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Abstract 

Background:  Systemic studies of association of genome-wide DNA methylated sites with cardiovascular disease 
(CVD) in prospective cohorts are lacking. Our aim was to identify DNA methylation sites associated with the risk of 
CVD and further investigate their potential predictive value in CVD development for high-risk subjects.

Methods:  We performed an epigenome-wide association study (EWAS) to identify CpGs related to CVD develop-
ment in a Chinese population.We adopted a nested case–control design based on data from China PEACE Million 
Persons Project. A total of 83 cases who developed CVD events during follow-up and 83 controls who were matched 
with cases by age, sex, BMI, ethnicity, medications treatment and behavior risk factors were included in the discovery 
stage. Genome-wide DNA methylation from whole blood was detected using Infinium Human Methylation EPIC 
Beadchip (850 K). For significant CpGs [FDR(false discovery rate) < 0.005], we further validated in an independent 
cohort including 38 cases and 38 controls.

Results:  In discovery set, we identified 8 significant CpGs (FDR < 0.005) associated with the risk of CVD after adjust-
ment for cell components, demographic and cardiac risk factors and the first 5 principal components. Two of these 
identified CpGs (cg06901278 and cg09306458 in UACA​) were replicated in another independent set (p < 0.05). Enrich-
ment analysis in 787 individual genes from 1036 CpGs in discovery set revealed a significant enrichment for anatomi-
cal structure homeostasis as well as regulation of vesicle-mediated transport. Receiver operating characteristic (ROC) 
analysis showed that the model combined 8 CVD-related CpGs with baseline characteristics showed much better 
predictive effect for CVD occurrence compared with the model with baseline characteristics only [AUC (area under 
the curve) = 0.967, 95% CI (0.942 − 0.991); AUC = 0.621, 95% CI (0.536 − 0.706); p = 9.716E-15].

Conclusions:  Our study identified the novel CpGs associated with CVD development and revealed their additional 
predictive power in the risk of CVD for high-risk subjects.
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Introduction
Cardiovascular disease (CVD), a complex disease that 
is attributed to the interaction between environmental 
and genetic factors, is the leading cause of death in most 
countries [1, 2]. It is necessary to elucidate the underlying 
biological mechanisms of CVD to enable early diagnosis 
and treatment of the disease.
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For the development of CVD, it is widely accepted that 
age, sex, high blood pressure, smoking, dyslipidemia, and 
diabetes are the major risk factors. Furthermore, over the 
past few years, many genome-wide association studies 
(GWAS) have identified relevant genetic polymorphisms 
as risk factors, but the results that known risk loci only 
account for a small proportion of risk are not encourag-
ing for personal risk prediction based on genotyping [3]. 
This suggests other risk factors possibly affect the devel-
opment of CVD between genetics and environmental 
factors, such as epigenetics.

Epigenetics is based on stable and heritable alterations 
in gene expression without changes in the DNA sequence 
itself [4]. DNA methylation is a crucial type of epigenetic 
modification, by which a methyl group covalent bonds 
to the C5 position of cytosine in 5′-C-phosphate-G-3′ 
(CpG) dinucleotides, ultimately regulating the gene tran-
scription activity and alter biological functions [5]. Pre-
vious studies have demonstrated associations of DNA 
methylation with atherosclerosis [6, 7], ischemic heart 
disease [8], coronary heart disease (CHD) [8], coronary 
artery disease [9] and acute coronary syndrome (ACS) 
[10]. Besides, DNA methylation is suggested as a bio-
marker for CVD risk [11]. However, the previous evi-
dences were based on cross-sectional studies, lack of the 
rationale of temperal causality. Systemic identification 
of genome-wide DNA differential CpGs and analysis of 
their association with CVD risk are lacking.

In the present study, our main objective is to identify 
CpGs associated with the risk of CVD and further inves-
tigate their potential predictive value in CVD devel-
opment for high-risk subjects. We first examined the 
association of genome-wide DNA methylation patterns 
from whole blood samples in 83 pairs of case–control 
participants at high-risk of CVD using Infinium Human 
Methylation EPIC Beadchip (850  K). For identified sig-
nificant CpGs, we further validated their association with 
the development of CVD in another independent cohort. 
And enrichment analysis in Gene Ontology (GO) terms 
was conducted to identify significantly enriched catego-
ries. Finally, we performed the ROC analysis to assess the 
predictive value of genome-wide significant CpGs for the 
risk of CVD.

