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Abstract

Untargeted metabolomics (UM) allows for the simultaneous measurement

of hundreds of metabolites in a single analytical run. The sheer amount of

data generated in UM hampers its use in patient diagnostics because man-

ual interpretation of all features is not feasible. Here, we describe the appli-

cation of a pathway-based metabolite set enrichment analysis method to

prioritise relevant biological pathways in UM data. We validate our method

on a set of 55 patients with a diagnosed inherited metabolic disorder (IMD)

and show that it complements feature-based prioritisation of biomarkers by

placing the features in a biological context. In addition, we find that by tak-

ing enriched pathways shared across different IMDs, we can identify com-

mon drugs and compounds that could otherwise obscure genuine disease

biomarkers in an enrichment method. Finally, we demonstrate the poten-

tial of this method to identify novel candidate biomarkers for known IMDs.

Our results show the added value of pathway-based interpretation of UM

data in IMD diagnostics context.
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1 | INTRODUCTION

Inherited metabolic disorders (IMDs) are typically diag-
nosed via a combination of genetic and biochemical
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tests. These approaches are generally very specific, test-
ing the activity of a single enzyme or a preselected set of
metabolites. The high heterogeneity, immediate postna-
tal presentation, and nonspecific symptomology of IMDs
make the selection of an adequate panel of targeted met-
abolic tests challenging. Important diagnostic bio-
markers can be absent from the panel if they were
identified recently, and there is no opportunity for the
detection of novel biomarkers.

Recent advances in metabolomic methods have enabled
the use of untargeted metabolomics (UM) as a viable alter-
native to targeted approaches.1 We have coined UM in the
context of diagnostic screening for IMDs as next-generation
metabolic screening (NGMS).2 NGMS allows the simulta-
neous measurement of hundreds of metabolites, circum-
venting the need for targeted metabolic tests based on
patient phenotype as a first-tier screening for IMDs. Several
studies have demonstrated the effectiveness of NGMS for
screening IMDs in individual patients with a well-described
set of diagnostic biomarkers.2–7 However, many patients
still lack a definitive diagnosis when restricting the analysis
to known biomarkers. Looking for ways to systematically
analyse a larger set of metabolites present within the NGMS
data is the next logical step.

The biggest challenge in the identification of novel
biomarkers in NGMS data is the prioritisation of relevant
metabolites from the hundreds or thousands that are
identified. Prioritisation based on peak intensity, fold
change, and case–control statistics is useful, but disease
relevant metabolites can sometimes be concealed by
metabolite aberrations caused by confounding factors
such as diet or medication.8 To improve prioritisation,
biological network relationships can be leveraged. Defec-
tive enzymes in IMD patients are often members of bio-
chemical pathways, with each enzyme in the pathway
representing a catalytic step dependent on substrates
from the preceding steps. The defective enzyme will per-
turb both downstream and upstream reactions in path-
ways. We hypothesise that these perturbations may be
detectable in NGMS data and can be utilised to improve
the diagnostics process in IMD patients and facilitate the
identification of novel biomarkers.

To this end, we implemented a metabolite set enrich-
ment analysis (MSEA) method,1,9,10 that enables the high-
throughput analysis of UM data. MSEA identifies small sets
of pathway-associated aberrant metabolites from the large
number of aberrant features present in a sample using a sta-
tistical enrichment-based approach.1,9,10 We show that
incorporation of pathway context contributes to prioriti-
sation of biomarkers in IMD patients. Furthermore, we
show the potential of MSEA for the identification of puta-
tively novel biomarkers and suggest several candidate bio-
markers for known IMDs. Finally, we demonstrate that

collective analysis of pathway enrichment across our data
cohort can help to distinguish IMD-specific from IMD-
unspecific pathway enrichment.

2 | METHODS

2.1 | UM Data

The data used in this study were described previously by
Coene et al.2 Briefly, NGMS data were generated from
plasma samples using reverse phase ultra-high-performance
liquid chromatography coupled with electrospray ionisation
quadrupole time-of-flight mass spectrometry (QTOF-MS).
Not all data from the study2 were included for the current
study; data were only included when controls were present
in the batch and all measurements present in the batch pas-
sed quality control. More details on data exclusion can be
found in Table S1A. Data from 62 samples, representing
55 patients, covering 29 IMDs, were included for the current
study (Table 1). The patient data were retrospectively gath-
ered from 15 batches of NGMS data measured between
2012 and 2017. The NGMS data generated before April 2016
were measured on the Agilent 6540 QTOF-MS (11 batches)
and later data were measured on the 6545 QTOF-MS
(4 batches). Although the Agilent 6545 QTOF-MS generates
a larger number of significant features, our previous study
shows that the diagnostic outcome was unaffected by the
different QTOF-MS instruments.2 Each analytical batch
contained approximately 10 control samples. All included
samples were measured in duplicate. For some patient data,
additional technical and biological replicates were available.
Multiple samples were measured for four patients and seven
samples were measured in multiple batches. An overview of
included patient data can be found in Table S1B.

2.2 | Preprocessing

MSConvert was used to convert data to mzML format
(ProteoWizard version 3.0.19161).11 Feature detection
and alignment were performed by XCMS (R version 3.6.1
and xcms version 3.4.4).12 The parameter settings used
for MSConvert and XCMS can be found in Table S2A,B.

