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A robust method to help identify the population of neurons used for decoding motor tasks is developed. We use sensitivity analysis
to develop a new metric for quantifying the relative contribution of a neuron towards the decoded output, called “fractional
sensitivity.” Previous model-based approaches for neuron ranking have been shown to largely depend on the collection of training
data. We suggest the use of an ensemble of models that are trained on random subsets of trials to rank neurons. For this work, we
tested a decoding algorithm on neuronal data recorded from two male rhesus monkeys while they performed a reach to grasp a bar
at three orientations (45°, 90°, or 135°). An ensemble approach led to a statistically significant increase of 5% in decoding accuracy
and 25% increase in identification accuracy of simulated noisy neurons, when compared to a single model. Furthermore, ranking
neurons based on the ensemble fractional sensitivities resulted in decoding accuracies 10%—20% greater than when randomly
selecting neurons or ranking based on firing rates alone. By systematically reducing the size of the input space, we determine the
optimal number of neurons needed for decoding the motor output. This selection approach has practical benefits for other BMI

applications where limited number of electrodes and training datasets are available, but high decoding accuracies are desirable.

1. Introduction

A Brain-Machine Interface (BMI) uses activities recorded
from various motor areas, such as the primary motor,
premotor and posterior parietal cortex, to translate neural
activities recorded from the brain into commands to control
an external device. Traditionally, BMI researchers have used
extracellular action potentials from localized cortical sites,
primarily in the motor cortex, to provide closed-loop control
of a computer cursor [1] or a robotic arm in 3D space
[2—4]. More recently, researchers have now begun to use
implanted microelectrode arrays, which can simultaneous-
ly sample neuronal ensembles from various cortical sites
[5-7].

These electrode arrays are surgically placed in cortical
regions which are correlated to the motor function. The
relevant cortical regions are identified using anatomical
guidance, preliminary probing of neural activity and imaging

techniques such as FMRI. However, in multichannel record-
ings only 30%—40% of single units are typically relevant to
the motor task [8]; the remaining neurons are either noisy or
not task-related. This adds uncorrelated dimensions to the
input space, thereby degrading the predictive performance
of the decoding filter due to overfitting [9, 10]. Hence, there
is a need to develop a metric for evaluating the contribution
of neurons selected for BMI tasks. Such a metric would then
be used to rank neurons based on relative importance to the
task. Selecting a subpopulation of rank-ordered neurons will
help prune the input space to a smaller population free of
irrelevant neurons. Furthermore, reducing the input space in
a multichannel system is also strongly motivated by hardware
limitations and increased computational burden in relating
the output kinematic variable to the input space.

A neuron selection method can either be looking at
a univariate or a multivariate input space. In a univariate
approach, each neuron is individually assessed by observing
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the change in its firing rate with respect to the “no stimulus”
period. This method has its origin in classical single electrode
neurophysiology experiments wherein a neuron that is found
to be unresponsive to the motor task is disregarded. From
the perspective of building BMIs, a neuron which exhibits
variability of response for different tasks should be retained.
This is traditionally done by visual inspection, or by using
statistical methods such as ANOVA [11] or information
theoretic approaches such as Shannon”s entropy that are not
directly related to decoding.

Comparatively, multivariate approaches to neuron selec-
tion assess the contribution of a neuron in the presence of
the entire neural population. Reducing the entire input space
to a subset of task-related features is a classical machine
learning problem, and commonly referred to as dimen-
sionality reduction. “Projective” methods such as Linear
Discriminant Analysis (LDA) find a linear transformation
which maps the original input space to a smaller dimension,
while maximizing the separation of different class clusters
[12]. These “projective” techniques, however, do not provide
any information about individual neurons. Furthermore, the
transformed space is a linear combination of the inputs and
hence does not reduce the actual number of input signals
recorded. ”Feature selection” methods, on the other hand,
find a subset of original features that are most relevant to
the task. Therefore, these methods preserve the meaning
of the features while simultaneously reducing the input
space.