Methods
Study design and study samples
The study samples were collected from the China 
PEACE Million Persons Project (MPP) cohort. The 
design and conduct of the project pilot have been pre-
viously described in detail [12]. In brief, the China-
PEACE MPP is a national, population-based screening 
project funded by the Chinese government to identify 
individuals at high-risk of CVD. The project enrolled 

community population if they were 35–75  years old 
and could confirm their residence in a selected region 
including 141 primary health care sites (88 rural coun-
ties and 53 urban districts) from all 31 provinces in the 
mainland of China from September 15, 2014 to June 
20, 2017. The participants were initially screened for 
high-risk of CVD by measurements of blood pressure, 
height, weight and blood lipid, and a questionnaire on 
cardiovascular-related health status. The subjects at 
high-risk of CVD were identified if they met at least one 
of four criteria: 1. Medical history of myocardial infarc-
tion (MI), percutaneous coronary intervention (PCI), 
coronary artery bypass grafting (CABG) treatment, or 
stroke; 2. High blood pressure defined as systolic blood 
pressure (SBP) ≥ 160  mmHg or diastolic blood pressure 
(DBP) ≥ 100  mmHg; 3. Dyslipidemia defined as low-
density lipoprotein cholesterol (LDL-C) ≥ 160  mg/dL 
(4.14  mmol/L) or high-density lipoprotein cholesterol 
(HDL-C) < 30  mg/dL (0.78  mmol/L); 4. Risk of CVD in 
10 years ≥ 20% based on WHO/ISH Cardiovascular Risk 
Prediction Charts for the Western Pacific Region B [13]. 
The high-risk participants received further health assess-
ments, including electrocardiography, ultrasound scan, 
blood and urine analysis, and a questionnaire on lifestyle 
and medical history and were followed up every year to 
collect information on medication adherence, risk fac-
tor control, and any hospitalization. The data were col-
lected from standardized in-person interviews by trained 
medical staff. The central ethics committee at the China 
National Center for Cardiovascular Disease (NCCD) 
approved this project. All participants had completed 
a written informed consent before participation in the 
project.

In the present study, we performed a nested case–con-
trol study based on the high-risk participants from the 
MPP cohort to examine and validate the association of 
genome-wide CpGs with the development of CVD. The 
inclusion criteria: 1. Blood samples were collected after 
January 1, 2016; 2. Two years follow-up data was avail-
able; 3. The questionnaire for the high-risk participants 
was available. Patients were excluded if they have self-
reported any of medical history of cancer, chronic liver 
and kidney disease, infectious diseases, or any CVD at 
baseline.

Among the above eligible population, case (subjects 
who developed cardiovascular events) and control (sub-
jects who did not develop cardiovascular events) were 1:1 
matched for age (within 1 year), sex, BMI, the month of 
blood collection (within 1 month), medications treatment 
(antiplatelet medications and statins), ethnicity (han or 
non-han), current smoking status, and current alcohol 
intake at baseline. Then, 121 pairs were randomly sam-
pled from the above eligible case–control pairs. Among 
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them, 83 pairs case–control and 38 pairs case–control 
were randomly selected and regarded as the discovery set 
and the replicated set, respectively. Additional file shows 
this in more detail. [see Additional file 2: Figure S1].

Clinical variables
Cardiovascular events were self-reported by partici-
pants during follow-up visits. In the present study, 
hypertension was defined as SBP ≥ 140  mmHg, or 
DBP ≥ 90  mmHg, or self-reported any antihypertensive 
drugs. Hyperlipidemia was defined as total cholesterol 
(TC) ≥ 6.2 mmol/L or LDL-C ≥ 4.1 mmol/L according to 
Chinese guideline for adult’s blood lipid, or self-reported 
lipid-lowering drug. Diabetes was defined as blood glu-
cose greater than 7  mmol/L after at least 8  h after last 

meal or random blood glucose greater than 11.1 mmol/L, 
or any kind of hypoglycemic agents. Details of these vari-
ables are shown in Table 1.