2.3 | Aberrant feature detection

An in-house diagnostic pipeline as described by Coene et al.2

and Hoegen et al.13 was used for detecting aberrant features
based on feature intensity. However, the Bonferroni–Holm
correction method in the original pipeline was replaced with
the less stringent Benjamini–Hochberg correction, so more
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features could be taken along for our enrichment analysis.
Features were considered aberrant if they differed signifi-
cantly (α < 0.05) between the patient and controls.

2.4 | Metabolite and pathway
annotations

Neutral masses were estimated by correcting the fea-
ture m/z for mH+, mNa+, mH� and mCl� adducts in

their respective ion modes. Features were then
assigned putative metabolite annotations by searching
the Human Metabolome Database (HMDB; containing
114 003 metabolites as of June 19, 2018)14 and Kyoto
Encyclopedia of Genes and Genomes (KEGG; con-
taining 17 980 metabolites as of May 7, 2017)15 data-
bases with the estimated neutral mass, tolerating at
most 5 ppm difference. Often assigning multiple puta-
tive annotations per feature (mean = 2.31; SD = 2.39).

TABLE 1 Samples and biomarker counts by inherited metabolic disorder (IMD). Samples in our cohort (n = 62) are summarised by the

diagnosed IMD (left), IMD OMIM ID. We also list the number of theoretical biomarkers per IMD used in our analysis, separated into all 102

known biomarkers (left) and 54 biomarkers associated with a Kyoto Encyclopedia of Genes and Genomes (KEGG) or Small Molecule

Pathway Database (SMPDB) pathway (right). Grey lines indicate that biomarker pathways were enriched for all cohort samples of the IMD

indicated with the exception of phenylketonuria, for which biomarker pathways were enriched in only 8 out of 9 samples

Biomarkers

SamplesIMD OMIM Total Pathway

3-Ureidopropionase deficiency 613161 4 4 1

3β-Hydroxy-Δ5-C27-steroid dehydrogenase deficiency 607765 5 1 1

ACSF3 deficiency (CMAMMA) 614265 2 2 3

Adenylosuccinate lyase deficiency 103050 2 1 1

Alkaptonuria 203500 1 1 1

Aminoacylase I deficiency 609924 10 1 2

Cystathionine ß-synthase deficiency 236200 2 2 1

Dimethylglycine dehydrogenase deficiency 605850 1 1 1

Glutamate formimino transferase deficiency 229100 2 2 1

Glutaric aciduria Type I 231670 2 1 1

Guanidinoacetate methyltransferase deficiency 601240 3 3 1

Histidinemia 235800 2 2 1

Hyperlysinemia, Type I 238700 3 2 2

Hyperprolinemia, Type II 239510 4 3 2

Maple syrup urine disease 248600 7 5 2

Methionine Adenosyltransferase I/III deficiency 250850 3 1 2*

Molybdenum cofactor deficiency 252150 5 5 2

NANS deficiency 610442 1 1 1

Ornithine aminotransferase deficiency 258870 3 2 1

Phenylketonuria 261600 5 3 9*

Pyridoxine-dependent epilepsy 266100 3 3 1

UMP synthase deficiency 258900 2 2 1

Xanthinuria, Type II 603592 6 6 2

(Very-)Long-chain acyl-CoA dehydrogenase deficiency 201475 3 0 1

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency 246450 6 0 5*

3-Ketothiolase deficiency 203750 4 0 1

3-Methylcrotonyl-CoA carboxylase deficiency 210200 3 0 5

Cerebrotendinous xanthomatosis 213700 1 0 5

Medium-chain acyl-CoA dehydrogenase deficiency 201450 7 0 5*

Total 102 54 62

*Some of these samples belong to the same patient, see Table S2 for more details.

684 HOEGEN ET AL.



Next, features were mapped to biological pathways
using their assigned metabolite annotations, HMDB
identifiers were coupled to Small Molecule Pathway
Database (SMPDB; containing 894 primary pathways
as of September 14, 2018)16 pathways and KEGG iden-
tifiers were coupled to the KEGG pathways (containing
317 human pathways as of May 7, 2017). HMDB anno-
tations are specifically designed for the human
metabolome and SMPDB contains a significant number
of IMD pathways (Table S3A), while KEGG is a more
generalised database encompassing a wide variety of
biological compounds and pathways.

2.5 | Metabolite set enrichment analysis

MSEA was built using Java version jre1.8.0_121. The
code and README will be publicly available on GitHub:
github.com/Genome-Bioinformatics-RadboudUMC/
MetaboliteSetEnrichmentAnalysis. Statistical enrichment
of pathways was computed using a one-sided Fisher's
exact test comparing aberrant pathway-associated and
pathway-unassociated features with their non-aberrant
counterparts. Only pathways associated with >1 aberrant
features were considered. Fisher's p-values were
Bonferroni–Holm corrected for multiple testing by the
total number of tested pathways, and those that remained
significant at p < .05 were retained.

