as the jurisdiction of the point of origin to evaluate whether 
or not the fire originated on USFS lands. A small number of destructive fires originated from multiple ignition 
sources located in different jurisdictions. When needed, we consulted local fire managers to properly attrib-
ute ownership for these event (see supplementary material). Where possible, we augmented ICS-209 destroyed 
structure counts with spatial building loss data. See Caggiano et al. (2020) for  details56.

Statistical modeling data. We modeled CB fire activity in relation to predictor variables representing climate, 
fire intensity, human development, and jurisdictional boundary patterns. Average annual temperature and 
annual precipitation (1981–2010) were acquired from  PRISM77. We used conditional flame length data derived 
from simulation modeling to represent average potential fire  behavior36. Road density data was calculated based 
on HERE roads shapefile data (https:// www. here. com). Jurisdictional boundary density data was calculated 
based on the Wildland Fire Decision Support System boundary shapefile data (WFDSS, https:// wfdss. usgs. gov). 
We rasterized the road and boundary datasets and divided the number of “presence” cells (i.e., road, or juris-
dictional boundary) by the total number of cells in each sample unit to generate density values. We calculated 
the abundance of inholdings using WFDSS jurisdictional boundary spatial data, and we derived area burned by 
non-transmitted fire from FIRESTAT data. To quantify population, we averaged 1990, 2000, and 2010 popula-
tion estimates from wildland urban interface data developed by Radeloff et al.4.

Analysis. Quantifying fire transmission. CB fires were identified as fires that burned both USFS lands and 
other ownerships based on FIRESTAT data. We aggregated FIRESTAT area burned data by the three owner-
ship categories described above (USFS, non-USFS, non-USFS protected) to quantify the magnitude of CB fire 
transmission for each of the national forests in our study area and for our study area as a whole. Additionally, 
we summarized area burned by ownership for each year between 1992 and 2019 to evaluate temporal trends in 
CB fire transmission.

Mapping fire transmission. We assessed the geographic distribution of fire transmission by mapping national 
forests in our study area in terms of inbound and outbound area burned. Additionally, we mapped CB ignitions 
that originated on either USFS or private lands. These two ownership categories were the dominant sources and 
recipients of CB fire in our study domain. To attribute CB ignition ownership as precisely as possible, we linked 
CB fires identified from FIRESTAT to FPA FOD spatial fire origin data based on a shared, unique identifier. 
FPA FOD ignition location data were used to extract more detailed ownership information from the Protected 
Areas Database of the United  States78 and 2019 Census Block Groups data (Wildland Decisions Support System, 
https:// wfdss. usgs. gov). We assessed the geographic distribution of CB fire ignitions by summarizing the density 
of ignitions by ownership within a 20-km resolution hexagonal tessellated grid. Lastly, we leveraged the com-
bined FPA FOD-FIRESTAT CB ignition spatial data to determine the distance between both private CB igni-
tions and USFS CB ignitions and the closest national forest boundary. We used the 90th percentiles of these two 
datasets to delineate a “cross-boundary ignition zone,” which we then utilized as the spatial extent for sampling 
predictor variables used in the statistical analyses described below.

Attributing ownership to destructive fires. We used FPA FOD data, state fire agency documentation, and news 
articles to attribute ownership to destructive fires. Where possible, we also assigned a cause to each destructive 
fire (e.g., lightning, arson). In some cases, it was very difficult to determine a specific ownership category for 
fires that did not ignite on federal lands (e.g., private, state, county, or city lands). This did not pose a significant 
problem because our primary objective was to differentiate between fires ignited on or off USFS lands. Attrib-
uting ownership to fire complexes (multiple fires managed as one incident) also presented a challenge because 
complexes were sometimes composed of fires that were ignited on different jurisdictions. Two complexes we 
are aware of (Okanogan Complex, BTU Lightning Complex) consisted of fires that originated on both USFS 
and non-federal lands. In both cases, we classified these fires as “non-USFS” based on available data and con-
versations with local fire managers. The USFS ignitions in these complexes either constituted a small minority 
of all ignitions (BTU Lightning Complex) or did not substantially impact communities (Okanogan Complex). 
Removing these fires, or changing their ownership classification, would not substantially alter our results or our 
interpretation.