In this study, TC, LDL-C, HDL-C, triglycerides (TG), 
and high-sensitivity C-reactive protein were measured 
by standardized enzymatic methods using Beckman 
Coulter AU680 analyzers (Beckman AU reagent). Hemo-
globin A1c (HbA1c) was measured by high-performance 
liquid chromatography on the Arkray ADAMS-A1C 
HA-8180 analyzer. All tests were completed at the NCCD 
laboratory.

Clinical outcomes
CVD events included CVD admission and CVD death. 
CVD admission was defined as any hospitalization for 

Table 1  Participant characteristics

a The smoking index was calculated based on current smokers, Smoking index = the number of cigarettes smoked per day * years of smoking
b CVD death was defined as death due to MI, angina, heart failure, ischemic or hemorrhagic stroke
c CVD admission is defined as any hospitalization for MI, ischemic stroke, CABG, PCI, and thrombolysis treatment for acute MI or stroke. CHD, coronary heart disease; 
BMI, body mass index; AMI, acute myocardial infarction; CVD, cardiovascular disease; HbA1c, hemoglobin A1c; hsCRP, high sensitivity C reactive protein; HDL-C, high 
density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol

Variables Discovery set Replication set

Cases (n = 83) Controls (n = 83) p Cases (n = 38) Controls (n = 38) p

Basic characteristic

 Age 62 (8) 62 (8) 0.986 61 (9) 61 (9) 1

 Male 47 (56.6) 47 (56.6) 1 20 (52.6) 20 (52.6) 1

 Ethnicity (han) 78 (94.0) 78 (94.0) 1 37 (97.4) 37 (97.4) 1

 Current smoker 26 (31.3) 26 (31.3) 1 11 (28.9) 11(28.9) 1

 Smoking indexa 820 (490, 940) 545 (305, 860) 0.180 570 (320, 860) 620 (480, 880) 0.804

 Drinker 11 (13.3) 11 (13.3) 1 4 (10.5) 4 (10.5) 1

 BMI 25.5 (4.0) 25.5 (4.0) 0.956 26.0 (3.5) 26.0 (3.5) 0.983

Diagnosis

 Hyperlipidemia 19 (22.9) 9 (10.8) 0.038 5 (13.2) 6 (15.8) 0.744

 Hypertension 79 (95.2) 76 (91.6) 0.349 34 (89.5) 33 (86.8) 0.723

 Diabetes 32 (38.6) 31 (37.3) 0.873 12 (31.6) 16 (42.1) 0.342

 Family history of CHD 6 (7.2) 3 (3.6) 0.304 0 (0.0) 2 (5.3) 0.152

Clinical exams

 Systolic pressure 164 (21) 163 (20) 0.553 165 (22) 158 (21) 0.137

 Diastolic pressure 95 (13) 91 (12) 0.019 96 (13) 91 (13) 0.150

 HbA1c (%) 4.9 (4.6, 5.3) 5.0 (4.6, 5.4) 0.639 4.8 (4.6, 5.3) 4.9 (4.7, 5.2) 0.714

 hsCRP (mg/L) 0.8 (0.5, 2.1) 1.1 (0.5, 2.4) 0.317 1.2 (0.7, 2.4) 1.1 (0.6, 2.3) 0.373

 HDL-C (mmol/L) 0.8 (0.7, 1.0) 0.8 (0.7, 1.1) 0.981 0.9 (0.7, 1.1) 0.9 (0.7, 1.0) 0.593

 LDL-C(mmol/L) 2.6 (2.1, 3.2) 2.4 (2.0, 3.0) 0.188 2.6 (2.1, 3.0) 2.6 (2.2, 3.3) 0.461

 TG (mmol/L) 1.3 (0.9, 1.9) 1.1 (0.8, 1.6) 0.223 1.3 (1.0, 1.7) 1.5 (0.9, 2.0) 0.262

 TC (mmol/L) 4.3 (3.6, 5.0) 4.2 (3.5, 5.1) 0.549 4.2 (3.7, 5.0) 4.4 (3.7, 5.5) 0.424

Events during follow up

 CVD deathb 18 (21.7) 0 NA 5 (13.2) 0 NA

 CVD admissionc 65 (78.3) 0 NA 33 (86.8) 0 NA

  AMI 24 (28.9) 0 NA 4 (10.5) 0 NA

  Ischemic stroke 41 (49.4) 0 NA 29 (76.3) 0 NA



Page 4 of 10Gao et al. BMC Cardiovasc Disord          (2021) 21:240 

MI, ischemic stroke, CABG, PCI, and thrombolysis treat-
ment for acute MI or stroke. CVD death was defined as 
death due to MI, angina, heart failure (HF), ischemic 
or hemorrhagic stroke reported by patient’s relatives or 
doctors. For the patients who have developed multiple 
cardiovascular events, only the earliest one was used in 
subsequent analyses.