Feature selection for BMIs has become an active area of
research, with various approaches that attempt to extract the
relevant inputs at the same time as training the decoding
filter. Several decoding filter models have been used to
translate neural activity into the corresponding kinematic
variable. These include linear filters such as Wiener filters [1,
4, 6], recursive Bayesian models such as Kalman filters [13—
15], and nonlinear filters such as Artifical Neural Networks
[4, 16-18]. Training these decoding filters implicitly assigns
weights to neurons depending on their relative contribution
and importance to mapping the output variable. As has been
shown previously [10, 19], one can then interpret the weights
and biases of trained input-output models in order to ascer-
tain the importance of neuron in decoding commands for
a motor task. Another approach ranks neurons on the basis
of an overall decrease in the decoding accuracy as neurons
are systematically dropped [7]. A model-based sensitivity
analysis however suffers from well-known problem of over
fitting (more commonly referred to as model generalization).
It is indeed interesting to note the effects of this problem
on the ranking of neurons and eventually the performance
of a BMIL In [10], Sanchez et al. suggested a new metric
to quantify importance of neuron towards decoding using
a model-based sensitivity analysis approach. The reference
notes that different ranking methodologies gave different
results and thus alternative ranking methodologies must be
looked in that combined regularization theory to find a
smaller subset of neurons that further improves decoding
accuracy. In this work we have adapted their approach and
suggested improvements to counter the limitations of using
a model-based approach by using an ensemble of models.
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We have demonstrated the benefits of using an ensemble
of models over a single model by showing higher decoding
accuracy (Figure 6) and better success rate in identifying
noisy neurons (Tables 2(a) and 2(b)).

For this study, the BMI experimental paradigm of decod-
ing wrist angle using neural recordings from the primary
motor and premotor cortex of a nonhuman primate is
examined. While the input-output models used in this study
are specific to the specific motor task problem, the methods
proposed in this work can be generalized and applied to
select neurons for more general decoding task. Figure 1
shows a block diagram that summarizes the steps involved
in rank-ordering neurons based on ensemble fractional
sensitivities.

2. Methods

2.1. Experimental Setup. This work uses data collected from
experiments carried out at Arizona State University (ASU,
Tempe, AZ), which have been the subject of previous
studies [20]. The experimental protocols were reviewed and
approved by the ASU Institutional Animal Care and User
Committee (IACUC). Details of the experimental protocol
can be found in [21] and are summarized here briefly.

Two male rhesus monkeys (Monkey A & B) were trained
to reach towards and rotate its wrist to grasp a rectangular
target positioned at one of three orientations (45°, 90°,
or 135°) in the frontal plane (Figure 2). Visual cues were
used to initiate and end the movement. Neural recordings
were obtained using a Thomas recording system with
5-channel microelectrode manipulator system. With this
recording setup, the penetration depth of each electrode
was independently adjusted to capture maximal task-related
activity from the primary motor cortex (M1) hand area,
dorsal premotor cortex (PMd), and ventral premotor cortex
(PMv). With 5 recording sites, approximately 10-15 spike
sorted units could be isolated in one session and a total of
297 single units over 63 sessions. Data from each single unit
was recorded for 15 trials per movement type and a total of
153 =45 trials for every single unit. In order to demonstrate
the advantages of using an ensemble of models for sensitivity
analysis, two different analyses were conducted and reported
in this manuscript: (1) rank-ordered neurons were used
in decoding filter to measure the decoding accuracy; and
(2) noisy, task-unrelated single units were identified from a
population. Monkey B performed the task poorly and hence
its data was only used in the second analysis.

2.2. Modeling the Input-Output Relationship. In order to
assess the information content of a neuron, that is, how
the motor task is encoded, a nonlinear filter was chosen
to model the input neuronal activity to the corresponding
output kinematic variable [22]. A popular nonlinear filter
is the Artificial Neural Networks (ANNs), which are widely
accepted as universal approximators [23, 24] and hence used
here. ANN consists of an interconnected group of artificial
neurons which process information using a connectionist
approach to computation.
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FIGURE 1: An ensemble of M unique nonlinear models was trained using Monte Carlo simulations; each of these models related the input
neuronal activity to the output behavior with high accuracy. In order to assess the contribution of each model input, x,, to encoding the final
output, Y, a sensitivity analysis (SA) was performed. For each of the M models, the localized sensitivity coefficients, LSC,,, were calculated by
taking the partial derivative of the output with respect to the input activity. The sensitivity coefficients, SC,, were then computed by taking
the average of the localized sensitivity coefficients across all instances of the testing data. The sensitivity coefficients were normalized and
expressed as a fraction of the cumulative sensitivity values across all inputs in order to yield the fractional sensitivity coefficients, FS,. After
this sensitivity analysis, neurons were rank-ordered by the mean fractional sensitivities from the ensemble, FS,. This rank-ordered list was
passed to filter to decode the motor task.