2.6 | Clustering of enriched pathways

Many of the pathways available in SMPDB and KEGG
contain partially overlapping processes or share many
metabolites. This overlap can cause redundant enriched
pathways in MSEA output, for example, due to a single
set of features enriching several pathways with a high
degree of similarity to each other. To group pathways
enriched by the same set of metabolites, a clustering
approach was applied. Clustering was performed based
on shared aberrant metabolites, and enriched pathways
with 100% overlap (in either direction) were clustered
together. Metabolite IDs between HMDB and KEGG
are not well connected; therefore, pathways from
either database were clustered separately. But pathway
clusters with similar aberrant features are mentioned
in the output file. This clustering step serves to group
pathways with the same root metabolite set driving
enrichment. For each cluster of pathways, we selected
the most descriptive pathway through following steps:
(1) select pathways that are associated to the highest
number of aberrant features; (2) choose the pathway
with lowest p-value; (3) when available, give

preference to pathways categorised as “Metabolic” in
SMPDB and “Metabolism” in KEGG.

2.7 | Metabolite biomarkers, biomarker
pathways and biomarker clusters

For each of the 29 IMDs included in this study one or
more metabolite biomarkers are known (Tables 1,
S3B).2 When a pathway contains one or more metabolite
biomarkers for a specific IMD, that pathway is consid-
ered to be a biomarker pathway for that IMD. For
23 IMDs such biomarker pathways are available
(Table 1; pathway biomarkers >0, Table S3C). A cluster
of pathways that contains biomarker pathways is con-
sidered to be a biomarker cluster.

2.8 | Biomarker rank

To assess how well MSEA prioritises IMD biomarkers,
we determined the position at which each biomarker
ranks at feature, pathway and pathway cluster level. To
determine the biomarker rank at feature level, the aber-
rant feature list was sorted based on feature intensity. To
determine the pathway feature rank and cluster feature
rank, features were first sorted by pathway or pathway
cluster p-value and then by feature intensity, with aber-
rant features in the most enriched pathways or pathway
clusters prioritised. Across all three sets, the highest
ranked feature associated with a biomarker metabolite
was selected. Feature intensity was chosen for ranking as
receiver operating characteristic curves showed that it
was a better binary classifier of biomarker status in our
data than fold change and p-value (Figure S1). We
describe these ranks as row indices, where a row index of
1 indicates the feature is ranked first of all features.

We additionally determined pathway biomarker
ranks for pathways and pathway clusters. To do this, we
sorted all enriched pathways and pathway clusters by
their respective p-value, and determined the ranks of
pathways or pathway clusters containing biomarker
metabolites. Similar to the previous method, the lowest
ranked pathway or pathway cluster containing a bio-
marker metabolite was selected.

2.9 | Manual analysis of the
cystathionine ß-synthase-deficiency
patient

The cystathionine ß-synthase (CBS)-deficiency patient was
manually analysed to demonstrate the results given by
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MSEA in more detail. Incorrect metabolite annotations
were determined for the CBS-deficiency patient as follow-
ing: (1) When the retention time (RT) for a metabolite was
known on our LC system (via the use of model compounds
or diagnosed patient samples; see Reference 2 for more
details), we checked if the known metabolite RT matched
with the feature's RT (RT difference ≤0.1 minutes). (2) The
feature's presence was checked in the raw data, to deter-
mine potential alignment errors. (3) The laboratory techni-
cian's expertise in biochemistry and clinical chemistry was
used to assess the likelihood of the metabolite annotation.

3 | RESULTS

Sixty-two samples were included in this study, rep-
resenting 55 patients and spanning 29 distinct IMDs.

These samples were further divided across 15 analytical
batches (4.6 mean samples per batch, 4.9 SD samples per
batch), and 2 Agilent instrument types (6540 QTOF:
53 samples; 6545 QTOF: 15 samples, 6 of which were
technical replicates run on both instruments). Sample
counts per IMD are summarised in Table 1 alongside the
number of known IMD biomarkers used in this study; a
complete measurement list is provided in Table S1, and a
list of IMD biomarkers and corresponding pathways are
provided in Table S3 (B, biomarkers; C, biomarker path-
ways). A median of 29 394 features were present per sam-
ple of which a median of 616 were aberrant. A median of
299 aberrant features received 1 or more metabolite
annotations and a median of 103 aberrant features were
associated to one or more pathways through one or more
metabolite annotations (Figure S2).

To calculate enrichment in biological pathways, we
used the primary pathways from the Small Molecule
Pathway Database (SMPDB, 894 pathways) and the
human pathways from Kyoto Encyclopedia of Genes and
Genomes (KEGG, 317 pathways). The method, process,
and output of MSEA described here is summarised in
Figure 1. From the 62 samples included, 19 samples (cov-
ering 6 IMDs) were excluded from further analysis on
grounds that no biomarker pathways (see Section 2.7)
were available in SMPDB or KEGG (Table 1; pathway
biomarkers = 0). Another 5 samples had no significantly
enriched pathways following MSEA. However, for 1 of
these 5 samples a replicate measurement from the new
more sensitive QTOF-MS instrument (QTOF 6545) was
available, for which pathways were found to be enriched
by MSEA. From the remaining 39 samples, for which
MSEA output and biomarker pathways were available,
26 (covering 13 IMDs) had at least one biomarker path-
way enriched (Tables 3 and S3C). For Alkaptonuria, the
metabolite aberrations in the biomarker pathway were
caused by the patient's treatment.

