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Abstract. Regulation of the fate of hematopoietic stem cells 
(HSCs), including silencing, self‑renewal or differentiation 
into blood line cells, is crucial to maintain the homeostasis of 
the human blood system and prevent leukemia. Notch1, a key 
receptor in the Notch signaling pathway, plays an important 
regulatory role in these properties of HSCs, particularly in 

the maintenance of the stemness of HSCs. In recent decades, 
the ubiquitination modification of Notch1 has been gradually 
revealed, and also demonstrated to affect the proliferation 
and differentiation of HSCs. Therefore, a detailed elucidation 
of Notch1 and its ubiquitination modification may help to 
improve understanding of the maintenance of HSC properties 
and the pathogenesis of leukemia. In addition, it may aid in 
identifying potential therapeutic targets for specific leukemias 
and provide potential prognostic indicators for HSC transplan‑
tation (HSCT). In the present review, the association between 
Notch1 and HSCs and the link between the ubiquitination 
modification of Notch1 and HSCs were described. In addi‑
tion, the association between abnormal HSCs mediated by 
Notch1 or ubiquitinated Notch1and T‑cell acute lymphoblastic 
leukemia (T‑ALL) was also examined, which provides a prom‑
ising direction for clinical application.

Contents

1. Introduction
2. Overview of the Notch pathway
3. Notch1 and HSCs
4. Notch1 and ubiquitination
5. Clinical application
6. Conclusions and perspectives

1. Introduction

Stem cells are undifferentiated cells that have the ability to 
proliferate (self‑renewal) both in vitro and in vivo and differ‑
entiate into mature specialized cells (1). Stem cells can be 
divided into five groups: Totipotent stem cells (TSCs), pluripo‑
tent stem cells (PSCs), multipotent stem cells, oligopotent 
stem cells (OSCs) and unipotent stem cells (USCs) (2). TSCs 
have the highest differentiation potential, able to produce an 
entire living organism on their own, and most notably a zygote. 
PSCs can form cells in all the germ layers, with the excep‑
tion of the cells that form structures outside the embryo, and 
embryonic stem cells are a prime example. Multipotent stem 
cells can produce certain lineages of cells, and the majority of 
adult stem cells are multipotent, including hematopoietic stem 
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cells (HSCs), mesenchymal stem cells (MSCs), and other adult 
progenitor cells (3). OSCs can differentiate into numerous cell 
types, such as bone marrow stem cells which may develop into 
white blood cells but not red blood cells. Eventually, USCs 
may form only one cell type, such as skin cells.

Among multipotent stem cells, HSCs are the most common 
multipotent stem cells with the ability to maintain homeostasis 
by self‑renewal or differentiation into all blood cell lineages (4). 
The stemness of the HSCs combines the ability of the HSCs to 
perpetuate its lineage, to produce differentiated cells (such as 
lymphocytes and granulocytes) and to interact with the hema‑
topoietic microenvironment to maintain a balance between 
quiescence, proliferation, and regeneration (5). In short, the 
stemness of HSCs helps maintain the homeostasis of the blood 
system by balancing the proliferation and differentiation of 
HSCs. When the stemness of HSCs is destroyed, abnormal 
production of blood cells occurs and further abnormal blood 
system tumors are produced, namely leukemia (6). Common 
subtypes of leukemia include acute myelogenous leukemia 
(AML), acute lymphoblastic leukemia (ALL), chronic myelog‑
enous leukemia (CML) and chronic lymphoblastic leukemia 
(CLL). Therefore, a full understanding of the signaling path‑
ways or regulatory factors that are capable of regulating the 
stemness of HSCs may provide further insight into HSCs and 
hope for a cure for leukemia.

In recent years, it has been gradually revealed that a series 
of signaling pathways, such as Wnt, Notch, the TGF‑β family, 
Hedgehog and Hippo signaling, could affect the stemness of 
HSCs, and that dysregulations of these pathways alone or coor‑
dinated may lead to the development of leukemia (7,8). Among 
them, Notch signaling, an evolutionarily conserved signaling 
pathway, is essential for the establishment of the earliest 
embryonic HSCs and is closely associated with the emergence, 
development, and maintenance of HSCs in adulthood (9). In 
this signaling pathway, Notch1 receptor is most closely associ‑
ated with the stemness of HSCs and plays a key role in T‑cell 
development and transformation (10). Abnormally activated 
or mutated Notch1 receptors severely affect the balance of 
proliferation and differentiation of HSCs which triggers 
the continuous emergence of abnormal lymphocytes, thus 
leading to lymphocytic leukemia, particularly T‑cell acute 
lymphoblastic leukemia (T‑ALL). In addition to the Notch1 
receptor itself, its post-translational modifications, such as 
glycosylation, phosphorylation, and ubiquitination, also affect 
the activation of the Notch1 pathway, thereby affecting the 
stemness of HSCs (11). Among these post‑transcriptional 
modifications, particular attention has been paid to the 
ubiquitination modification of Notch1, since it affects the 
degradation of Notch1 receptor (12), the activation of Notch1 
signaling (11), and the process of endocytosis that Notch1 
receptor undergoes (13). Therefore, this suggests that the key 
enzymes responsible for the ubiquitination modification of 
Notch1 may also, directly or indirectly, affect the stemness of 
HSCs and the development of leukemia (14‑16). In the present 
review, the structure of the Notch signaling pathway was firstly 
summarized in detail and the effects of the Notch1 receptor 
on HSC origin, proliferation, differentiation and associated 
T‑ALL, were described. Subsequently, the ubiquitination 
modification of Notch1 receptor and its effects on HSCs were 
elucidated. Finally, the clinical application of HSCs, as well as 

the potential therapeutic targets and prognostic indicators of 
Notch were reviewed.

2. Overview of the Notch pathway

Notch signaling is a major mediator in determining cell fate 
during development, and it regulates a variety of cell functions, 
including differentiation, proliferation, and homeostasis (17). 
Evidence suggests that the Notch signaling pathway has mark‑
edly opposite functions in tumor development, possibly acting 
as an oncogene or a tumor suppressor (18). In the process of 
hematopoiesis, Notch signaling controls the fate of hematopoi‑
etic progenitor stem cells by inhibiting certain differentiation 
steps and inducing self‑renewal or lymphatic lineage differen‑
tiation (19). 