https://www.here.com
https://wfdss.usgs.gov
https://wfdss.usgs.gov
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Statistical modeling. We analyzed CB ignitions and CB area burned in relation to a suite of social and biophysi-
cal predictor variables representing climate, fire intensity, human development, and jurisdictional boundary 
patterns (Table 2). We fit models for the following four response variables: (1) private CB ignitions, (2) USFS 
CB ignitions, (3) area burned by outbound CB fire, and (4) area burned by inbound CB fire. CB ignitions were 
modeled at the scale of the 20-km resolution hexagonal grid used for mapping ignitions. Private and USFS CB 
ignition counts derived from the FPA FOD database were summed within every grid cell intersecting a national 
forest boundary. We normalized ignition counts by hexagon area where grid cells were clipped by the extent of 
our study area. We modeled CB fire activity at the national forest scale using inbound and outbound (protected 
and non-protected combined) area burned data from FIRESTAT. CB area burned predictor variables were sam-
pled within the CB ignition zone identified using FPA FOD spatial data and described above.

We used boosted regression trees (BRT) to assess the relative importance of predictor variables and relation-
ships between predictor variables and our four CB fire response variables. Models were fit for the appropri-
ate family for each data distribution (ignition counts: Poisson, area burned: Gaussian), and parameterized to 
ensure at least 1000 trees were produced during the fitting process (learning rate = 0.001, tree complexity = 5, 
bag fraction = 0.5). We assessed model performance based on modeled and tenfold cross-validated percentages 
of deviance explained, which indicates the goodness of fit between modeled values and observed  values79. We 
evaluated the importance of predictor variables using relative influence values and we used partial dependence 
plots to interpret the effects of predictor variables on the response after accounting for the average effects of all 
other variables in the  model80. We tested for residual spatial autocorrelation using Moran’s I, and models with 
evidence of residual spatial autocorrelation were fit with a residual spatial  autocovariate79. We assessed collinear-
ity between predictors using a correlation matrix (see supplementary material). We considered variables to be 
highly correlated beyond a threshold of r >|0.7|, the point at which collinearity begins to meaningfully distort 
BRT model  outputs81. In several cases we observed strong correlations between predictor values sampled inside 
and outside of national forest boundaries. To avoid possible model distortion and to simplify model interpreta-
tion, we averaged interior and exterior precipitation, temperature, and conditional flame length values prior to 
modeling. We conducted all analyses in R (ver. 4.0.3, R Core Team 2019). BRT modeling was performed using 
 gbm82 and  dismo83 R packages.

Received: 6 October 2021; Accepted: 21 January 2022

References
 1. Zald, H. S. J. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership land-

scape. Ecol. Appl. 2, 1–13 (2018).
 2. Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. 114, 

4582–4590 (2017).
 3. Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 

(2016).
 4. Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H. & Alexandre, P. M. Rapid growth of the US wildland-urban interface 

raises wildfire risk. Proc. Natl. Acad. Sci. https:// doi. org/ 10. 1073/ pnas. 17188 50115 (2018).
 5. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire 

activity. Science (80‑.). 313, 940–943 (2006).
 6. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).
 7. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. 

Sci. U. S. A. 113, 11770–11775 (2016).
 8. Agee, J. K. The landscape ecology of western forest fire regimes. Northwest Sci. 72, 7569 (1993).
 9. Whitehair, L., Fulé, P. Z., Meador, A. S., Azpeleta, T. A. & Kim, Y. S. Fire regime on a cultural landscape: Navajo Nation. Ecol. Evol. 

8, 9848–9858 (2018).
 10. Hessburg, P. F. et al. Restoring fire-prone Inland Pacific landscapes: seven core principles. Landsc. Ecol. 30, 1805–1835 (2015).
 11. Calkin, D. E., Thompson, M. P. & Finney, M. A. Negative consequences of positive feedbacks in US wildfire management. For. 

Ecosyst. 2, 1–10 (2015).
 12. Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 1–20 

(2020).
 13. USDA Forest Service & Department of the Interior. 2014 Quadrennial Fire Review: Final Report. (2015).
 14. Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).
 15. Hamilton, M., Fischer, A. P. & Ager, A. A social-ecological network approach for understanding wildfire risk governance. Glob. 