MSEA effectively prioritises relevant biomarkers by bio-
marker rank (see Section 2). Prioritisation by feature inten-
sity gave a median biomarker rank of 44 out of a median
1589 aberrant feature-metabolite pairs per sample, whereas
prioritisation by pathway p-value followed by feature inten-
sity gave a median feature biomarker rank of 4 out of a
median 519 aberrant pathway-associated feature-metabolite
pairs per sample (Table S3D). However, 23 biomarkers were
not associated with enriched pathways and these were not
prioritised by MSEA. To correct for this potential bias, we
also considered only the median biomarker rank of
pathway-associated biomarkers by feature intensity
(median = 14). All three approaches prioritised biomarker-
associated features significantly better than would be
expected by chance (permutation test, p = 3.4E-9,
p = 1.56E-6, p = 4.54E-4). The distributions of biomarker

FIGURE 1 Metabolite set enrichment analysis (MSEA)

method overview. Visualisation of our untargeted metabolomics

workflow, including MSEA. Analysis up to aberrant feature

detection was performed using an in-house pipeline described

previously by Coene et al.2 Adjustments made to the in-house

pipeline and the implementation of MSEA and clustering steps are

described in more detail in the materials and methods
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FIGURE 2 Metabolite set enrichment analysis (MSEA) prioritises known inherited metabolic disorder (IMD) biomarkers. (A) The row index

distribution of all biomarker-associated features are shown ranked by feature intensity (yellow), MSEA pathway p-value (purple) and MSEA cluster

p-value (blue; see Section 2). (B) An example patient (00057) with cystathionine ß-synthase (CBS) deficiency is shown. The number of biomarker-

associated features in each category (significant features, yellow; significant features within an MSEA-enriched pathway, purple; significant features

within an MSEA cluster, blue) is indicated by a line. Along this line, biomarker-associated features are shown; their position indicates where they

rank in the feature distribution sorted as described in (A). (C) The same example patient (00057) with CBS deficiency is shown. Here the length of

the line represents the number of pathways (purple) or clustered pathways (blue) and points represent the distribution of known biomarkers in

these pathways ranked by pathway p-value (purple) or cluster p-value (blue, see Section 2). (D) A pathway depicting what metabolites we found to

be aberrant in a CBS deficiency patient, who were in close proximity to CBS. Bold metabolites are known biomarkers on IEMbase, underlined

metabolites are part of our own metabolite panel, red metabolites have aberrant features associated to them in our data and metabolites in italics

are false positive hits in the pathway as the associated aberrant feature was incorrectly annotated, see Table S4C–F for more details.

HOEGEN ET AL. 687



TABLE 2 Metabolite set enrichment analysis (MSEA) pathway enrichment can aid in the discovery of novel IMD biomarker

metabolites. For each MSEA-enriched pathway containing a known biomarker, we identified all other metabolites in the pathway associated

with an enriched feature following correction for multiple testing (Bonferroni–Holm p < 0.05, right column). We removed known

biomarkers from this list (Table 1). We report the remainder as putatively novel biomarkers for the indicated IMD pending analytical and

functional evaluation and literature review

Sample Diagnosis
Enriched biomarker
pathway Putative novel metabolite biomarker

RadboudUMC_1 3-Ureidopropionase
deficiency

SMP0000007;
SMP0000046;
hsa00240; hsa00410

Carnosine (HMDB0000033/C00386); 1,3-diaminopropane
(HMDB0000002/C00986); carbon dioxide
(HMDB0001967); flavin mononucleotide
(HMDB0001520); L-histidine (HMDB0000177/C00135);
malonic semialdehyde (HMDB0011111/C00222); uracil
(HMDB0000300/C00106); pantothenic acid
(HMDB0000210/C00864); beta-alanine
(HMDB0000056/C00099); dUMP (HMDB0001409/
C00365); phosphate (HMDB0001429); thymidine
(HMDB0000273/C00214); cytidine monophosphate
(HMDB0000095/C00055); dCDP (HMDB0001245/
C00705); uridine (HMDB0000296/C00299);
ureidosuccinic acid (HMDB0000828/C00438);
deoxycytidine (HMDB0000014/C00881); L-glutamine
(HMDB0000641/C00064); phosphoric acid
(HMDB0002142); 3-aminoisobutanoic acid
(HMDB0003911); 3’-CMP (C05822); pseudouridine
(C02067); uridine 20,30-cyclic phosphate (C02355); (R)-b-
aminoisobutyric acid (C01205); (R)-5,6-dihydrothymine
(C21028); (R)-3-ureidoisobutyrate (C21029); gamma-
aminobutyric acid (C00334); 4-aminobutyraldehyde
(C00555); spermidine (C00315); apermine (C00750)

RadboudUMC_2 Cystathionine ß-
synthase deficiency

SMP0000033; hsa00270;
hsa01210

S-Adenosylhomocysteine (HMDB0000939/C00021); 50-
methylthioadenosine (HMDB0001173/C00170); betaine
(HMDB0000043); homocysteine (HMDB0000742/
C00155); 1-aminocyclopropanecarboxylic acid (C01234);
3-sulfinoalanine (C00606); O-acetyl-L-homoserine
(C01077); (S)-3-methyl-2-oxopentanoic acid (C00671); L-
valine (C00183); pentahomomethionine (C17229);
3-hydroxy-3-methyl-2-oxobutanoic acid (C04181);
isopropylmaleate (C02631); ketoleucine (C00233); (E)-
4-hydroxyphenylacetaldehyde oxime (C04350);
citraconic acid (C02226); trihomomethionine (C17221);
(S)-2-acetolactate (C06010); aminoadipic acid (C00956)