Notch receptor, Notch ligand and DNA binding sequence 
CSL [CBF1/SU(H)/LAG‑1] are the three main components 
of the canonical Notch signaling pathway (20). There are 
four transmembrane Notch receptors (Notch1, Notch2, 
Notch3, and Notch4) and five typical transmembrane ligands 
[Delta‑like (DLL) 1, DLL 3, DLL 4, Jagged1, and Jagged 2] in 
mammals (21). The extracellular region of the Notch receptor 
(NECD) contains 29‑36 epidermal growth factor (EGF)‑like 
repeats, three LIN12/Notch repeats and a heterodimerization 
(HD) domain. Notch intracellular domains (NICD) include a 
RAM domain, seven cdc10/ankyrin repeats, two nuclear local‑
ization sequences, a transactivation domain (TAD) (Notch1 
and Notch2), and a C‑terminal PEST motif (22) (Fig. 1A). 
Notch ligand is a type I transmembrane protein that contains 
extracellular EGF‑like repeats, a Delta, Serrate and LAG‑2 
domain and a Delta and OSM‑11‑like protein domain, which 
together are responsible for Notch receptor interactions (21). 

The Notch signaling pathway is activated when a ligand on 
a cell membrane binds to the Notch receptor on an adjacent 
cell. The Notch receptor passes through three different proteo‑
lytic cleavages (Fig. 1A). First, a single polypeptide precursor 
protein is cleaved in the Golgi by a furin‑like convertase to 
produce a mature Notch receptor (S1) (21). When the mature 
Notch receptor binds to the ligand, a second cleavage (S2) is 
performed by TACE or Kuz of the A disintegrin and metal‑
loprotease metalloproteinase family to release extracellular 
fragments (20). The remaining transmembrane and intracel‑
lular domains are cleaved by γ‑secretase for a third time (S3), 
releasing the soluble NICD and transferring to the nucleus (20). 
Then, NICD binds to the DNA‑binding protein CSL/RBPJκ 
in the nucleus, activating genes which belong to the basic 
helix‑loop‑helix (bHLH) family (20). The general consensus 
is that CSL/RBPJκ persistently binds to the promoter of the 
targeted gene. In the absence of NICD, CSL/RBPJκ binds with 
co‑inhibitors (SMRT, histone deacetylase, etc.) to inhibit gene 
transcription. Conversely, when NICD enters the nucleus, it 
recruits co‑activators such as MAML to promote the transcrip‑
tion of target genes (23). In mammals, genes known as the Hes 
family (Hes1,5,7) and the Hey family (Hey1,2,L) are the major 
components of the bHLH family (24‑26). Hes1 is important in 
the development of the nervous system, sensory organs (eye, 
inner ear), pancreas, endocrine cells, and lymphocytes (24). 
Hes7 is essential for somitogenesis (25). By contrast, the Hey 
family play a key role in the cardiovascular system (26). In 
addition to the bHLH family, several other genes have also 
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Figure 1. Notch1 and HSCs. (A) Notch1 receptor structure and Notch1 signaling. Notch1 receptors are composed of an intracellular domain (36 EGF‑like repeats, 
three LIN12/Notch repeats and an HD domain), a transmembrane domain and an extracellular domain (RAM domain, seven cdc10/ankyrin repeats, two NLS, a TAD 
domain, and a PEST motif). The Notch1 receptor undergoes three proteolysis processes to become N1ICD. Above all, the precursor Notch1 receptor is cleaved by 
a furan‑like convertase (S1) in the Golgi apparatus. When bound to the ligand, TACE or Kuz perform a second cleavage (S2). The remaining domain is cleaved by 
γ‑secretase (S3) to release N1ICD. The N1ICD enters the nucleus and the target gene is detached from the Co‑R. Then, N1ICD, together with SCL and Co‑A, promotes 
the transcription of target genes. N1ICD in the nucleus and cytoplasm is degraded by 26S proteasome through a process of poly-ubiquitination modification. However, 
N1ICD in the nucleus is phosphorylated by CDK8 before the ubiquitination modification. (B) Effects of Notch1 signaling on self-renewal (proliferation) and differen‑
tiation of HSCs. In general, Notch1 promotes the proliferation of HSCs and inhibits their differentiation. However, when hematopoietic stem cells begin to differentiate, 
Notch1 promotes hematopoietic stem cells to differentiate into T lymphocyte lines rather than myeloid lines. In addition, Notch1 signaling drives T‑cell development at 
the expense of the development of B cells. In the end, the most important carcinogenic pathway in T‑ALL is the activation mutation of Notch1 signaling. (C) Processes 
and types of ubiquitination modification. The ubiquitin molecule is added to the substrate by the action of E1, E2 and E3 in turn. Ubiquitination modification mainly 
involves mono-ubiquitination modification and poly-ubiquitination modification. (D) The process of endocytosis. When no ligand binds, Notch1 undergoes endocytosis. 
Notch1 is mono-ubiquitinated before EE is formed. Then, EE will gradually mature into ME. Subsequently, the multiple MEs are fused into MVEs with the assistance 
of ESCRT. The position of Notch1 on the MEVs determines its fate. If Notch1 is present on the limiting membrane of MVBs, it may be recycled to the cell membrane 
for utilization. If Notch1 on the MVB-limiting membrane is cleaved and N1ICD is released, Notch1 signaling will be activated. However, the residual Notch1 in ILVs is 
transported to lysosomes for degradation. EGF-like, 36 epidermal growth factor (EGF)-like repeats; LIN12/Notch1, three LIN12/Notch repeats; HD, heterodimeriza‑
tion domain; transmembrane, transmembrane domain; RAM, RAM domain; NLS, nuclear localization sequences; cdc10/ankyrin, seven cdc10/ankyrin repeats; TAD, 
transactivation domain; PEST, PEST motif; ER, endoplasmic reticulum; S1, first proteolytic cleavage; S2, second proteolytic cleavage; S3, third proteolytic cleavage; 
N1ICD, Notch1 intracellular domains; Co-A, co-activators; Co-R, co-inhibitors; CSL, DNA-binding protein CSL/RBPJκ; HSC, hematopoietic stem cell; HPC, 
hematopoietic progenitor cell; MPC, myeloid progenitor cell; LPC, lymphoid progenitor cell; T-ALL, T-cell acute lymphoblastic leukemia; E1, ubiquitin-activating 
enzyme; E2, ubiquitin-conjugating enzyme; E3, ubiquitin ligase; mono-, mono-ubiquitination; poly-, poly-ubiquitination; Ub, ubiquitin molecule; EE, early endosome; 
ME, maturing endosome; ESCRT, endosomal sorting complexes required for transport; ILV, interluminal vesicle. 
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been identified as Notch targets, including p27Kip1 (27), 
cyclin D1 (28), myc (29), and Deltex1 (30).

