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Abstract

Sunk costs are irrecoverable investments that should not influence decisions, because decisions 

should be made on the basis of expected future consequences. Both human and nonhuman animals 

can show sensitivity to sunk costs, but reports from across species are inconsistent. In a temporal 

context, a sensitivity to sunk costs arises when an individual resists ending an activity, even if it 

seems unproductive, because of the time already invested. In two parallel foraging tasks that we 

designed, we found that mice, rats, and humans show similar sensitivities to sunk costs in their 

decision-making. Unexpectedly, sensitivity to time invested accrued only after an initial decision 

had been made. These findings suggest that sensitivity to temporal sunk costs lies in a 

vulnerability distinct from deliberation processes and that this distinction is present across species.

Traditional economic theory suggests that decisions should be based on valuations of future 

expectations that ignore spent resources that cannot be recovered [sunk costs (1)]. However, 

extensive evidence shows that humans factor such sunk costs into prospective decisions, 

even when faced with better alternatives (2, 3). Although early reports claimed that humans 

are uniquely sensitive to sunk costs (2, 3), it is becoming increasingly clear that nonhuman 

animals exhibit parallel behaviors (4).

Previous nonhuman animal studies that attempted to model the sunk cost phenomenon have 

yielded conflicting evidence (4, 5). Observational and experimental field studies in 

swallows, sparrows, mice, and bluegills have found evidence both for and against the sunk 

cost effect in behaviors relating to parental investment and willingness to care for young (6–

10). Yet in such studies, it has been difficult to disentangle influences of investment history 

from those of future prospects. Laboratory operant conditioning paradigms in pigeons and 

rats that control for future expectations when looking at reinforcement learning behaviors 
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have demonstrated that nonhuman animals show increased work ethic or suboptimal 

perseverative reward-seeking behaviors that escalate with prior investment amount (11, 12). 

However, these observations often relied on situations of information uncertainty, where 

subjects overworked in the absence of progress-indicating cues. These observations also 

often relied on automation or habit-like behaviors (e.g., repetitive lever pressing) driving 

continued reward pursuit. Such confounding factors in nonhuman animal studies obscure 

translation to human sunk cost effects, which do not depend on these mechanisms.

Laboratory foraging tasks provide an alternative approach to study decision-making by using 

naturalistic behaviors that carry both ecological validity and evolutionary significance and 

are translatable across species (13). Foraging tasks rely on optimizing reward-seeking under 

conditions of limited resources, making them economic tasks.

We designed a foraging task in which subjects spent time from a limited time budget waiting 

for rewards [Fig. 1, Restaurant Row (14) and web-Surf (15)]. The division of time spent 

during the task reveals the economic preferences of the subjects. All three species learned to 

forage in a way that revealed preferences for certain rewards, and all species used reliable 

subjective valuation strategies to decide between multiple competing reward offers 

(supplementary text S1). Our neuro-economic tasks directly test sensitivity to sunk costs 

across species.

Flavors and genres of rewards (Fig. 1) allowed us to measure subjective preferences as a 

function of cost, avoiding the confounding possibility that different reward sizes might 

require different consumption times. Multiple zones allowed us to characterize multiple 

valuation processes involved in decisions: initial commitment valuations (offer zone), 

secondary reevaluations (wait zone), and postconsumption hedonic valuations 

(supplementary text S1 and S2). In this task, two key factors minimized information 

uncertainty and automated reward-seeking behavior as potential confounding factors: (i) 

Subjects were provided full information on cost and investment progress (tones counting 

down or download bar shrinking), and (ii) earning rewards required subjects to wait and 

withhold quitting after making an initial acceptance decision (rather than requiring a 

repetitive action).