Wrist angle 90°

|
Wrist angle 135°
l
S

-
-
il

Wrist angle 45°

/

Target rod

Monkey \ -

FIGURE 2: Two rhesus monkeys were trained to reach towards and rotate its wrist to grasp a rectangular target positioned at one of three
orientations (45°, 90°, 135°).



Structure of the Neural Network Models. We designed a
multilayer, feed forward ANN with a single hidden layer.
The hidden layer was designed with a log sigmoidal transfer
function, while the output layer was designed with a linear
transfer function. The wrist angle 45, 90, and 135 were
normalized to —1, 0, and 1. A linear transfer function at
the output layer was chosen because, (1) it was able to fit
the input-output data accurately, and (2) it is differentiable,
which is a prerequisite for sensitivity analysis. There is no
memory in the model. The model topology is described by
the following equation:
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where N is the number of input neurons, H is the number of
hidden layer neurons, k is the output neuron (there is only
one output neuron corresponding to the wrist angle, so k =
1), x; are the neuronal firing rates, and w}j, bjl-, wjz»k, and b,%,
are the connection weights between input and hidden layer,
biases of the hidden, connection weights between the hidden
and the output layers, and the biases of the output layer,
respectively. The networks were trained using the scaled
conjugate gradient (SCG) algorithm with early validation
stop to prevent overfitting. The neural networks were trained
offline using MATLAB 7.4 (Mathworks Inc.).

Training, validation, and testing data were selected from
mutually exclusive trials—with 8 trials used for training, 3
trials used for validation, and 4 trials used for testing. Only
those models with high predictive accuracies (>80%) were
carried forward for analysis.

2.3. Fractional Sensitivity Analysis. Once the ANN model has
been trained to map the input (neuronal firing rates) to the
output (wrist angle), the contribution of each model input
towards the final output is assessed. This is a direct metric
of the contribution of the individual inputs as it pertains to
decoding of the output variable.

Intuitively, the effect of each neuron on the prediction
outcome can be studied by determining the change in
outcome due to an infinitesimal change in each input
neuron’s activity. Mathematically, this is equivalent to taking
the partial derivative of the output with respect to the input
activity and is referred to as sensitivity analysis [25]. The
sensitivity coefficients are a function of the inputs in addition
to the connection weights and biases of the trained model.
For a given instance of the testing data, the localized sensitivity
coefficients (LSC,,) were calculated as
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In order to expand the derivative terms we let
N
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Therefore, the localized sensitivity coefficients become,
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Note that although the weights and biases were fixed once the
model was trained, the value of the sensitivity coefficients (as
described by (5)) was dependent on the actual data point and
thus varied for different trials on which the model was tested.
Different input vectors are represented by the time index ¢ in
(6).

The sensitivity coefficients (SC,) for each neuron were
calculated by taking the average value across all instances of
the training data.

1

SC":T
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where T is the size of the training set.

The sensitivity of each input was expressed as a fraction
of the cumulative sensitivity values across all the inputs. This
fractional sensitivity (FS,) was calculated as,

SC,

FS, = —o 2,
SN SC

(6)

where N is the total number of neurons and # is the neuron
whose fractional sensitivity is being computed.

2.4. Ensemble Selection of Neurons. To select a neuronal
population for decoding the motor task, we rank-order
neurons by their fractional sensitivity and then select as many
neurons from the rank-ordered list as needed to achieve the
desired accuracy levels.

A major drawback of using such model-based
approaches lies in the fact that the sensitivity values are
dependent on the training data. Even with models that
achieve high levels of predictive value, the sensitivity analysis
will result in unique solutions that may not correspond to
a solution that can be generalized to new datasets. This is
because any single solution may only find a local minima
and not a globally optimal solution for the entire dataset.
Therefore, to avoid getting stuck in local minima, the
fractional sensitivities were computed over an ensemble of
M independently trained models. Each model was trained
with a different training data set which is a randomly drawn
subset of trials from a pool of total training dataset.
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Figure 3: The weighted average of absolute differences (inverse
similarity measure) between a master rank-ordered list (computed
for M = 500) and rank-ordered lists for varying ensemble sizes was
used to choose an optimal ensemble size of M = 10.

We propose, and later justify, that the mean of the
distribution of fractional sensitivities for a neuron computed
across different models is a good global estimate of its infor-
mation content. Additionally, we place confidence intervals
on this estimate. Neurons are then selected based on ranks of
these mean fractional sensitivities (FSy).