The main substrates that undergo ubiquitination modifica‑
tion in this signaling pathway are Notch receptor, Notch ligand 
and γ‑secretase (31). Among them, the ubiquitination modi‑
fication of Notch receptor, particularly Notch1 receptor, may 
mostly affect the signaling strength of this pathway (31). The 
Notch1 receptor firstly undergoes either mono-ubiquitination 
or poly‑ubiquitination, thereafter the Notch1 receptor is 
degraded or the Notch1 signaling is activated, thereby affecting 
the Notch1 signaling and the expression of downstream genes. 
The detailed process is subsequently described.

Since Notch1 receptor‑mediated Notch1 signaling 
plays an irreplaceable role in the blood system, The 
Cancer Genome Atlas database (https://portal.gdc.cancer.
gov/exploration?filters=%7B%22op%22%3A%22and%22%2C 
%22content%22%3A%5B%7B%22op%22%3A%22in%22%
2C%22content%22%3A%7B%22field%22%3A%22cases.
available_variation_ta%22%2C%22value%22%3A%5B%22ss
m%22%2C%22cnv%22%5D%7D%7D%2C%7B%22op%22%
3A%22in%22%2C%22content%22%3A%7B%22field%22%3A
%22cases.project.project_id%22%2C%22value%22%3A%5B
%22TARGET-ALL-P3%22%2C%22TCGA-DLBC%22%2C% 
22TCGA-LAML%22%5D%7D%7D%2C%7B%22op%22%3
A%22in%22%2C%22content%22%3A%7B%22field%22%3A
%22genes.gene_id%22%2C%22value%22%3A%5B%22ENS 
G00000148400%22%5D%7D%7D%5D%7D&searchTableTa
b=cases) and the International Cancer Genome Consortium 
database (https://dcc.icgc.org/genes/ENSG00000148400/ 
mutations?donors=%7B%22from%22:1%7D&filters=%7B%
22donor%22:%7B%22primarySite%22:%7B%22is%22:%5B 
%22Blood%22%5D%7D%7D%7D) were consulted, respec‑
tively, and data on the expression and mutations of Notch1 
were obtained by searching for Notch1 mutations and 
selecting all hematology‑related malignancies in the database, 
including various types of lymphomas and leukemias. The 
Notch1 mutation rate was 32/241 (13.28%) in germinal B-cell 
derived lymphomas, 64/510 (12.55%) in CLL, 3/50 (6.00%) 
in T- and NK-cell lymphomas, 11/205 (5.37%) in AML and 
1/136 (0.74%) in chronic myeloid disorders. Through further 
integrating these data into disease categories, it was identified 
that Notch1 was mutated with a frequency of 9.72% in hema‑
tological malignancies. Furthermore, the mutation frequency 
of Notch1 in lymphomas was 12.03 and 8.93% in leukemias.

3. Notch1 and HSCs 

Origin of HSCs. HSCs are the cornerstone of the mammalian 
blood system (32). These stem cells self‑renew to maintain a 
stable pool of HSCs, which are able to differentiate into myeloid, 
lymphatic and erythroid cells as required, thus maintaining 
blood cell homeostasis (32). The Notch signaling pathway, 
particularly the Notch1 receptor, plays a key role in main‑
taining undifferentiated HSCs and inducing self‑renewal (9). 
Thus, Notch1 is biologically important in HSCs.

During human embryonic development, two distinct sites 
are involved in hematopoiesis: The extraembryonic yolk 
sac (YS) and the aorta‑gonadal‑mesonephric (AGM) region 
within the embryo (33). The hematopoiesis starts in the YS 
blood islands, travels to the fetal liver, and finally locates to the 

bone marrow during embryogenesis. Additionally, adult blood 
cells, including lymphocytes and hematopoietic progenitor 
cells (HPCs), are generated in the para‑aortic splanchnopleure 
(P‑SP) region, which then develops into AGM for long‑term 
hematopoiesis before the HSCs reach the fetal liver (34). The 
first long-term regenerated HSCs are detected in the AGM 
region. By positively regulating Notch1 through the tran‑
scription factor SOX17, Saito et al (35) revealed that Notch1 
intracellular domain (N1ICD) or its downstream target protein 
Hes1 transduced HSCs to maintain the ability of multipotent 
colony formation in AGM. By contrast, Notch1 and Hes1 
gene knockout resulted in a decrease in the ability to form 
multipotent colonies. These results indicate that Notch1 and 
Hes1 are critical for maintaining the undifferentiated state of 
HSCs (35). Thus, Notch1 is critical to the production of HSCs 
during embryogenesis. 

With regard to the origin of HSCs, it is generally considered 
that embryonic HSCs and progenitor cells are derived from 
the hematopoietic endothelium, and thus the transformation of 
hematopoietic endothelial cells into HSCs and progenitor cells 
(EHT) is required. Zhang et al (36) demonstrated that inhibition 
of Notch1 signaling can promote EHT by G protein‑coupled 
receptor 183. In mouse embryos with Notch1 deletion muta‑
tions, distinct hematopoietic endothelial cells were identified, 
but they did not develop into HSCs (37). Differences in the 
ligands that activate Notch1 may contribute to the paradoxical 
nature of the results. Through analysis of experimental data, 
Gama‑Norton et al (38) revealed that 89% of endothelial 
cells co‑expressed Jagged1 and DLL4 ligands, and only a 
few endothelial cells expressed Jagged1 ligands alone (3.8%) 
or DLL4 ligands alone (4.6%) or neither (2.5%). The balance 
of the DLL4‑Notch1 and Jagged1‑Notch1 signaling pathways 
may ensure the correct establishment of endothelial and 
hematopoietic cell fates in AGM. Furthermore, they suggested 
that the deletion of Jagged1 ligand leads to increased Notch 
activity in the aortic endothelium of AGM through the micro‑
array analysis of AGM subpopulations, thereby improving 
the fate of endothelial cells at the expense of HSC formation. 
Conversely, when lacking the Jagged1‑Notch1 signaling and 
experiencing high DLL4‑Notch1 signaling, endothelial cells 
select the endothelial protocol, thus preventing the formation 
of HSCs. It was hypothesized that precursor hematopoietic 
cells responding to Jagged1 would attenuate the DLL4‑Notch1 
signaling, replacing it with an effective low Notch1 signaling, 
which is necessary and sufficient for activation of hema‑
topoietic genes such as GATA2 (38). In addition to GATA2, 
Fox2 from the Fox gene family induced by N1ICD also plays 
a role in hematopoietic endothelium. Data from a study by 
Jang et al (39) established a pathway that binds Notch signaling 
to its downstream Fox2 in hematopoietic endothelial cells, 
thereby promoting hematopoietic development. Collectively, 
these studies suggested that Notch1 has an indispensable role 
prior to HSC production (37). 