To address susceptibility to sunk costs, we examined quit decisions in the wait zone. These 

behaviors involve the abandonment of continued reward pursuit despite having made prior 

investments (partial waiting) while on a limited budget (time). We parameterized the 

probability of earning a reward in the wait zone as a function of the remaining time 

investment required to earn a reward (future costs) and the prior time investment already 

spent waiting in the wait zone [past (sunk) costs; fig. S3]. The data yielded many samples 

across all conditions of time remaining and time spent (fig. S4), which allowed us to 

measure the extent to which irrecoverable prior investments (sunk costs) escalated wait zone 

commitment (fig. S5).

We found that mice, rats, and humans demonstrated robust sunk cost effects [analysis of 

variance (ANOVA) collapsing across all sunk cost conditions: mice, F = 30.75, P < 0.0001; 

rats, F = 45.65, P < 0.0001; humans, F = 3.95, P < 0.0001] (Fig. 2). Importantly, increasing 
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prior investment amounts generated a continuously stronger sunk cost effect (example post-

hoc comparison between +l-s and +5-s sunk costs: mice, F= 45.49, P < 0.0001; rats, F= 
54.41, P < 0.0001; humans, F = 4.21, P < 0.05) (Fig. 2)—a critical tenet of the sunk cost 

fallacy (2, 4).

Time spent in the offer zone also detracts from the total time budget, and a similar analysis 

can be performed (fig. S6). In contrast to our findings for reevaluation processes in the wait 

zone, we found no effect of time spent in the offer zone. That is, the amount of time spent in 

the offer zone did not alter the probability of earning rewards once in the wait zone (ANOVA 

collapsing across all offer conditions: mice, F = 1.55, P = 0.23; rats, F = 0.77, P = 0.39; 

humans: F = 0.12, P = 0.74) (Fig. 3). Importantly, the delay to reward did not start counting 

down while the subject remained in the offer zone. This meant that the animal was choosing 

between distant options and had not yet invested in the offer. This lack of an effect of time 

spent in the offer zone on progress abandonment once committed suggests that waste 

avoidance, overall resource depletion, and loss aversion are insufficient explanations of sunk 

cost-driven escalation of reward-seeking behavior (figs. S7 to S11, supplementary text S2 

and S3, and table SI). This also suggests that the offer zone and wait zone may access 

separable valuation processes and reveals a previously unknown determinant of 

susceptibility to sunk costs rooted in dissociable decision-making algorithms that are 

conserved across species.

A sensitivity to sunk costs defies optimality considerations (fig. S12). So, why has this 

cognitive bias persisted across evolution (supplementary text S4)? Three plausible 

psychological mechanisms that support sunk cost biases include (i) that it may be more 

advantageous to calculate reward value through effort expended, (ii) state-dependent 

valuation learning (SDVL), and (iii) within-trial contrast (WTC) processes (12,16–20). We 

discuss each of these below.

Because predicting valuations that depend on future outcomes is complex and difficult, 

animals may have evolved processes in which valuation is measured from effort spent rather 

than calculated explicitly as an estimate from constructed imaginations of potential future 

outcomes. Past effort is easy to measure but has a limited (though nonzero) correlation with 

future value. In contrast, calculating value from expected future outcomes has its own 

estimation uncertainties. If the correlation between past efforts and future value provides 

better predictions than the uncertainties of future outcomes, then animals may have evolved 

processes that use past effort as a proxy to estimate future value (16, 19). This can explain 

our observation that the postconsumption evaluation increases proportionally to the time 

spent waiting for the reward in all three species (fig. S13 and supplementary text S5). The 

fact that susceptibility to sunk costs only accrued in the wait zone implies that valuations in 

the offer zone depend on different processes that do not include measures of effort spent, but 

that may be more related to direct estimates of future value.