Environ. Chang. 54, 113–123 (2019).
 16. Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).
 17. Balch, J. K. et al. Human-started wildfires expand the fire niche across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 2946–2951 

(2017).
 18. Hoover, K. Federal wildfire management: Ten-year funding trends and issues (FY2011-FY2020). Congressional Research Service 

(2020).
 19. Brown, H. The Camp Fire tragedy of 2018 in California. Fire Manag. Today 78, 11–22 (2020).
 20. Wang, D., Guan, D., Kinnon, M. M., Geng, G. & Davis, S. J. Economic footprint of California wildfires in 2018. Nat. Sustain. https:// 

doi. org/ 10. 1038/ s41893- 020- 00646-7 (2019).
 21. Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western USA. Glob. 

Chang. Biol. 27, 1–2 (2021).
 22. NIFC. National Report of Wildland Fires and Acres Burned by State. Natl. Interag. Fire Cent. 64–75 (2018).
 23. Ager, A. A. et al. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 111, 102059 (2019).
 24. Palaiologou, P., Ager, A. A., Evers, C. R., Nielsen-Pincus, M. & Day, M. A. Fine-scale assessment of cross-boundary wildfire events 

in the western USA. Nat. Hazards Earth Syst. Sci. 6, 1755–1777 (2019).
 25. Evers, C. R., Ager, A. A., Nielsen-pincus, M., Palaiologou, P. & Bunzel, K. Archetypes of community wildfire exposure from national 

forests of the western USA. Landsc. Urban Plan. 182, 55–66 (2019).

https://doi.org/10.1073/pnas.1718850115
https://doi.org/10.1038/s41893-020-00646-7
https://doi.org/10.1038/s41893-020-00646-7


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2624  | https://doi.org/10.1038/s41598-022-06002-3

www.nature.com/scientificreports/

 26. Artley, D. K. Wildland fire protection and response in the United States: the responsibilities, authorities, and roles of federal, state, 
local, and tribal government. Int. Assoc. Fire Chiefs 5, 1–117 (2009).

 27. USDA Forest Service. National action plan: An implementation framework for the National Cohesive Wildland Fire Management 
Strategy. USDA For. Serv. (2014).

 28. Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS One https:// doi. org/ 10. 
1371/ journ al. pone. 01728 67 (2017).

 29. Fleming, C. J., Mccartha, E. B. & Steelman, T. A. Conflict and collaboration in wildfire management: the role of mission alignment. 
Public Adm. Rev. 75, 445–454 (2015).

 30. Dunn, C. J. et al. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. 
Res. Lett. 15, 25001 (2020).

 31. Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the 
wildland-urban interface. Proc. Natl. Acad. Sci. U. S. A. 111, 746–751 (2014).

 32. Whitman, E. et al. The climate space of fire regimes in north-western North America. J. Biogeogr. 42, 1736–1749 (2015).
 33. Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S.A ecoprovinces, 

1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
 34. Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire 

activity across the USA. Proc. Natl. Acad. Sci. U. S. A. 114, 13750–13755 (2017).
 35. Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 1089 

(2016).
 36. Scott, J. H. et al. Wildfire risk to communities: spatial datasets of landscape-wide widlfire risk components for the USA. Fort Collins 

CO For. Serv. Res. Data Arch. 3, 159–1089 (2020).
 37. Smith, A. M. S. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).
 38. Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).
 39. Ager, A. A. et al. Predicting paradise: modeling future wildfire disasters in the western USA. Sci. Total Environ. 784, 147057 (2021).
 40. Ager, A. A. et al. Wildfire exposure and fuel management on western USA national forests. J. Environ. Manag. 145, 54–70 (2014).
 41. Haas, J. R., Calkin, D. E. & Thompson, M. P. Wildfire risk transmission in the Colorado Front Range, USA. Risk Anal. 35, 226–240 

(2015).
 42. Stephens, S. L. & Ruth, L. W. Federal forest-fire policy in the USA. Ecol. Appl. 15, 532–542 (2005).
 43. Harrell, A. All California’s national forests, including Tahoe’s, to close as fires rage (San Francisco Chronicle, 2020).
 44. Thompson, M. P., Gannon, B. M. & Caggiano, M. D. Forest roads and operational wildfire response planning. Forests 12, 1–11 