DNA methylation analysis
Genomic DNA was isolated from human whole blood 
samples using Chemagic 360 and chemagic DNA Buffy 
Coat 200 Kit according to the manufacturer’s protocol. 
The quality and quantity of the extracted genomic DNA 
was analyzed with a DropSense 96 Spectrophotometer. 
The samples (500  ng genomic DNA) were treated for 
sodium bisulfite conversion using the EZ DNA meth-
ylation Gold Kit (Zymo Research, USA). And Genome-
wide DNA methylation profiles were assessed using the 
Infinium Human Methylation EPIC BeadChip (850  K) 
(Illumina, USA) following manufacturers’ protocol, and 
DNA methylation level was quantified as a β value. β 
value represents the ratio of the fluorescent signal inten-
sity measured by methylated and unmethylated probes 
and range from 0 (all copies of the CpG site in the sample 
are unmethylated) to 1 (all copies of the CpG site in the 
sample are methylated) [14].

Data quality control was performed using the chip 
analysis methylation pipeline (ChAMP) package [15] 
implemented in R both in discovery set and in replica-
tion set. Probes meeting one of following criteria were 
removed: (1) probes with detection p > 0.01; (2) probes 
with < 3 beads in at least 5% of samples; (3) all non-CpG 
probes contained in dataset; (4) all multi-hit probes; (5) 
probes containing single nucleotide polymorphisms [16]; 
and (6) all probes located on chromosome X and Y. After 
quality control, 769,031 CpGs were retained for analysis. 
The filtered data were normalized by Beta Mixture Quan-
tile dilation (BMIQ) [17]. Additionally, batch effect was 
adjusted to reduce technical biases by COMBAT, which 
was evident in a singular value decomposition (SVD) 
analysis [18].

Statistical analysis
Differences in baseline characteristics between case and 
control groups were evaluated by Kruskal–Wallis test 
for continuous variables or Chi-Square test for categori-
cal variables. Before genome-wide DNA methylation 
association analysis, we performed principal component 
analysis (PCA) using 769,031 CpGs in both discovery 
and replication set, and the first 5 principal components 
(PCs) with proportion of variance > 1% were included 
as covariates in model for minimizing the potential 
technical bias. To investigate the association of CVD 

outcomes and DNA methylation level at each CpG, we 
fitted linear regression models using CpGassoc package 
in R, with β as dependent variables and CVD outcomes 
as independent variables. The models were adjusted for 
covariates, including age, sex, BMI, current smoking 
status, hypertension, diabetes mellitus, hyperlipidemia, 
cell components and the first 5 PCs. Cell components 
were estimated by the proportions of whole blood 
(CD4 + T cells, CD8 + T cells, B cells, NK cells, mono-
cytes, and neutrophile granulocyte) using the minfi [19] 
of R package based on Houseman approach. We used the 
FDR < 0.005 to identify significant CVD-associated CpGs 
in discovery set.

In replication set, the significant CpGs identified in 
discovery set were validated by linear regression models 
using CpGassoc package in R. The models were adjusted 
for the same factors as that in discovery set. The CpGs 
with p < 0.05 in replication set and the consistent direc-
tion of effect in both discovery and replication sets were 
considered as significant replication CpGs.

For significant CpGs, we used the annotation provided 
by Illumina and University of California Santa Cruz 
UCSC database (GRCh37/hg19). The genes annotated 
to CpGs with p < 10–4 in discovery set were selected for 
the enrichment analysis. The enrichment analysis in GO 
terms were conducted with R package ’clusterProfiler’, 
and FDR < 0.05 was used to identify significantly enriched 
categories.