RadboudUMC_3 Histidinemia hsa00340 Imidazole-4-acetaldehyde (C05130); imidazoleacetic acid
riboside (C05131); 4-imidazolone-5-propionic acid
(C03680); gamma-L-glutamyl-S-(hercyn-2-yl)-L-cysteine
S-oxide (C20995); L-glutamic acid (C00025)

RadboudUMC_4 Hyperlysinemia, Type I hsa00300; hsa00310;
hsa00780

(2R,3R)-3-Methylornithine (C20277); diaminopimelic acid
(C00666); meso-2,6-diaminoheptanedioate (C00680);
homoisocitrate (C05662); homocitric acid (C01251);
N6-acetyl-L-lysine (C02727); 2,5-diaminohexanoate
(C05161); (3S,5S)-3,5-diaminohexanoate (C01186); D-
lysine (C00739); D-lysopine (C04020); (3S)-
3,6-diaminohexanoate (C01142); pimelic acid (C02656)

RadboudUMC_31 Hyperlysinemia, Type I hsa00310 N6-acetyl-L-lysine (C02727); 2,5-diaminohexanoate
(C05161); (3S,5S)-3,5-diaminohexanoate (C01186); D-
lysine (C00739); D-lysopine (C04020); (3S)-
3,6-diaminohexanoate (C01142)
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TABLE 2 (Continued)

Sample Diagnosis
Enriched biomarker
pathway Putative novel metabolite biomarker

RadboudUMC_5 Hyperprolinemia,
Type II

SMP0000020; hsa00330;
hsa01230; hsa02010;
hsa04974

D-proline (HMDB0003411/C00763); 1-pyrroline-
5-carboxylic acid (HMDB0001301/C03912);
2-oxoarginine (C03771); 4-guanidinobutanamide
(C03078); subaphylline (C10497); L-phosphoarginine
(C05945); S-adenosylmethionine (C00019); (S)-
2-acetolactate (C06010); N-acetyl-L-glutamate
5-semialdehyde (C01250); norfloxacin (C06687);
sparfloxacin (C07662); phenol (C00146)

RadboudUMC_32 Hyperprolinemia,
Type II

hsa00330 2-Oxoarginine (C03771); (S)-1-pyrroline-5-carboxylate
(C03912); subaphylline (C10497); D-proline (C00763); S-
adenosylmethionine (C00019); 4-acetamidobutanoic
acid (C02946)

RadboudUMC_14 3β-Hydroxy-
Δ5-C27-steroid
dehydrogenase
deficiency

SMP0000035; hsa00120 Cholic acid (HMDB0000619/C00695); 7alpha-hydroxy-
3-oxo-4-cholestenoate (HMDB0012458/C17337)

RadboudUMC_33 Maple syrup urine
disease

SMP0000032; hsa00280;
hsa01210; hsa05230

L-Valine (HMDB0000883/C00183); (S)-
3-hydroxyisobutyric acid (HMDB0000023/C06001); (S/
R)-b-aminoisobutyric acid (HMDB0002166/C03284/
C01205); (S)-3-methyl-2-oxopentanoic acid (C00671);
3-hydroxyisovalerate (C20827); L-tryptophan (C00078);
L-phenylalanine (C00079); phenylpyruvic acid (C00166);
(R)-2,3-dihydroxy-isovalerate (C04272); 2-oxo-
6-methylthiohexanoic acid (C17216); glucocochlearin
(C08407); citraconic acid (C02226); (R)-2-methylmalate
(C02612); D-erythro-3-methylmalate (C06032); L-lysine
(C00047); 2-methylpropyl glucosinolate (C17256); L-
malic acid (C00149); D-glucose (C00031); fumaric acid
(C00122); L-lactic acid (C00186)

RadboudUMC_34 Maple syrup urine
disease

SMP0000032; hsa00280;
hsa00290; hsa01230

(S)-3-Hydroxyisobutyric acid (HMDB0000023/C06001);
(S)-3-methyl-2-oxopentanoic acid (C00671);
3-hydroxyisovalerate (C20827); citraconic acid (C02226);
(R)-3-hydroxy-3-methyl-2-oxopentanoate (C14463); (S)-
2-aceto-2-hydroxybutanoic acid (C06006);
diaminopimelic acid (C00666); meso-
2,6-diaminoheptanedioate (C00680); S-
adenosylmethionine (C00019); sedoheptulose
7-phosphate (C05382)

RadboudUMC_46 Phenylketonuria hsa00360 3-Hydroxyphenylacetic acid (C05593); vanillin (C00755);
3-(3-hydroxyphenyl)propanoic acid (C11457); 1-phenyl-
1,2-propanedione (C17268); ortho-hydroxyphenylacetic
acid (C05852); phenylacetylglycine (C05598);
phenylacetic acid (C07086); trans-cinnamic acid
(C00423); p-hydroxyphenylacetic acid (C00642);
3-(2-hydroxyphenyl)propanoic acid (C01198); D-
phenyllactic acid (C05607)

RadboudUMC_47 Phenylketonuria hsa00360 1-Phenyl-1,2-propanedione (C17268); phenylacetic acid
(C07086); trans-cinnamic acid (C00423)