(2021).
 45. Parks, S. A., Parisien, M. A., Miller, C. & Dobrowski, S. Z. Fire activity and severity in the western US vary along proxy gradients 

representing fuel amount and fuel moisture. PLoS ONE 9, 1–8 (2014).
 46. Scott, J. H. & Burgan, R. E. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread 

model. USDA For. Serv. Gen. Tech. Rep. RMRS GTR  2, 1–76. https:// doi. org/ 10. 2737/ RMRS- GTR- 153 (2005).
 47. Keeley, J. E. & Syphard, A. D. Climate change and future fire regimes: examples from California. Geosciences 6, 129 (2016).
 48. Thompson, M. P., Dunn, C. J. & Calkin, D. E. Wildfire: systemic changes required. Science (80‑.) 20, 63 (2015).
 49. North, M. et al. Reform forest fire management. Science (80‑.) 3, 7–1459 (2015).
 50. Williams, J. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manag. 294, 4–10 

(2013).
 51. Safford, H. D., Stevens, J. T., Merriam, K., Meyer, M. D. & Latimer, A. M. Fuel treatment effectiveness in California yellow pine 

and mixed conifer forests. For. Ecol. Manag. 274, 17–28 (2012).
 52. Prichard, S. J., Povak, N. A., Kennedy, M. C. & Peterson, D. W. Fuel treatment effectiveness in the context of landform, vegetation, 

and large, wind-driven wildfires. Ecol. Appl. 30, 1–22 (2020).
 53. Thompson, M. P., Riley, K. L., Loeffler, D. & Haas, J. R. Modeling fuel treatment leverage: encounter rates, risk reduction, and 

suppression cost impacts. Forests 8, 1–26 (2017).
 54. Boer, M. M., Price, O. F. & Bradstock, R. A. Wildfires: weigh policy effectiveness. Science (80‑.) 250, 919 (2015).
 55. Barnett, K., Parks, S. A., Miller, C. & Naughton, H. T. Beyond fuel treatment effectiveness: characterizing interactions between fire 

and treatments in the USA. Forests 7, 7569 (2016).
 56. Brenkert-Smith, H., Champ, P. A. & Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. 

Soc. Nat. Resour. 19, 759–768 (2006).
 57. Reams, M. A., Haines, T. K., Renner, C. R., Wascom, M. W. & Kingre, H. Goals, obstacles and effective strategies of wildfire mitiga-

tion programs in the Wildland-Urban Interface. For. Policy Econ. 7, 818–826 (2005).
 58. Cohen, J. The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. For. Hist. Today 2008, 20–26 

(2008).
 59. Caggiano, M. D., Hawbaker, T. J., Gannon, B. M. & Hoffman, C. M. Building loss in WUI disasters: evaluating the core components 

of the wildland–urban interface definition. Fire 3, 1–17 (2020).
 60. Steelman, T. A. & Burke, C. A. Is wildfire policy in the USA sustainable?. J. For. 105, 67–72 (2007).
 61. Syphard, A. D. & Keeley, J. E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2, 1–15 (2019).
 62. Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildl. Fire 27, 781–799 

(2018).
 63. Scott, J. H., Thompson, M. P. & Calkin, D. E. A wildfire risk assessment framework for land and resource management. Gen. Tech. 

Rep. RMRS‑GTR‑315 US. Dep. Agric. For. Serv. Rocky Mt. Res. Stn. P 83, 59–67 (2013).
 64. Rodrıguez y Silva, F., O’Connor, C. D., Thompson, M. P., Ramon Molina Martinez, J. & Calkin, D. E. Modelling suppression dif-

ficulty: current and future applications. Int. J. Wildl. Fire (2020).
 65. O’Connor, C. D., Calkin, D. E. & Thompson, M. P. An empirical machine learning method for predicting potential fire control 

locations for pre-fire planning and operational fire management. Int. J. Wildl. Fire 2, 587–597 (2017).
 66. Thompson, M. P. et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, 

California, USA. Forests 7, 542 (2016).
 67. Thompson, M. P. et al. Prototyping a geospatial atlas for wildfire planning and management. Forests 2, 1–17 (2020).
 68. Paveglio, T. B. et al. Urban interface: adaptive capacity for wildfire. For. Sci. 61, 298–310 (2015).
 69. Haas, J. R., Calkin, D. E. & Thompson, M. P. A national approach for integrating wildfire simulation modeling into Wildland Urban 

Interface risk assessments within the USA. Landsc. Urban Plan. 119, 44–53 (2013).
 70. Mockrin, M. H., Stewart, S. I., Radeloff, V. C., Hammer, R. B. & Alexandre, P. M. Adapting to wildfire: rebuilding after home loss. 