Proliferation and differentiation of HSCs. Through down‑
stream proteins or genes, particularly Hes1, the Notch signaling 
pathway mediated by Notch1 receptor promotes self‑renewal of 
HSCs and inhibits their differentiation (Fig. 1B). Using Rag‑1‑/‑ 
mouse stem cells, Stier et al (40) documented Notch1‑induced 
reduction of in vivo differentiation and an increased stem cell 
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population due to enhanced stem cell self‑renewal. The research 
of Shao et al (41) revealed that endothelial Jagged1‑Notch1 
deficiency severely affects the development of fetal blood 
vessels and impedes the proliferation and differentiation of 
HSCs in vitro and in vivo. Additionally, it was specified that 
Notch1‑Hes1 may act on hematopoietic precursor cells, which 
are produced following the fate of HSCs. Furthermore, Hes1 
not only preserved the long‑term recombination activity of 
HSCs in vitro, but also accumulated side population cells 
in vivo (42). These results suggested that Hes1 inhibits HSC 
differentiation. However, once HSCs enter the differentiation 
stage, Notch1 signaling promotes HSC differentiation, with a 
preference for the lymphatic rather than the myeloid line (40) 
(Fig. 1B). A previous study conducted by Henning et al (43) 
suggested that Notch1 signaling mediates this process via 
a p53‑dependent pathway. Collectively, the main effect of 
Notch1 signaling on HSCs is to promote its proliferation and 
inhibit its differentiation.

HSCs differentiate into T cells. When HSCs first enter the 
thymus and become early T‑cell precursor (ETP) cells, they 
receive high levels of Notch signaling regulation (44). On 
the one hand, excessive Notch1 signaling drives premature 
commitment of T cells, leading to loss of ETP cells and the 
fate of replacement cells (44). By contrast, complete loss of 
Notch1 signaling impairs ETP cell proliferation and leads to 
loss of ETP cells (44). Thus, maintaining a good balance of 
Notch signaling can maintain the stemness of HSCs.

In both mouse and human, Notch1 activation is the 
primary driver of inducing T‑cell development in hemato‑
poietic stem progenitor cells (Fig. 1B). The role of Notch1 in 
lymphogenesis has been well studied, and in particular the 
most prominent characteristic function of Notch1 signaling is 
maturation of T cells and lineage commitment in the mouse 
thymus (45). It has been demonstrated that the expression of 
Notch1 transgene in HSCs leads to thymus‑independent devel‑
opment of CD4+CD8+T cells (45). In addition, the study of 
Gerhardt et al (46) revealed that TAD in Notch1 drives T‑cell 
development at the expense of common precursor develop‑
ment of B cells. 

Notably, downstream target genes of Notch1, such as Hes 
and myc, are the driving force in the differentiation of HSCs 
into T cells. Hes1 has been revealed to be expressed in both the 
thymus and thymus stroma, and its expression in the thymus 
was regulated by Notch signaling (47). More than 90% of Hes1‑/‑ 

mice lacked thymus glands, suggesting that Hes1 is critical for 
the in vivo proliferation of early T‑cell precursors (48). In a 
recent study, De Decker et al (49) identified that Hes1 and Hes4 
were upregulated in a Notch‑dependent manner during early 
T‑cell development and Hes1 acted as a differentiation inhib‑
itor since it maintained quiescent stem cell characteristics in 
CD34+ HPCs. However, Hes4 promoted the initiation of early 
T‑cell development. Importantly, knockout of Hes1 or Hes4 
significantly reduced human T-cell development. As for myc, in 
a well‑established model of HSC T‑lymphocyte differentiation 
in vitro, Haque et al (50) determined that Notch1 and 4 directly 
promoted myc expression. It was further demonstrated that 
overexpression of myc promoted T‑cell differentiation, while 
dominant‑negative myc delayed T‑cell differentiation. These 
results confirmed that myc is an important mediator of Notch 

signaling in the differentiation of HSCs into T lymphocytes. 
The Notch1‑mediated emergence of these two different effects 
on HSC differentiation into T cells may be attributed to the 
Notch ligand. OP9‑cell co‑culture experiments revealed that 
Jagged2 induced T‑line differentiation and inhibited B cell and 
bone marrow development, as did DLL ligands (51). However, 
the results of Van de Walle et al (51) revealed a unique role of 
Jagged1 in preventing induction of differentiation of HSCs in 
T lines. 

T‑ALL. T‑ALL is an aggressive hematologic tumor in which 
the malignant transformation of HSCs and HPCs lead to the 
development of T cells (52). Although T‑ALL accounts for 
only 25% of ALL cases in adults and 15% in children, they 
have a higher risk of central nervous system recurrence in 
the presence of mutations activated by the Notch1 signaling 
pathway (53). Constitutive activation of Notch1 signaling is the 
most important oncogenic pathway in T‑cell transformation, 
and >65% of T-ALL patients have Notch1 activation muta‑
tions (52). In addition, Ma et al (53) concluded that Notch1 
signaling promotes cell regeneration in human T‑ALL. Most 
of the abnormal activation of Notch1 observed in T‑ALL is 
due to mutations in its HD domain and/or PEST domain (54). 
Of the 15 T‑ALL patients studied by Bhanushali et al (54), 6 
(40%) patients had at least one Notch1 mutation, with 2/15 
(13%) occurring in the HD domain and 4/15 (27%) in the 
PEST domain. In addition, mutations are considered to occur 
in 4 out of 10 (40%) adult patients; in the pediatric cohort, two 
out of five (40%) had both mutations in the PEST domain (54). 
Mutations in the HD domain of Notch1 receptor render it more 
susceptible to protein cleavage and then release of N1ICD, 
while mutations in the PEST domain of Notch1 receptor 
inhibit proteasomal degradation of N1ICD by F‑box and WD 
repeat domain containing 7 (Fbxw7), which is a ubiquitin 
ligase, thus prolonging its half‑life in T‑All cells. In addition, 
deletion or inactivation mutations of Fbxw7 are frequently 
observed in T‑ALL. In addition, Ding et al (55) revealed that 
fetal‑derived T‑cell precursor stem cells may play a role as 
leukemia initiation cells. This may be due to their discovery 
of overexpression of N1ICD in P‑SP and YS cells. P‑SP cells 
overexpressing N1ICD rapidly developed T‑ALL, while YS 
cells exhibited no leukemia proliferation following N1ICD 
induction. To date, Notch1 mutations have also been reported 
in CLL (56). Di Ianni et al (56) reported Notch1 mutation in 
HSCs of CLL patients, and aberrant activation of Notch1 in 
HSCs of CLL patients without Notch1 mutation. 