RadboudUMC_49 Phenylketonuria hsa00360; hsa04974;
hsa00970

Phenylacetic acid (C07086); trans-cinnamic acid (C00423);
3-hydroxyphenylacetic acid (C05593); Vanillin (C00755); p-
hydroxyphenylacetic acid (C00642); 1-phenyl-
1,2-propanedione (C17268); ortho-hydroxyphenylacetic
acid (C05852); L-arginine (C00062); L-glutamine (C00064);
L-lysine (C00047); indole (C00463)

(Continues)
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ranks are shown in Figure 2A. Using these feature-based
ranks, we also show that MSEA prioritised pathway-
associated IMD biomarkers better than solely filtering by
feature intensity (Wilcoxon p = 0.032; Figure S3). Cluster-
ing to eliminate pathways enriched by the same aberrant
features did not reduce biomarker rank (median = 6,
Wilcoxon p = 0.13, Figure S3). However, it did reduce
the number of pathways so biomarker-containing path-
ways were better prioritised (median = 21 pathways
across all samples, median = 6 clusters across all sam-
ples; Wilcoxon p = 0.00075, Figure S4). Amongst
enriched pathways and pathway clusters, the median
biomarker rank was 1 (Figure S5).

To demonstrate how MSEA affects biomarker
prioritisation, we have taken a closer look at the CBS-
deficiency patient in our cohort. In total 609 features
were found to be aberrant, 337 of which could be
assigned putative metabolite annotations and 60 could
be assigned pathway annotations (see Section 2). For
CBS deficiency, the NGMS data were screened for two
biomarkers, L-methionine (KEGG, C00073; HMDB,
HMDB0000696) and L-methionine sulphoxide (KEGG,
C02989; HMDB, HMDB0002005), both were present in
pathways (Tables 1 and S3B). Two features were found
to be associated with L-methionine, ranking on the first
(ESIpos_981) and third (ESIneg_743) positions of the
feature list (Figure 2B). For L-methionine sulphoxide,
we found one associated feature ranking on the 28th
(ESIpos_1299) position of the feature list. Pathway fea-
ture rank and cluster feature rank (see Section 2) were
slightly improved from the original feature rank
(Figure 2B). After MSEA, 27 pathways were found to
be enriched (Table S4A). The highest ranking bio-
marker pathway was located on Position 3, containing
L-methionine (Figure 2C). The first pathway containing
both biomarkers was found on Position 5. In total,
12 enriched pathways contained one or both of our

biomarkers, indicating that many of the enriched path-
ways may represent redundant processes. When clus-
tering the pathways together that were enriched by the
exact same set of aberrant metabolites, we were left
with 11 clusters of pathways (Table S4B), 3 of which
are biomarker clusters (see Section 2, Figure 2C). The
highest ranking biomarker cluster was located on Posi-
tion 3 of the pathway cluster list and contained all bio-
markers. The two pathways ranking higher than
biomarker pathways are hypothesised to be unrelated
to CBS deficiency, but further work on samples from
other CBS patients is required to confirm this with cer-
tainty (Table S4A).

Looking at aberrant metabolites for the CBS-
deficiency sample in the cysteine and methionine metab-
olism pathway (KEGG ID: hsa00270) (Figure 2D), we
found metabolites aberrant that were not present in our
biomarker panel (Table S4C). Several of the aberrant
metabolites, homocysteine and S-adenosylhomocysteine,
are already known as biomarkers for CBS deficiency in
IEMbase.17 However, S-adenosylhomocysteine turned
out to be an incorrect metabolite annotation
(Table S4C). Four metabolites were marked to be aber-
rant that are currently not known to be biomarkers
(Figure 2C). Manual checks in the raw data showed that
the features in our data associated with
1-aminocyclopropane-1-carboxylate (KEGG ID:
C01234), O-acetyl-L-homoserine (KEGG ID: C01077)
and 3-sulfinoalanine (KEGG ID: C00606), were incor-
rect results as they were either misannotated or mis-
aligned (Table S4D–F). The feature associated with 50-
methylthioadenosine (KEGG ID: C00170) is likely a
putative novel biomarker for CBS deficiency.

We determined whether such putative novel bio-
markers were also present in other samples of our cohort
by systematically detecting all aberrant non-biomarker
metabolites present in an enriched biomarker pathway

TABLE 2 (Continued)

Sample Diagnosis
Enriched biomarker
pathway Putative novel metabolite biomarker

RadboudUMC_50a Phenylketonuria hsa00360 Phenylacetic acid (C07086); trans-cinnamic acid (C00423);
2-hydroxy-6-ketononatrienedioate (C12624); 1-phenyl-
1,2-propanedione (C17268)

RadboudUMC_53 UMP synthase
deficiency

SMP0000046; hsa00240 Uracil (HMDB0000300/C00106); hydroxypropionic acid
(C01013)

RadboudUMC_55 Xanthinuria, Type II SMP0000050; hsa00230;
hsa00232

SAICAR (HMDB0000797/C04823); (R/S)(�)-allantoin
(C02348/C02350); 5-hydroxy-2-oxo-4-ureido-
2,5-dihydro-1H-imidazole-5-carboxylate (C12248);
1,3,7-trimethyluric acid (C16361)
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TABLE 3 The biomarker pathways that were prioritised for each inherited metabolic disorder (IMD) in the data by our metabolite set

enrichment analysis (MSEA) implementation. Bold biomarkers were not detected in all samples; Table S4A shows the exact samples in

which the biomarker was or was not measured. Table S4B gives a more extensive list of all theoretically biomarker pathways available,

including medication and disease pathways

IEM OMIM Pathway name Aberrant biomarkers Enriched

3-Ureidopropionase deficiency 613161 Beta-alanine metabolism Ureidopropionic acid 1/1