Furthermore, ROC analysis was performed to assess 
the predictive value of significant CpGs in CVD out-
comes. There were two prediction models included in 
ROC analysis: 1) model with baseline characteristics 
only; 2) model with both baseline characteristics and the 
significant CpGs. As a reference model, baseline char-
acteristics included age, gender, BMI, current smoking 
status, current alcohol intake, hypertension, diabetes 
mellitus, hyperlipidemia, antiplatelet medication, stains 
treatment and family history of coronary heart disease. 
Statistical analysis were performed using the SAS version 
9.4 and R version 3.5.

Results
Characteristics of the study subjects
The baseline characteristics of the study subjects are 
shown in Table  1. In discovery set, there were 83 CVD 
cases (65 admissions for CVD, 18 died of CVD) and 83 
controls with mean age of 62  years. The replication set 
included 38 CVD cases (33 admissions for CVD, 5 died 
of CVD) and 38 controls with mean age of 61 years. As 
the study subjects were from the high-risk participants 
of the MPP cohort, the proportion of hypertension sub-
jects in our study cohort was approximately as high as 
90%. There was no significant difference in most variables 



Page 5 of 10Gao et al. BMC Cardiovasc Disord          (2021) 21:240 	

between the case and control group in two cohorts, 
except for hyperlipidemia (p = 0.038) and diastolic pres-
sure (p = 0.019) in the discovery set.

Epigenome‑wide association analysis
Before performing a epigenome-wide association analy-
sis, we did SVD analysis and PCA based on plate number, 
chip number and date of test for examining batch effect in 
the normalized data by BMIQ and the further processed 
data by COMBAT, respectively. SVA analysis showed 
that batch effect was almost completely controlled after 
adjustment in different chips and different sample loca-
tions by COMBAT [see Additional file 2: Figure S2, S3]. In 
the PCA, no significant aggregations were found between 
different plates, different chips and different date of test 
(see Additional file 2: Figure S4). After that, PCA based 
on study samples was conducted using 769,031 CpGs in 
both discovery and replication set, and the first 5 PCs 
with proportion of variance > 1% were included as covari-
ates in the genome-wide association analysis by linear 
regression model [see Additional file 2: Table S1, S2]. The 
results showed that eight CpGs achieved a genome-wide 
significance level (FDR < 0.005) after adjustment for age, 
gender, BMI, current smoking status, hypertension, dia-
betes mellitus, hyperlipidemia, cell compositions and the 
first 5 PCs (Fig. 1 and Table 2). Six of 8 CVD-associated 
CpGs were located in SPON1 gene body (cg11651314), in 
PACS1 gene body (cg03914662), in TSS200 of the UACA​ 

gene (cg09306458), in CCDC50 gene body ( cg05946546), 
in 1stExon of the CYP8B1 gene ( cg07655795), and 
in HSD17B11 gene body ( cg02518222), respectively 
(Table  2). Of them, increased methylation level at CpG 
cg07655795 (CYP8B1) was associated with an increased 
risk of CVD, while decreased methylation level at the 
remaining 7 CpGs were associated with an increased risk 
of CVD.

For the 8 CVD-associated CpGs (FDR < 0.005) identi-
fied in discovery set, we performed replication analy-
sis in an independent cohort (38 cases and 38 controls). 
Two CpGs of them (cg09306458, cg06901278) were rep-
licated (p < 0.05) with consistent direction of effect in 
both sets (Table 2). In two replicated CpGs, cg09306458 
was located in regulatory region of the UACA​ gene, and 
cg06901278 had no annotation gene.

Enrichment analysis
Go term enrichment analysis were conducted to iden-
tify the possible functions affected by annotation genes. 
A total of 787 individual genes from 1036 CpGs with 
p < 10–4 in discovery set were used for enrichment anal-
ysis. There were 17 significantly functional categories 
identified (FDR < 0.05), including 6 categories in biologi-
cal processes (BP), and 11 categories in cellular compo-
nent (CC) (Fig.  2) (see Additional file  1: Excel S1). The 
most enriched categories were significant enrichment for 
anatomical structure homeostasis as well as regulation 

Chromosome -log10(expected)
Genomic control value (lambda)=1.55

a b

Fig. 1  Manhattan plot (a) and QQ plot (b) in the discovery set. In the Manhattan plot, red line represents -log10 P at false discovery rate 
(FDR) = 0.005
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of vesicle-mediated transport, which were located in BP 
group (Fig. 2).