4. Notch1 and ubiquitination

Ubiquitination. Ubiquitination is a common and important 
post-translational modification process that plays a key role 
in protein homeostasis (57). It is mainly achieved through 
labeling the ubiquitin (an 8.6 kDa regulatory protein) to the 
substrate, which is then degraded in the 26S proteasome 
to release the ubiquitin molecule (58). In addition, ubiqui‑
tination also includes certain non‑proteolytic functions, 
such as receptor internalization (59), multiprotein complex 
assembly (60), inflammatory signaling (61), DNA damage 
repair (62), cell death (63), metabolism (64) and signaling 
activation (65,66). 
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Ubiquitination involves three different biochemical steps: 
activation, conjugation, and ligation, which are catalyzed by 
three types of ubiquitination enzymes: Ubiquitin‑activating 
enzyme (E1), ubiquitin‑conjugating enzyme (E2), and ubiq‑
uitin ligase (E3), respectively (67) (Fig. 1C). Initially, E1 causes 
the C‑terminal adenylation of ubiquitin (Ub) to catalyze the 
activation of ubiquitin in an ATP‑dependent manner (68). The 
mature ubiquitin is then transferred to cysteine at the active 
site of the E2 binding enzyme via trans-thiesterification (58). 
Finally, E3 and E2 jointly catalyze the formation of isopep‑
tide bonds between Ub and the substrate protein (69). Once 
attached to the target protein, ubiquitin can be ubiquitinated on 
any of its lysine residues (K6, K11, K27, K29, K33, K48, K63) 
or on its N‑terminal methionine (M1). The human proteome 
contains two E1s, ~50 E2s, and 600 E3s (70). Since largely 
determining substrate specificity, E3 plays a key role in the 
entire process of ubiquitination modification. E3s could be 
roughly divided into three families: the HECT family, the 
RING family, and the RBR family (64). 

The E1‑E2‑E3 cascade is capable of producing several 
types of Ub modifications, resulting in the different fates 
of substrates (3). In general, two types of ubiquitination 
modification are prevalent in cells: Mono-ubiquitination and 
poly‑ubiquitination (Fig. 1C). On the one hand, mono‑ubiquiti‑
nation is the addition of a single Ub molecule to the substrate. 
Poly‑ubiquitination, by contrast, is the addition of Ub chains 
to one or more lysine residues of the substrate (3). In most 
cases, membrane‑bound proteins are mono‑ubiquitinated, 
which contributes to their endocytosis and lysosomal degrada‑
tion (31,71). In addition, mono‑ubiquitination is also involved 
in meiosis and chromatin remodeling. However, poly‑ubiquiti‑
nation plays a role in the ubiquitin‑proteasome system (UPS), 
DNA repair, and immune signaling transduction (72). 

Ubiquitination modification of Notch1 receptor. Recent studies 
have suggested that the ubiquitination modification of Notch1 
receptor plays an irreplaceable role in the regulation of Notch 
signaling (73‑81). The ubiquitinated Notch1 receptor has three 
distinct fates: Transferring to the 26S proteasome, promoting 
N1ICD‑mediated signaling activation, and the endocytosis 
of Notch1 receptor. The fate of the Notch1 receptor that 
transfers to the 26S proteasome is degradation. However, the 
entry of Notch1 receptors into the process of endocytosis has 
three different outcomes: Cycling back to the cell membrane, 
becoming N1ICD and functioning in the nucleus or being 
degraded in lysosomes. 

Above all, the most important function of ubiquitinated 
Notch1 is degradation in the 26S proteasome (Fig. 1A). The E3s 
that mediate this process are mainly Sel‑10, Fbxw7 and RNF8. 
When N1ICD enters the nucleus, it forms complexes with 
MAML and CSL. Among them, MAML can recruit CDK8 
to phosphorylate the PEST domain of N1ICD. Subsequently, 
Fbxw7, an E3, modifies the phosphorylated N1ICD for 
poly‑ubiquitination and then enters into the 26S proteasome 
for degradation (12). Similarly, Wu et al (82) demonstrated that 
human Sel‑10 (hSel‑10) and Sel‑10 bind N1ICD proteins in a 
region-specific manner and that the interaction between Sel-10 
and N1ICD is phosphorylation‑dependent. In vitro ubiquitina‑
tion modification experiments also revealed that Sel-10 and 
hSel-10 mediated ubiquitination modification of N1ICD, which 

were subsequently degraded by the 26S proteasome in cells. 
As for RNF8, it acts as a negative regulator of Notch signaling 
through ubiquitination modification of N1ICD, leading to its 
degradation, thereby regulating Notch1 signaling and cell fate 
determination in lumen progenitor cells of the breast (83). 

Another essential role of the ubiquitination modification of 
Notch1 is the activation of Notch signaling. Pettersson et al (11) 
revealed that MDM2 also regulates Notch signaling through 
direct interaction with N1ICD, leading to ubiquitination 
modification of N1ICD. However, this type of ubiquitination 
modification does not result in the degradation of N1ICD, but 
triggers the activation of the Notch signaling pathway. In addi‑
tion, MDM2 also interacts with Notch regulator NUMB and 
induces its ubiquitination modification and degradation (11). 