How to determine the number of models used in the ensemble?
A master rank-ordered list was generated using an ensemble
of 500 unique models. Assuming that the spike trains
from one single unit is independent from each other, we
performed Monte-Carlo simulation across neurons to gen-
erate data to train multiple. Rank-ordered lists for varying
ensemble sizes were then computed, and a weighted average
of absolute differences with the master rank-ordered list was
used as a similarity measure. Neurons with higher ranks were
given more weight. From Figure 3, we choose an ensemble
size (M) of 10 for this particular task, as a trade-off between
good convergence of the similarity of the rank-ordered list to
the master list and the computational burden of too large an
ensemble size.

2.5. Simulation of Noisy Environment. In order to provide
evidence that the success rate when noisy neurons are
identified using sensitivity values from an ensemble models
is higher than single model, a priori knowledge on which
neurons are noisy is necessary. We simulated spontaneously
uncorrelated single units and added these noisy neurons to
the input space. Spontaneously firing units were generated
using a Poisson random process, with the rate constant (1)
estimated from the average neural activity during the “no
stimulus” period.

For this simulation study, we systematically varied the
percentage vield of task-related units recorded from the array
by adding a fixed number of noisy uncorrelated neurons.
This analysis was carried out on datasets from both the
Monkeys (A & B) and the results were reported.

TaBLE 1: Confusion Matrix of Decoding Accuracies.

Wrist angle 45 degrees 90 degrees 135 degrees
45 degrees 92.9% 7.1.% 0.0%
90 degrees 1.6% 92.1% 6.3%
135 degrees 0.0% 19.3% 80.7%

Columns and rows represent the actual and predicted class, respectively.

2.6. Decoding Filters. Using the rank-ordered lists of neurons
from the ensemble of models, decoding of the motor
task was performed using a nonlinear ANN-based filter.
For all practical purposes, the number of neurons in the
feature space is limited by the number of recording sites
on an implanted microelectrode array. Therefore, in order
to more closely approximate this scenario, which mimics
a multielectrode array that simultaneously captures and
records from multiple neurons, the decoding filters were
trained using a randomly sampled subset of neurons (N =
64) from the entire neuronal population of 297 neurons. This
analysis was only performed on the data from Monkey A.
Monkey B performed the task poorly and hence its data was
not used in this specific analysis.

2.7. Statistics. Nonparametric tests were performed to test
for differences in the median decoding accuracy using a
single model for neuron selection versus an ensemble of
models. The null hypothesis tested was that the median
decoding accuracy obtained using an ensemble of models
was equal to the median decoding accuracy from each of the
individual models.

3. Results

3.1. Modeling Accuracy. Before performing sensitivity analy-
sis to assess the contribution of a neuron, it is first necessary
to show that models used to relate the input neuronal activity
to the output behavior are accurate.

Table 1 shows the confusion matrix for the decoding
accuracies for 10 models (mean accuracy = 88.52%, SE =
4.5%). Only those models with high predictive accuracies
(>80%) were retained as part of the ensemble.

3.2. Distribution of Fractional Sensitivities. Figure 4 shows
the distribution of fractional sensitivities for four exemplary
neurons as returned by each of the individually trained mod-
els. Fractional sensitivity values from 500 models were used
to generate smooth distribution function (Figure 4). The
fractional sensitivities appear to cluster around a common
mean value, which leads us to use it as the representative
fractional sensitivity value for the entire ensemble.

3.3. Ranking of Neurons Using Fractional Sensitivities.
Figure 5 shows the contribution of each of the 64 neurons
in a subpopulation to the total sensitivity presented in a
ranked order. Mean fractional sensitivities are used to rank
the neurons. Top 5 neurons contribute 25%, the top 13
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Ficure 5: Distribution functions of the contributions of each of
the 64 neurons to the total sensitivity, as ranked by their mean
fractional sensitivities. The graph is positively skewed and the values
drop exponentially. The distribution functions for each model are
similar, with the top 5, 13, and 30 neurons containing 25%, 50%,
and 75% of the total information content, respectively.

neurons contribute 50%, and the top 30 neurons contribute
75% of the total sensitivity.