ROC analysis
ROC curves were drawn to assess the specificity and sen-
sitivity of CVD prediction on the basis of 8 CVD-related 

CpGs identified in discovery set and baseline charac-
teristics as a reference model. As shown in Fig.  3a, the 
model with both 8 CVD-related CpGs and baseline 
characteristics showed an excellent predictive effect 
for CVD occurrence and much better than the model 
with baseline characteristics only (AUC = 0.967, 95% CI 

Table 2  Association analysis for CVD outcomes with genome-wide significant CpGs identified in the discovery set (FDR < 0.005)

TSS, transcription start site; FDR, false discovery rate. *Effect value represents change in β value per change from control to case

CpG Gene Relation to gene Discovery set Replication set

Effect* SE p FDR Effect SE p

cg06901278 – – − 0.022 0.003 3.37E−10  < 0.001 − 0.015 0.006 0.010

cg11651314 SPON1 Body − 0.033 0.005 9.70E−10  < 0.001 − 0.012 0.007 0.072

cg03914662 PACS1 Body − 0.0177 0.003 5.73E−09 0.0013 − 0.004 0.005 0.415

cg09306458 UACA​ TSS200 − 0.009 0.001 7.01E−09 0.0013 − 0.005 0.002 0.016

cg05359217 – – − 0.012 0.002 9.34E−09 0.0014 − 0.002 0.003 0.591

cg05946546 CCDC50 Body − 0.017 0.003 1.88E−08 0.0024 − 0.003 0.005 0.538

cg07655795 CYP8B1 1stExon 0.024 0.004 3.55E−08 0.0039 0.007 0.006 0.249

cg02518222 HSD17B11 Body − 0.042 0.007 4.85E−08 0.0047 − 0.017 0.011 0.111

Fig. 2  Top categories ranked according to their statistical significance. BP, biological processes. CC, cellular component. GO, Gene Ontology
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(0.942 − 0.991); AUC = 0.621, 95% CI (0.536 − 0.706); 
p = 9.716E-15). In replication set, we also found the 
similar trend that the model combined 8 CVD-related 
CpGs and baseline characteristics showed significant 
predictive capacity compared with the reference model 
with baseline characteristics only (AUC = 0.786, 95% CI 
(0.676 − 0.896); AUC = 0.492, 95% CI (0.357 − 0.628); 
P = 1.178E-3) (Fig. 3b).

Discussion
The present study provides evidence that DNA meth-
ylation level in whole blood DNA was associated with 
the risk of CVD at specific CpGs in high-risk Chinese 
population. In the discovery analysis, we identified 8 
significant CVD-related CpGs after adjustment for con-
ventional covariates and the first 5 PCs. And two of these 
CVD-associated CpGs were replicated in an independ-
ent cohort. Enrichment analysis revealed that the genes 
annotated to CpGs with p < 10–4 in discovery set were 
related with significant enrichment for anatomical struc-
ture homeostasis as well as regulation of vesicle-mediated 
transport. ROC analysis suggested that CVD-associated 
CpGs identified could provide additional predictive 
power for CVD occurrence in high-risk subjects.

In this study, there were some strengths in minimizing 
the potential confounding effect to ensure the findings 
reliable. First, the case-controls were strictly matched for 
the traditional risk factors of CVD and factors probably 
affecting DNA methylation status. Second, normalized 

methylation data was processed for reducing batch effect 
by COMBAT, and examined by SVD analysis and PCA. 
Third, we have adjusted for age, sex, BMI, cell composi-
tions, hypertension, diabetes mellitus, hyperlipidemia, 
and PCs in regression model. Fourth, our prospective 
design fits a temporal relationship between the DNA 
methylation level and CVD outcomes, which elucidated 
the causal relationship more reasonablly. In addition, 
Infinium Human Methylation EPIC Beadchip (850  K) 
almost doubled the number of CpGs on the 450  K 
array which was widely used in previous studies, which 
improves coverage within intergenic regions, enhancers, 
and distal regulatory elements [20]. In view of the above 
reasons, we believe that our results are reliable although 
some degree of inflation in the QQ-plot (λ = 1.55) was 
observed in our study, which might be due to the poly-
genic effect of DNA methylation on CVD or the residual 
confounding that was not completely controlled in the 
linear regression models.