Pyrimidine metabolism Dihydrothymine; ureidopropionic
acid; ureidoisobutyric acid

1/1

Pyrimidine metabolism Ureidopropionic acid 1/1

Beta-alanine metabolism Ureidopropionic acid 1/1

3β-Hydroxy-Δ5-C27-steroid
dehydrogenase deficiency

607765 Bile acid biosynthesis 3b,7a-Dihydroxy-5-cholestenoic acid 1/1

Primary bile acid biosynthesis 3b,7a-Dihydroxy-5-cholestenoic acid 1/1

Cystathionine ß-synthase
deficiency

236200 Betaine metabolism L-Methionine 1/1

Methionine Metabolism L-Methionine; methionine
sulphoxide

1/1

Cysteine and methionine
metabolism

L-Methionine; methionine
sulphoxide

1/1

2-Oxocarboxylic acid metabolism L-Methionine 1/1

Histidinemia 235800 Histidine metabolism Histidine; imidazole lactic acid 1/1

Hyperlysinemia, Type I 238700 Biotin metabolism Lysine 1/2

Lysine degradation Lysine; L-pipecolic acid 1/2

tRNA charging: lysine Lysine 2/2

Lysine biosynthesis Lysine 1/2

Lysine degradation Lysine; L-pipecolic acid 2/2

Biotin metabolism Lysine 1/2

Hyperprolinemia, Type II 239510 Arginine and proline metabolism Proline; 1-pyrroline-2-carboxylic acid 1/2

tRNA charging: proline Proline 2/2

Arginine and proline metabolism Proline; 1-pyrroline-2-carboxylic
acid; pyrrole-2-carboxylic acid

2/2

Biosynthesis of amino acids Proline 1/2

ABC transporters Proline 1/2

Protein digestion and absorption Proline 1/2

Mineral absorption Proline 1/2

Maple syrup urine disease 248600 Valine, leucine and isoleucine
degradation

Leucine; isoleucine; ketoleucine;
2-ketoisovaleric acid;3-methyl-
2-oxovaleric acid

2/2

Valine, leucine and isoleucine
degradation

Leucine; isoleucine; ketoleucine;
2-ketoisovaleric acid

2/2

Valine, leucine and isoleucine
biosynthesis

Leucine; isoleucine; ketoleucine;
2-ketoisovaleric acid

2/2

2-Oxocarboxylic acid metabolism Leucine; isoleucine; ketoleucine;
2-ketoisovaleric acid

2/2

Biosynthesis of amino acids Leucine; isoleucine; ketoleucine;
2-ketoisovaleric acid

1/2

Central carbon metabolism in
cancer

Leucine; isoleucine 1/2

(Continues)
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(Table 2). We report the remaining 142 metabolites by
IMD as putative novel biomarkers pending analytical and
functional validation and literature review.

Although we prioritised relevant IMD pathways with
our method, we also found many (mean, 20; SD, 22)
other pathways enriched. To better understand these

TABLE 3 (Continued)

IEM OMIM Pathway name Aberrant biomarkers Enriched

Methionine adenosyltransferase
I/III deficiency

250850 Spermidine and spermine
biosynthesis

L-methionine 1/2

tRNA charging: methionine L-methionine 2/2

Phenylketonuria 261600 Phenylalanine and tyrosine
metabolism

Phenylalanine 2/9

tRNA charging: phenylalanine Phenylalanine 8/9

Phenylalanine metabolism Phenylalanine; N-acetyl-L-
phenylalanine

4/9

Phenylalanine, tyrosine and
tryptophan biosynthesis

Phenylalanine 1/9

Aminoacyl-tRNA biosynthesis Phenylalanine 1/9

Protein digestion and absorption Phenylalanine 1/9

Mineral absorption Phenylalanine 1/9

UMP synthase deficiency 258900 Pyrimidine metabolism Orotic acid; dihydroorotic acid 1/1

Pyrimidine metabolism Orotic acid; dihydroorotic acid 1/1

Xanthinuria, Type II 603592 Purine metabolism Xanthosine; xanthine; uric acid 1/2

Purine metabolism Xanthosine; xanthine; uric acid;
5-hydroxyisourate

1/2

Caffeine metabolism Xanthosine; xanthine 2/2

Glutaric aciduria Type I 231670 Fatty acid degradation Glutaric acid 1/1

FIGURE 3 Biomarker-containing pathways are relatively inherited metabolic disorder (IMD) specific. (A) The counts of biomarker-

containing and non-biomarker-containing pathways across 64 samples were plotted by the number of IMDs that share enrichment of each

pathway. Biomarker-containing pathways are significantly more IMD-specific overall than non-biomarker-containing pathways (Wilcoxon

p = 0.016). We indicate a set of pathways enriched by common non-steroidal anti-inflammatory drugs (NSAIDs) taken by a subset of our

cohort with asterisk symbol (Table S5). If we remove these confounding pathways, biomarker-containing pathways are not significantly

more IMD specific (Wilcoxon p = 0.13)
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pathways, we explored the distribution of all enriched
pathways across the 29 IMDs in our dataset. In addition,
we showed that biomarker pathways are significantly
more IMD-specific than non-biomarker pathways, and
were shared across a maximum of 4 IMDs versus 13 for
non-biomarker pathways (Figure 3, Wilcoxon p = 0.016).
By binning enriched pathways based on the number of
IMDs that share them, we were also able to detect
40 enriched pathways shared across 9 IMDs (Figure 3A,
indicated by *). We determined that these pathways were
shared not just across the same IMDs, but also the same
set of patients within our dataset, and were able to deter-
mine that 37 of the 40 pathways are associated with non-
steroidal anti-inflammatory drugs (Table S5). We antici-
pate that other common, non-IMD-specific dietary and
medication effects may also be detectable in this way.