3.4. Merit of Ensemble Models over a Single Model. In order
to contrast between the neuron ordering from ensemble
versus single model, decoding accuracies were computed in
following two scenarios, (a) when the neurons were rank-
ordered using sensitivity values computed using an ensemble
of 10 models (Figure 6: blue curve), and (b) when the
neurons were rank-ordered using sensitivity values from a
single model. This method was repeated for all the 10 models
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Ficure 6: The upper quartile and lower quartile prediction
accuracies across 10 individual rank models are plotted as a function
of the number of neurons. Using an ensemble of 10 trained models
resulted in statistically significant higher (*, P < .05) decoding
accuracies than if using a single model alone. Asterisks above the
plots indicate that the data points for which the decoding accuracies
are statistically different. This analysis was done on data obtained
from Monkey A.

separately which resulted in 10 individual decoding accuracy
curves. The 25% and 75% quartiles are shown in Figure 6
(with grey and black curves).

Friedman’s 2-way ANOVA was performed to test the
hypothesis that the median decoding accuracy obtained
using an ensemble of models was equal to the median
decoding accuracy from each of the individual models. A
small, albeit statistically significant (P < .05) increase of
around 5% is obtained in the decoding accuracies when an
ensemble approach was used.

Additionally, Kruskal-Wallis tests were conducted (P <
.05) to identify the number of input neurons for which
decoding accuracies are statistically different for ensemble
models versus single models. Asterisk above the plots in
Figure 6 indicate that the data points for which the decoding
accuracies are statistically different.

3.5. Merit of Sensitivity-Based Ranking over Other Ranking
Methods. Figure 7 compares the different approaches used to
rank order the neurons, (1) random selection of neurons, (2)
rank-ordered using change in firing rates, (3) rank-ordered
using a neuron dropping approach suggested in Figure 7, and
(4) rank-ordered using ensemble fractional sensitivities.
Ranking neurons based on the ensemble fractional sen-
sitivities resulted in decoding accuracies 10%—-20% greater
than when randomly selecting neurons or ranking-based on
firing rates alone. The decoding accuracies were also com-
parable to those obtained when neurons were ranked using
a neuron dropping analysis [7]. From Figure 7, the average
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FIGUre 7: Ranking neurons based on the ensemble fractional
sensitivities resulted in decoding accuracies 10%—-20% greater than
when randomly selecting neurons or ranking-based on firing rates
alone. The vertical blue line marks the optimal number of neurons,
beyond which prediction performance decreases for the sensitivity
ranking-based approach.

decoding accuracy was as high as 90% if the neurons were
ranked using ensemble fractional sensitivities, with a peak
accuracy for N = 21. However, average decoding accuracy
only went up to 80% if randomly selecting the same number
of neurons or ranking-based on firing rates. All approaches
converge for a higher number of neurons.

3.6. Simulation Study: Robustness of Ensemble Approach in
a Noisy Environment. In order to assess the robustness of
the ensemble approach compared to a single model, we
measured how accurately each method was able to correctly
classify the original task-related units in the presence of
varying amounts of noisy neurons. For example, a 10% yield
of task-related units implies that in a neural population of 64
units, 7 are task-related and the rest are simulated noise.

Tables 2(a) and 2(b) compare the accuracy for both
neuron selection approaches for different array yields, in
Monkey A and B, respectively. The ensemble approach
consistently recovered the task-related neurons with higher
accuracy (around 25% on an average) than the single model
approach. The accuracy was defined as percentage of original
input neurons which were correctly identified as task-related
by the neuron selection algorithm. Mean and standard error
over 10 repetitions (each repetition starts with different
original subset of neurons) are reported in Tables 2(a) and
2(b).

4. Discussion and Conclusion

In this work, we established a novel approach to rank-order
a population of neurons by their relative contribution to
the decoding of a motor task, dubbed “fractional sensitivity”.
Although sensitivity analysis has been previously used to
ascertain the relative importance of each input variable (in
this case neurons), one common problem associated with
previous model-based sensitivity approaches is the inability

TABLE 2

(a) Comparison of an ensemble of models versus single model in a
noisy environment (Monkey A).

% Yield of Single Ensemble of
task-related units (%) model (%) models (%)
10 51.7 + 4.6 83.3+0.0
20 58.3+6.9 91.7 £ 0.0
30 67.9 +£2.4 93.7 £ 0.7
40 66.0 £ 3.5 94.8 + 0.8
50 69.7 + 1.6 944+ 1.0
60 753+ 1.3 943+ 1.3

(b) Comparison of an ensemble of models versus single model in
a noisy environment (Monkey B).