With the exception of the Notch1 proteasomal degrada‑
tion and signaling activation, ubiquitination modification 
also regulates the endocytosis of Notch1 (Fig. 1D). In the 
absence of a ligand, Notch1 is continuously internalized 
and then degraded in lysosomes (84), circulating back to 
the plasma membrane (85,86) or activating Notch signaling. 
This mechanism is a way to maintain Notch1 function and 
ultimately regulate Notch signaling strength by targeting 
Notch1 levels on the cell surface. Notch1 begins the process 
by its internalization in the early endosome (EE) vesicles and 
then fuses with the EE. The EE then matures and merges into 
a maturing endosome (ME). Finally, multiple MEs fuse to 
form multivesicular bodies (MVBs). In this step, Notch1 has 
the three distinct aforementioned fates, specifically, it either 
returns to the membrane by circulating endosomes, remains 
in MVBs, or activates the Notch1 signaling. These different 
fates depend on the position of Notch1 in MVBs. If Notch1 is 
present on the limiting membrane of MVBs, it can be recycled, 
and when the part of Notch1 present on the MVB-limiting 
membrane is cleaved to release N1ICD, Notch1 signaling can 
be activated (31). However, Notch1 remaining in MVB inter‑
luminal vesicles (ILVs) can be further degraded by lysosomes. 
MVB formation is controlled by endosomal sorting complexes 
required for transport (ESCRT), a sequentially acting 
macromolecular protein complex that ultimately allows ILV 
formation (87,88). Mono-ubiquitination modification of Notch1 
has been revealed to be necessary for effective recruitment to 
the endosomal membrane by the ESCRT machinery compo‑
nents and formation of ILV (89). If the ESCRT mechanical 
component is not functional, the mono‑ubiquitinated Notch1 
accumulates on the limiting membrane of MVBs, resulting in 
aberrant signaling activation. This suggests that mono‑ubiq‑
uitination modification may be directly or indirectly involved 
in Notch endocytosis regulation and vesicular transport. The 
E3s that mediate this process include Su(dx)/Itch/AIP4, Cbl, 
NEDD4, and Deltex (DTX). The results of their effects depend 
on the cell contexts, as well as their abundance. In addition, 
Su(dx)/Itch/AIP4, DTX, and NEDD4 may also enable Notch1 
to be labeled by poly-ubiquitination modification and then 
degraded into proteasome (73‑81) (Table I).

Effects on HSCs. Regulation of N1ICD through ubiquitination 
modification is absolutely critical for proper Notch signaling, 
as maintaining Notch signaling over long periods of time can 
lead to severe diseases. For example, either a deletion of the 
Notch1 gene, leading to a deletion of the PEST domain of 
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Notch, or a mutation in the Fbxw7 gene, encoding an inactive 
or absent enzyme is associated with T‑ALL (88). In the present 
study, three E3s were focused on, all of which affect the stem‑
ness of HSCs through Notch1 receptor.

Cell cycle quiescence maintains the stemness of HSCs 
by protecting them from differentiation or senescence (90). 
Fbxw7 can induce the degradation of positive regulators such 
as myc and Notch1 in the cell cycle. Iriuchishima et al (91) 
revealed that Fbxw7 maintained HSCs and inhibited leukemia 
by mediating ubiquitin‑dependent degradation of myc and 
Notch1. Thompson et al (92) also demonstrated that the 
Fbxw7‑/‑ severely affected the maintenance of HPCs in the bone 
marrow, and the cell autonomy defect of stem cell self‑renewal 
led to the defect of HSC silencing and self‑renewal, which 
was attributed to the loss of the function of Fbxw7 deletion to 
ubiquitination modification and degradation of Notch1 or myc. 
Therefore, Fbxw7 serves as a key fail‑safe device to prevent 
premature loss of HSCs and the development of T‑ALL (93). 

In addition, Cbl is a new negative regulator of HSC devel‑
opment and functional characteristics. Rathinam et al (94) 
determined that HSCs of Cbl‑/‑ mice had increased pool 
capacity, increased proliferation, and increased long‑term 
regeneration. Furthermore, Zhu et al (16) revealed that flavone 
promoted Cbl-induced ubiquitination modification and degra‑
dation of N1ICD, resulting in resistance to T‑ALL. 

Ultimately, HSCs in Itch‑/‑ mice exhibited increased 
frequency, ability, and long‑term regenerative activity. 
Rathinam et al (95) demonstrated that Itch-deficient HSCs 
exhibited accelerated proliferation rates and sustained 
progenitor cell properties due to increased accumulation of 
Notch1 activation, as well as increased Notch1 signaling by 

the transcription factor. Therefore, E3 ubiquitin ligase Itch 
negatively regulates the development and function of HSCs.

5. Clinical application 

Multipotent stem cells, particularly HSCs and MSCs, are 
widely used in clinical practice due to their characteristics 
of self‑renewal, multidirectional differentiation as well 
as numerous others. For example, MSCs have paracrine, 
anti-inflammatory, and immunomodulatory effects in addi‑
tion to their role in tissue regeneration (96). MSC‑derived 
chambers or substances (including exosomes, microvesicles, 
and microRNA) can serve as practical tools for diagnosing, 
following up, managing, and monitoring disease. In addi‑
tion, Tehrani et al (97) suggested that MSCs could serve 
as a vehicle for gene‑directed enzyme prodrug therapy, in 
which suicide genes are directed to tumor cells, attributing 
to their remarkable homing properties to the tumor sites. 
Mirzaei et al (98) considered that MSCs could carry 5-fluo‑
rouracil, suicide genes such as pigment epithelium‑derived 
factor, INF‑α, INF‑β and INF‑γ to melanoma sites to inhibit 
tumor growth. More specifically, interferon‑γ‑induced 
protein 10 kDa (IP‑10) secreted by human adipose‑derived 
MSCs may be involved in this process (99). In addition, it has 
been gradually determined that this method of gene therapy 
can also be applied to the treatment of osteoarthritis (100), 
cardiovascular disease (101) as well as other diseases, in 
recent years. However, MSCs also secrete certain growth 
factors, chemokines, and cytokines, which increase the 
burden of tumors, and this may be the most important unre‑
solved issue with this treatment approach (102). 

Table I. E3s of Notch1 receptor.

E3 Substrate Species E3‑type Ubiquitination Effect (Refs.)