Soc. Nat. Resour. 28, 839–856 (2015).
 71. Haire, S. L. & McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) 

in New Mexico and Arizona, USA. Landsc. Ecol. 25, 1055–1069 (2010).
 72. Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70, 659–673 (2020).
 73. Syphard, A. D., Brennan, T. J. & Keeley, J. E. Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern 

California. Sci. Rep. 2, 90–101. https:// doi. org/ 10. 1111/ ddi. 12827 (2019).
 74. Steelman, T. U. S. wildfire governance as a socio-ecological problem. Ecol. Soc. 21, 386–408 (2016).

https://doi.org/10.1371/journal.pone.0172867
https://doi.org/10.1371/journal.pone.0172867
https://doi.org/10.2737/RMRS-GTR-153
https://doi.org/10.1111/ddi.12827


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2624  | https://doi.org/10.1038/s41598-022-06002-3

www.nature.com/scientificreports/

 75. Short, K. C. Spatial wildfire occurrence data for the United States, 1992-2018 [FPA_FOD_20210617], 5th edn. https:// doi. org/ 10. 
2737/ RDS- 2013- 0009.5 (Forest Service Research Data Archive, Fort Collins, CO, 2021).

 76. Short, K. C. A spatial database of wildfires in the USA, 1992–2011. Earth Syst. Sci. Data 6, 1–27 (2014).
 77. PRISM. (PRISM Climate Group, Oregon State University. http:// www. prism. orego nstate. edu, 2020).
 78. USGS. Protected areas database of the United States (PAD-US) 2.1: U.S. Geological Survey data release. (2020). https:// doi. org/ 

10. 5066/ P92QM 3NT. Accessed 15 Nov 2020.
 79. Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution 

models. Ecography (Cop.) 35, 879–888 (2012).
 80. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2, 802–813. https:// doi. org/ 10. 

1111/j. 1365- 2656. 2008. 01390.x (2008).
 81. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecog‑

raphy (Cop.) 36, 27–46 (2013).
 82. Greenwell, B., Boehmke, B., Cunningham, J. & GBM-developers. gmb: Generalized boosted regression models. R Packag. version 

2.1.8. https//CRAN.R-project.org/package=gbm (2020).
 83. Hijmans, R. J., Philips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R Packag. version 1.3–3. https//CRAN.R-

project.org/package=dismo (2020).

Acknowledgements
This research was supported by the US Department of Agriculture, Forest Service. We are grateful to Matt Ham-
ilton and Don MacGregor for their reviews.

Disclaimer
The findings and conclusions in this paper are those of the author(s) and should not be construed to represent 
any official USDA or US Government determination or policy.

Author contributions
W.M.D. performed the analysis and led the writing of the paper. M.P.T. and C.J.D. conceived of the study, 
contributed to the analysis, and co-wrote the paper. K.C.S. provided fire occurrence data and M.D.C. provided 
structure loss data, both co-wrote the paper.

Funding
Funding for this research came in part from the Research Joint Venture Agreement No. 15-JV-11221636-059, 
with the Wildfire Risk Management Science Team at the Rocky Mountain Research Station.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 06002-3.

Correspondence and requests for materials should be addressed to W.M.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2022

https://doi.org/10.2737/RDS-2013-0009.5
https://doi.org/10.2737/RDS-2013-0009.5
http://www.prism.oregonstate.edu
https://doi.org/10.5066/P92QM3NT
https://doi.org/10.5066/P92QM3NT
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1038/s41598-022-06002-3
https://doi.org/10.1038/s41598-022-06002-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US
	Results
	Discussion
	Conclusion
	Methods
	Study area. 
	Data sources. 
	Cross-boundary wildfires. 
	Incident Status Summaries. 
	Statistical modeling data. 

	Analysis. 
	Quantifying fire transmission. 
	Mapping fire transmission. 
	Attributing ownership to destructive fires. 
	Statistical modeling. 


	References
	Acknowledgements