4 | DISCUSSION

MSEA prioritises biologically relevant metabolites from
high-dimensionality NGMS data by leveraging pathway
context. We show that MSEA consistently prioritises
known IMD biomarkers by pathway or cluster rank
when biomarkers are associated with pathways, and
that it is complementary to a feature-based filtering
approach. We also demonstrate the two specific advan-
tages of MSEA over traditional analysis by feature-based
prioritisation or an IMD panel: MSEA does not use
known biomarker information as a prior for pathway
enrichment, and MSEA reports not just biomarker metabo-
lites but also their enriched pathway context. Using the first,
we can describe characteristics of MSEA-enriched bio-
marker pathways that allow data reduction without a
genetic or metabolomic prior; using the second, we can
report putative novel biomarker metabolites in IMDs with a
previously characterised biomarker to improve diagnosis
and clinical follow-up of patients with these disorders. One
of these putative novel biomarkers for CBS deficiency, 50-
methylthioadenosine, is currently validated in CBS-
deficiency patients using orthogonal methods and was pre-
viously reported to be found in a mouse model of CBS–
homocystinuria.18

The main impediment to the routine use of UM in
IMD diagnostics is the vast amount of data generated per
run. Manual processing and analysis of this data is often
not feasible, and the considerable amount of biological
and technical noise in mass spectrometry data makes
prioritisation of clinically relevant metabolites challeng-
ing. MSEA addresses this problem by using feature
counts to prioritise a small number of biologically-
relevant pathways and their associated metabolites.
MSEA does not use metabolite biomarker status in

enrichment, and this independence allows analysis of
patients with unresolved or novel IMDs, and the identifi-
cation of novel biomarkers for previously characterised
IMDs. These characteristics make MSEA unique in
NGMS data analysis and allow its broad application on a
variety of data sets.

However, MSEA is very dependent on the fidelity and
completeness of pathway annotations in major databases
like SMPDB and KEGG.9 For 6 out of 29 IMDs, known
biomarker pathways could not be enriched as they were
missing from the pathway databases. In some cases we
could find an IMD specific pathway, but IMD biomarker
metabolites were still missing from those pathways. For
example, in the 3-hydroxy-3-methylglutaryl-CoA lyase
deficiency pathway (SMP0000138) our biomarkers are
not yet included, but we can verify that they ought to be
based on the corresponding (co)enzymes that are present
(Table S6). In addition, interpreting MSEA-enriched
pathways with no known IMD biomarkers in a clinical
context is still a major challenge despite some data reduc-
tion approaches as described here. Medication and diet
are major confounders and will also enrich pathways in
MSEA. Distinguishing between these pathways and those
of diagnostic significance is predicated upon thorough
patient phenotyping and completeness of online data-
bases and drug reference panels, which are also often
incomplete.

There are several ways in which MSEA could be
extended to improve feature prioritisation or IMD cover-
age. First, if the IMD is not properly described through
pathway information as discussed previously, metabolite
sets could be made based on other functional assays or
biological data. Second, data pre-processing could be
improved by normalising feature intensities, incorporat-
ing feature quality filters, and reducing incorrect annota-
tions by using an adduct annotation algorithm like
CAMERA.19 This pre-processing could potentially further
reduce the size of MSEA output while retaining biologi-
cally important metabolites. Normalisation could also
potentially allow the identification of additional features
that could enrich biomarker pathways currently not
enriched. Third, the incorporation of covariates relating
to patient gender, age, and treatment status when known
could be beneficial.

In the future, we anticipate that MSEA can be a
useful addition to NGMS data analysis in a diagnostic
setting. Furthermore, through its ability to identify
novel biomarkers, MSEA will allow for expansion of
existing diagnostic IMD panels and increase the diag-
nostic yield of NGMS generally. We show this by exam-
ple in this paper in CBS deficiency, but we think this is
one of the major advantages of a pathway-based
enrichment approach and more novel biomarkers will
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be functionally validated from MSEA output on this
dataset and others. More broadly, we see advantages in
pathway-based approaches both for filtering metabolite
sets that are not disease-associated and for identifying
relevant disease-associated metabolites for patient
diagnostics.

In conclusion, we have created a MSEA method that
prioritises metabolites in NGMS data by feature count-
based enrichment in biological pathways. Our method
successfully reduces complexity of NGMS data while
retaining diagnostic biomarkers for known IMDs. Fur-
thermore, our method allows the identification of novel
biomarkers for IMDs and offers the potential for diagnos-
tic utility in patients suspected of an IMD. More broadly,
MSEA exemplifies the utility of leveraging biological
information in NGMS data reduction and can be applied
in both diagnostics and research to easily identify biologi-
cal relevant signals.
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