In discovery phase, there were 8 CpGs significantly 
associated with CVD development in the Chinese popu-
lation. The CpGs cg09306458 was located in regulatory 
region of the UACA​ gene, which encodes a protein that 
contains ankyrin repeats and coiled coil domains and 
likely plays a role in apoptosis. A study of the Danish 
National Birth Cohort (608 cases vs 626 control) identi-
fied the UACA​ gene at the cg12157761 associated with 
the offspring of women with gestational diabetes mellitus 
[21]. In addition, a meta-analysis showed that newborn 

Model combined 8 CpGs with clinical 
characteristics, AUC:0.967 (0.942-0.991)
Model with clinical characteristics, 
AUC:0.621 (0.536-0.706) 

Discovery set Replication set

1-Specificity1-Specificity

Model combined 8 CpGs with clinical 
characteristics, AUC:0.768 (0.676-0.896)
Model with clinical characteristics, 
AUC:0.492 (0.357-0.628)

P=9.716E-15 P=1.178E-3

a b

Fig. 3  Receiver operating characteristic (ROC) analysis of the sensitivity and specificity of CVD prediction by the model combined CVD-related 
CpGs and baseline characteristics. a indicates the discovery set; b indicates the replication set. AUC, area under the curve. The baseline 
characteristics were assessed as a reference model, including age, gender, BMI, current smoking status, current alcohol intake, hypertension, 
diabetes mellitus, hyperlipidemia, antiplatelet medication, stains treatment and family history of coronary heart disease
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blood DNA CpG cg01244124 located in UACA​ was nega-
tively associated with sustained maternal smoking during 
pregnancy [22]. Though the gene UACA​ in responding to 
different CpGs among the various studies, the results of 
these two studies were not contradictive with our find-
ings, in that diabetes mellitus and smoking were the clas-
sic risk factor of CVD and may induce DNA methylation 
alteration at specific site to result in the outcome of CVD.

The CpGs cg11651314 located in the gene body region 
of SPON1 was also associated with CVD development 
at genome-wide level in our study. SPON1 encodes the 
developmentally regulated protein F-spondin, which has 
been reported to be a putative ligand for the amyloid pre-
cursor protein [23]. We observed decreased methylation 
at this CpGs, which was associated with the increased 
risk of CVD, and a previous study for DNA methylation 
in adipose tissue also showed SPON1 in corresponding 
to the site cg23284931 was negatively correlated with 
type 2 diabetes [24]. Additionally, proteomic profiling 
study in community-based prospective cohorts revealed 
that higher levels of circulating protein SPON1 at base-
line was associated with worsened systolic function and 
HF incidence independently of established risk factors 
[25]. So it is likely that the hypomethylated status could 
enhance the expression of SPON1 and contribute to the 
pathogenesis of CVD. However, in the atherosclerotic 
human aorta sample, SPON1 was significantly hyper-
methylated compared with the plaque-free intima [26], 
reflecting the difference of DNA methyaltion pattern at 
certain genes in different tissues.

The hypermethylated CpGs cg07655795 identified 
in EWAS was located in the 1stExon region of CYP8B1 
(Cytochrome P450 Family 8 Subfamily B Member 1). 
CYP8B1 was one of the key enzymes of bile acids syn-
thesis, and ablating CYP8B1 in mice led to reduced 
absorption of dietary triglyceride with intact triglycer-
ide hydrolysis and improved insulin sensitivity, suggest-
ing CYP8B1 as a potential therapeutic target for obesity 
and diabetes [27]. Another significant CpG cg07655795 
associated with CVD risk in our study was located 
in body region of gene HSD17B11 (Hydroxysteroid 
17-βDehydrogenase 11). In a integrated microarray anal-
ysis, HSD17B11 was one of the up regulated genes in cor-
onary artery disease, and pathway enrichment analysis 
revealed that differentially expressed genes in coronary 
artery disease were mostly enriched in the superpath-
way of steroid hormone biosynthesis, and so on [28]. In 
addition, our findings showed that CpGs cg03914662 and 
cg05946546 were located in the body region of PACS1 
and CCDC50, respectively. PACS1 encodes phosphofurin 
acidic cluster sorting protein 1, which is a multifunctional 

membrane traffic regulator that plays an important role 
in organ homeostasis [29]. CCDC50 encodes Ymer, an 
effector of epidermal growth factor (EGF)–mediated 
cell signaling that is ubiquitously expressed in different 
organs and has been suggested to inhibit down-regula-
tion of the EGF receptor [30, 31]. Up to date, no evidence 
has associated DNA methylation with CVD or CVD risk 
factor in regard to PACS1 and CCDC50. Therefore, it’s 
essential to further validate the CpG site cg03914662 and 
cg05946546 in a larger independent cohort and assess the 
association with the expression of its annotation genes.