Sel‑10 N1ICD Caenorhabditis  RING poly‑ Proteasome degradation (73)
  elegans
hSel‑10 N1ICD Human RING poly‑ Proteasome degradation (82)
Fbxw7 N1ICD Mammal RING poly‑ Proteasome degradation (12)
RNF8 N1ICD Mammal RING poly‑ Proteasome degradation (83)
MDM2 N1ICD Mammal RING mono‑ Signaling activation (11)
Su(dx) Notch1 Drosophila HECT mono‑ Endocytosis (74,75)
    poly‑ Proteasome degradation 
Itch Notch1 Mammal HECT mono‑ Endocytosis (76,77)
    poly‑ Proteasome degradation 
AIP4 Notch1 Human HECT mono‑ Endocytosis (85)
    poly‑ Proteasome degradation 
NEDD4 Notch1 Drosophila,  HECT mono‑ Endocytosis (77,78)
  mammal  poly‑ Proteasome degradation 
DTX  Notch1 Melanogaster,  RING mono‑ Endocytosis (13,79,80)
  mammal    (upgrade signaling) 
    poly‑ Proteasome degradation 
Cbl Notch1 Vertebrate RING mono- Lysosomal degradation (16,81)
    poly‑ Proteasome degradation 

N1ICD, Notch1 intracellular domains; E3, ubiquitin ligase; DTX, Deltex.
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Since the Notch1 signaling pathway and its UPS mainly 
affect the stemness of HSCs, attention should be paid to the 
progression of HSCs in the treatment of leukemia, so as to 
provide a better direction for the treatment of leukemia. 
HSC‑related therapies are gradually applied in the treatment 
of leukemia. Transplantation of HSCs from bone marrow, 
peripheral blood or cord blood is currently one of the most 
popular stem cell therapies in blood system diseases (103). 
HSC transplantation (HSCT) is a therapeutic method in 
which patients receive a massive high‑dose of radiotherapy 
or chemotherapy (usually a lethal dose of radiotherapy or 
chemotherapy), occasionally combined with other immuno‑
suppressive drugs to remove tumor cells and aberrant clonal 
cells in the body, and then reinfuse the HSCs collected from 
the patients themselves or other individuals to reconstruct 
normal hematopoietic and immune functions (104). HSCT is 
widely used in the treatment of hematological malignancies, 
such as acute leukemia, CML, lymphoma, multiple myeloma 
(MM), myelodysplastic syndrome (MDS), and certain hemato‑
logical non‑malignant tumors, such as severe aplastic anemia 
(AA) and thalassemia (105). The process may be autologous 
(using the patient's own cells), allogeneic (stem cells from a 
donor), or syngeneic (from identical twins) (2). For numerous 
types of leukemia, allogeneic HSCT (allo‑HSCT) is a more 
suitable standard cell treatment option than autologous HSCT 
(auto‑HSCT) (106‑110) (Table II).

In view of the fact that HSCs are derived from the patients 
themselves during the process of auto‑HSCT, there will be no 
graft rejection and graft-vs.-host disease (GVHD) and there are 
few transplantation complications. The low transplant‑related 
mortality and favorable quality of life following transplanta‑
tion are due to the no limitation of donor constraints. However, 
given the lack of graft antitumor effect and the possibility 
of residual tumor cells in the graft, the recurrence rate is 

high. Auto‑HSCT has become a routine treatment option for 
patients with lymphoma (111), certain low‑risk acute leuke‑
mias (112), highly invasive, relapsed/refractory non-Hodgkin's 
lymphoma (NHL) (113) and MM (114). For example, the clin‑
ical efficacy of auto-HSCT for AML has gradually improved. 
A group of European researchers retrospectively analyzed 
the survival outcomes of 809 patients with AML in their first 
complete response and identified that the 2-year leukemia-free 
survival rate and overall survival rate were 51 and 65%, 
respectively, and the non‑recurrence mortality rate was only 
3.7% (115). Taking it a step further, Passweg (116) revealed 
that the 3-year overall survival rate of AML was 34 (21-56)% 
following chemotherapy, but 75 (60-95)% following consolida‑
tion with auto‑HSCT. In fact, a large number of studies have 
revealed that auto‑HSCT is associated with lower recurrence 
rates and an acceptable non‑recurrent mortality rate in AML 
patients compared with chemotherapy alone (115). In addi‑
tion, in certain AML patients, auto‑HSCT was comparable to 
allo‑HSCT in overall survival (116). 

The HSCs in allo‑HSCT are derived from normal 
donors without tumor cell contamination. Considering the 
immune‑antitumor effect of the graft, it has a low recurrence 
rate, a high long‑term disease‑free survival rate (also known 
as cure rate), a wide range of indications, and is even the only 
cure for certain diseases (114). However, due to the limited 
sources of donors, GVHD is prone to occur with numerous 
transplant complications, leading to high graft‑related 
mortality. Therefore, patients need to be treated with immu‑
nosuppressants for a long period of time, and the quality of 
life of long‑term survivors may be poor. Patients at moderate 
or high risk for acute leukemia (117), AML (118), MDS (119), 
severe AA (120), and thalassemia (121) are suitable for 
allo‑HSCT (122). To date, allo‑HSCT remains the only radical 
treatment for CML. Allo‑HSCT is exhibiting better results in 

Table II. HSCT.

 Recurrence      
 rate at  Main risk Indications  
 100 days 5‑Year factor for Indications 
 following survival for late malignant for other 
Type HSCT rate mortality tumors diseases (Refs.)

Auto-HSCT 57% 88% Relapse MM, NHL, HL,  Autoimmune  (106-109)
    AML, ALL, disorders, 
    neuroblastoma,  amyloidosis, 
    ovarian etc.
    cancer, germ‑cell
    tumors, etc.
Allo-HSCT 46% 83% Chronic AML, ALL, CML AA, PNH,  (107,108,110)
   GVHD NHL, HL, CLL, Fanconi's anemia, 
    MM, MDS, sickle cell anemia,
    myeloproliferative Wiskott‑Aldrich
    disorders, etc. syndrome, etc.