% Yield of Single Ensemble of
task-related units (%) model (%) models (%)
10 53.3+6.5 83.3 +£0.0
20 58.3+ 3.5 90.8 +0.8
30 65.8 +4.3 92.6 +=0.9
40 68.0 £ 4.9 93.2 +1.2
50 66.3 + 3.7 96.6 + 0.3
60 73.2+2.0 96.6 + 0.4

to generalize its rank list over a new dataset. This is especially
true when there is redundancy in the input space in terms of
encoding of the final output variable, as is the case with most
complex motor tasks.

4.1. Benefits of Using an Ensemble of Trained Models. Our
results show that using an ensemble of trained models helps
to offset this problem of generalization. The benefits of using
an ensemble model are quantified by an increase in overall
decoding accuracy. As seen in Figure 6, there is an increase
of up to 5% in the decoding accuracy when an ensemble
of models is used as compared to a single model. Although
the benefits of an ensemble approach are debatable on the
grounds of such a modest increase in decoding accuracy,
there are systems wherein identification of noisy inputs in
itself may be more important than the decoding accuracy.
In such scenarios, the percentage of noisy neurons that are
correctly identified can be used as a quantifiable measure of
the benefits of using an ensemble approach. The results of
our simulation study (Tables 2(a) and 2(b)) confirm that an
ensemble approach to identification of noisy neurons is 25%
more accurate than when using a single model.

We also hypothesize that the particular motor task
discussed in this paper (i.e., wrist rotation) is relatively less
complex, and hence the benefits of using an ensemble of
trained models are not as evident. Further investigations are
needed involving more complex, nonlinearly encoded motor
tasks, such as dexterous finger manipulations, to support or
reject this hypothesis.

4.2. Model Dependent versus Model Independent Approaches.
Model independent approaches do not make any assumption



about the classification model used during the selection
process. Methods such as Mutual Information estimate
the “uncertainty reduction” in one variable when another
variable is provided. However, this requires estimation of
joint and marginal distributions, which is computationally
and time intensive. In BMI applications where the neural
properties change continuously, models must be retrained
repeatedly and this increases the computational overhead.
Model dependent approaches, on the other hand, while
computationally robust, lack generalization since the input
features that get selected may not represent the entire
training data, especially if there is data redundancy.

Our approach of using an ensemble sensitivity analysis
tackles both issues by offering a computationally robust
model dependent approach that also results in generalized
feature selection. Although in this paper an Artificial Neural
Network model accurately describes the input-output map
between neurons and wrist angle kinematics, this approach
is not limited to a specific decoding model and can generalize
to other filter choices as well. This will be largely dependent
on the scope of the problem and complexity of the input
feature space.

4.3. Neuron Dropping versus Sensitivity Analysis. In terms of
assessing the merits of a sensitivity analysis-based approach
to ranking neurons, Figure 6 shows that the improvement
in prediction accuracy when neurons are selected using
Sensitivity Analysis is much greater than when randomly
selecting neurons, but comparable to that when using a
neuron dropping analysis [7].

It is important to note, however, that although there
is a negligible difference in decoding accuracy, the neuron
dropping approach employs a computationally burdensome,
greedy algorithm. Relevant neurons are identified by system-
atically dropping them from the input space and measuring
the corresponding change in decoding accuracy, with a rise
in accuracy after a neuron is dropped as the stop criterion.
In comparison, our proposed ensemble sensitivity analysis
approach returns a rank-ordered list of neurons by looking at
the entire input space at once and thus uses a fewer number
of iterations. This computational saving is important in
resource-limited BMI applications.

4.4. Neuron Selection for Closed Loop BMI. 1t should be noted
that the results of this paper were restricted to offline decod-
ing of the motor the task based on a priori knowledge of the
time of movement. In a chronic implanted BMI, properties
of the input space change dynamically because of movements
of electrode arrays and noise induced by degradation at the
electrode-tissue interface. This necessitates retraining of the
algorithms for each session, and since the neuron selection
approach proposed in this paper is an integral part of the
training process, it can conceivably be used to select the best
neurons every time after the training is complete.
Furthermore, recent closed loop BMIs developed by
Carmena et al. [2] , Schwartz et al. [6, 26], and Serruya
etal. [27] have found that, owing to the “plasticity of brain”,
neurons can modulate their firing properties over time
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and eventually result in higher decoding accuracies overall.
Although this phenomenon is not completely understood,
the method of neuron selection proposed in this paper
extracts the contribution of each input after an input-output
map has already been obtained. Therefore, any change in the
firing rate of the neurons, and its effects on the prediction of
the motor task, will be automatically addressed. As a result,
the results of this work generalize well to future closed-loop
BMI experiments.
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