There were no overlap between our identified CVD-
related CpGs and the sites reported in previous MI-asso-
ciated [32, 33] and ACS-associated EWAS studies[34]with 
whole blood sample. Rask-Andersen et al. [32] identified 
211CpGs mapped to 196 annotation genes in individu-
als with a history of MI from northern Sweden popula-
tion, and 42 genes among them had been described to 
be related to cardiac function, CVD, cardiogenesis and 
recovery after ischemic episode. Another study iden-
tified 3 CpGs cg07786668 in ZFHX3, cg17218495 in 
SMARCA4 and cg06642177 in SGK1 that significantly 
associated with MI in Japan [33]. Li Jun and colleagues 
[34] identified 47 ACS-associated CpGs annotated to 44 
individual genes at both whole blood and cell level in 102 
ACS patients and 101 controls from Chinese population. 
This lack of overlap between our CVD-related CpGs and 
MI- or ACS-associated CpGs may be due to the following 
reasons: (i) Our prospective cohort study is different from 
the cross-sectional cohort in other studies; (ii) Infinium 
Human Methylation EPIC Beadchip (850 K) has a larger 
number of CpGs compared with the 450 K array widely 
used in previous studies; (iii) The CVD outcomes in our 
study were not exactly the same as the previous studies. 
However, our ROC analysis revealed that the model com-
bined genome-wide CVD-associated CpGs with baseline 
characterastics provided significant predictive capacity 
for CVD development in high-risk population. Therefore, 
our identified CpGs may serve as potential biomarkers in 
clinical risk assessment for CVD.

In present study, Go enrichment ananlysis showed that 
the genes annotated to CpGs with p < 10–4 in discovery 
set were involved in anatomical structure homeostasis as 
well as regulation of vesicle-mediated transport that may 
suggest a complex impairment of cellular function [32] in 
the occurrence of CVD. However, none of 6 CVD-related 
annotated genes identified in discovery set was over-
lapped with the enriched genes in GO enrichment analy-
sis. In complex diseases (e.g., cardiovascular disease), the 
contribution of most genes to the occurrence of disease 
is small, which may result in these genes not easy to be 
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identified by EWAS, especially given the small sample 
size of this cohort. Therefore, these genes may not have 
been included in the enrichment analysis, although we 
have aleady included the genes annotated to CpGs with 
p < 10–4. This may be a reason why the results of enrich-
ment analysis did not overlap with the main results of 
the study. Nevertheless, considering the good prediction 
effect in ROC analysis, we believe that it is promising to 
use these CpGs found in the study as potential biomark-
ers for predicting the occurrence of CVD.

The present study has some limitations. First, the sam-
ple size was small both in discovery and replication sets, 
so we should validate our results in a larger independent 
cohort. Second, we used whole blood samples to exam-
ine the DNA methylation level, which may not directly 
reflect the status of the target tissue. Third, we did not 
assess the association between gene expression and 
CpGs which would improve the confidence of the results. 
Moreover, self-reported medical history might introduce 
recall bias, although the data were collected by trained 
medical staff. Finally, our findings need further validation 
in other ethnicity groups and population with relatively 
low CVD risk.

Conclusion
In conclusion, DNA methylation level at 8 novel CpGs 
was associated with CVD development in a Chinese 
population, and two of them were replicated in another 
independent cohort. Enrichment analysis in discov-
ery set revealed a significant enrichment for anatomical 
structure homeostasis and regulation of vesicle-mediated 
transport. ROC analysis showed that the model with 
both CVD-associated CpGs and baeline characterastics 
had excellent predictive capacity for CVD occurence in 
high-risk subjects. Future studies ought to verify the pre-
dictive effect of these CpGs on CVD in other ethnicity 
groups and population with relatively low CVD risk and 
further elucidate the potential functional mechanism of 
CVD-related CpGs.
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