HSCT, hematopoietic stem cell transplantation; MM, multiple myeloma; MDS, myeloproliferative disorders; NHL, non-Hodgkin's lymphoma; 
HL, Hodgkin's lymphoma; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; AML, acute myelogenous leukemia; 
CML, chronic myelogenous leukemia; AA, aplastic anemia; PNH, paroxysmal nocturnal hemoglobinuria.
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the treatment of CML due to improved HLA gene matching 
techniques, the use of tyrosine kinase inhibitors, advances in 
postoperative immune status and fusion gene monitoring and 
improvements in postoperative complications, particularly 
GVHD (123). Similar to CML, allo-HSCT is effective in 
alleviating highly complex and severe AML. However, relapse 
is a major cause of treatment failure for AML patients under‑
going allo‑HSCT. Therefore, an effective and safe approach is 
required, in the future, to improve survival following remis‑
sion of AML (117). In addition, a female patient with adult 
T‑cell leukemia/lymphoma involving bone, skin, and skeletal 
muscle exhibited a favorable post‑transplant course after 
receiving cyclophosphamide following allo‑HSCT from her 
son in a clinical case report (124). There has been no progres‑
sion of disease for more than two years, suggesting that this 
approach offers a well‑tolerated and potentially curable 
treatment for this hard‑to‑treat disease (124). Given the high 
toxicity of this treatment, graft‑anti‑leukemia response and the 
high recurrence and mortality rate, novel post‑transplantation 
maintenance regimens need to be studied.

In a ser ies of studies, it was revealed that the 
Notch1/Fbxw7 mutations in T‑ALL patients may be useful 
biomarkers for predicting the prognosis of T‑ALL. In a 
survey of 50 patients with T‑ALL in southern India, there 
were 20 out of the 50 (40%) patients with Notch1/Fbxw7 
mutations among which the 13 out of the 20 (65%) T-ALL 
patients with Notch1/Fbxw7 mutations exhibited favor‑
able prednisone responses (P=0.01) and improved clinical 
outcomes compared with patients without Notch1/Fbxw7 
mutations (P=0.03) (125). In the survival analysis of the 
sample (n=50) studied by Valliyammai et al (126), it was 
determined that patients with Notch1/Fbxw7 hotspot 
mutation had earlier response to treatment and improved 
survival. Additionally, it was suggested that Notch1/Fbxw7 
hotspot‑mutated T‑ALL cases responded better to the ALL 
BFM‑95 protocol. Furthermore, pediatric T‑ALL patients 
with either double Notch1 mutations (Notch1DoubleFbxw7WT) 
or mutations in both genes (Notch1MUTFbxw7MUT), here‑
after termed as Notch1±Fbxw7Double, had an improved 
outcome (127). Jenkinson et al (127) screened 162 pediatric 
T‑ALL patients treated in the MRC UKALL2003 trial for 
Notch1/Fbxw7 gene mutations and associated genotypes in 
response to treatment and long‑term outcomes. Of the 162 
patients, 57 (35%) patients were both Notch1 and Fbxw7 
wild-type, 62 (38%) patients had single Notch1 mutations, 
5 (3%) patients had single Fbxw7 mutations, and 39 (24%) 
patients had Notch1±Fbxw7Double. It was revealed that while 
14 Notch1±Fbxw7Double patients were classified as high 
risk, only 2 patients progressed in disease and all survived. 
Collectively, these data suggested that detecting the Fbxw7 
mutations adds important prognostic value to the separate 
assessment of Notch1 status, justifies individual treatment 
stratification of T-ALL (128), and allows the identification 
of the majority (72%) of Notch1/Fbxw7‑mutated T‑ALL 
patients with a relatively favorable prognosis, who cannot 
be treated with more classical, clinical, immunophenotypic 
or carcinogenic markers (128). Conversely, loss of Fbxw7 in 
primary T‑ALL has also been reported to provide a favorable 
prognosis for patients. Loss of Fbxw7 reduces ubiquitination 
modification and degradation of glucocorticoid receptor α, 

thus enhancing glucocorticoid sensitivity. This increased 
sensitivity can enhance glucocorticoid response to treatment 
and provide a favorable prognosis for T‑ALL (129). 

In addition, several studies identified Cbl and Fbxw7 as 
new targets for anti‑Notch1 therapy. Saito et al (130) revealed 
that flavonoids induced N1ICD degradation through the UPS 
by increasing Cbl in T‑ALL. Flavonoid‑induced resistance 
to T-ALL was also revealed, and Cbl was identified as a new 
N1ICD binding partner critical for regulating its stability and 
carcinogenic function. In the case of Fbxw7, oridonin has 
exhibited an anti‑leukemia activity in vitro and in vivo by 
promoting Fbxw7-mediated ubiquitination modification and 
degradation of myc (131). These studies suggest that flavonoid 
and oridonin are potential drugs for T‑ALL.

6. Conclusions and perspectives 

Notch signaling, particularly Notch1 receptor, is the primary 
regulator of HSC stemness in embryos and adulthood, and its 
role in inducing leukemia (e.g., T‑ALL) has been detailed in a 
variety of studies (52‑55,132). In general, Notch1 can promote 
the proliferation of HSCs and inhibit its differentiation (133). 
However, due to the context dependence of the Notch signaling 
pathway and activation by different ligands, Notch1 receptor 
can also partially inhibit the proliferation of HSCs and 
promote their differentiation. Additionally, the lifetime and 
activity of the Notch1 receptor is largely determined by the 
UPS that regulates Notch1 receptor degradation, activation 
of Notch1 signaling, and Notch1 receptor endocytosis and 
its subsequent fate. Additionally, the signaling enhancement 
or mutations of the Notch1 pathway and the dysregulations 
or mutations of Notch1‑related UPS have been demonstrated 
to be closely associated with the aberrancy of HSCs and the 
occurrence of leukemia (134). Therefore, further revealing 
the details of this pathway and the factors that regulate the 
UPS could help improve the treatment and prognosis of 
leukemia.

Since the present review is limited to the effects of Notch1 
receptor and its ubiquitination modification on HSCs, other 
receptors and ligands of the Notch signaling pathway, or other 
regulatory modes of this pathway such as phosphorylation, 
require clarification. In addition, several studies have revealed 
that Notch signaling interacts closely with other signaling 
pathways, such as the Wnt, hippo, TGF‑β family and Hedgehog 
that regulate stem cell properties, but these associations have 
not been well elucidated (135‑139). Therefore, future research 
may also focus on the interactions or crosstalk between these 
pathways.

Currently, Notch1 and Fbxw7 are mainly used as prog‑
nostic indicators of T‑ALL (140). However, studies on these 
two proteins and their regulators as treatments for leukemia 
are urgent. In particular, their application as therapeutic targets 
for leukemia or in combination with other chemotherapeutic 
agents require further study. In addition, it is necessary to 
examine whether they can be used as prognostic indicators for 
auto‑HSCT or allo‑HSCT. 
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