The SDVL theory hypothesizes that energy spent working toward reward receipt moves the 

individual into a poorer energy state, enhancing the perceived value of the yet-to-be-obtained 

reward (19, 20). This continued work can thus escalate commitment of continued reward 

pursuit with growing sunk costs. Similarly, the WTC theory describes the sunk cost 
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phenomenon as an increasing contrast between the decision-maker’s current physical state 

and the goal (21). SDVL and WTC propose that either physiological or psychological states 

could drive added value, leading to a susceptibility to sunk costs. However, we did not 

observe sunk costs accruing during the offer zone, even though time spent in the offer zone 

is equivalent in physical and cognitive demands to time spent in the wait zone. Simple 

explanations from the WTC and SDVL theories would predict sunk costs to accrue in the 

offer zone as well.

Past-effort heuristics, SDVL, and WTC can indeed be prominent drivers of the sunk cost 

effect in our data when sunk cost effects are present. Therefore, our work brings up an 

intriguing question: How do decision-making processes differ between the wait zone 

(susceptible to sunk costs) and the offer zone (not susceptible to sunk costs)?

One possibility is that decisions made in the offer zone and wait zone may rely on separate 

processes that calculate value in distinct ways through dissociable neural circuits (22–24). 

Recent findings from other foraging tasks suggest that choosing to remain committed to 

already accepted options accesses different valuation algorithms than deliberating between 

distant options (16, 25–27). We suggest that wait zone decisions are driven by distinct 

mechanisms that depend on recently accumulated states, whereas offer zone decisions are 

driven by deliberation mechanisms that simulate future outcomes constructed from a more 

extended knowledge base of past experiences. There is strong neural evidence across these 

species to suggest that competing simulated future alternatives are being represented, 

evaluated, and compared in deliberation algorithms, whereas other decision-making systems 

depend on more immediate sensory signals that likely include interoceptive signals of effort 

expended and representations of internal state (23–24, 28–31) (fig. S8 and supplementary 

text S3). Each of these decision-making systems provides computational advantages better 

suited for different situations. Thus, these multiple valuation algorithms can each confer 

independent evolutionary advantages and can coexist and persist across time and species 

(22–24).

The sunk cost fallacy, by definition, arises from valuing spent resources that cannot be 

recovered. Our data finds that these sunk costs only accrue under specific situations in mice, 

rats, and humans. We suggest that multiple, parallel decision-making valuation algorithms 

implemented in dissociable neural circuits have persisted across species and over time 

through evolution. Our data imply that these different valuation algorithms are differentially 

susceptible to sunk costs. Past studies that reported conflicting findings across species may 

have failed to consider how different decision systems drive behavior (fig. S14 and 

supplementary text S6 and S7). Studies identifying differences in sensitivity to sunk costs 

should consider which decision-making processes are being accessed by the individual in a 

given task. Because these processes could change between species, or within species but 

across aging, stages of development, or circumstances, so too could sensitivity to sunk costs.

Using a translational approach in mice, rats, and humans, we find direct evidence in parallel 

tasks that the sunk cost phenomenon is conserved across species. Our findings highlight the 

utility of economic paradigms that can dissociate decision-making computations, using 

naturalistic tasks that are translatable across various species and that can be expanded to 
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survey individuals of varying ages or psychiatric populations. These tasks and findings may 

aid future research in education or neuropsychiatry by shedding light on diagnostic or 

intervention strategies and revealing the roles of neurally distinct decision systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Task schematics.
(A) In the Restaurant Row task, food-restricted rodents were trained on a maze in which 

they encountered serial offers for flavored rewards in four “restaurants.” Each restaurant 

contained a separate offer zone and wait zone. Tones sounded in the offer zone; a fixed tone 

pitch indicated the delay for which rodents would have to wait in the wait zone (1 to 30 s. 

random on offer entry). Tone pitch descended in the wait zone during the delay 

“countdown.” Rodents could quit the wait zone for the next restaurant during the 

countdown, terminating the trial. (B) In the web Surf task, humans performed an analogous 
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30-min computer-based foraging paradigm in which they encountered serial offers for short 

entertaining videos from four “galleries.” A static “download bar” appeared in the offer 

phase indicating delay length (1 to 30 s. random on offer entry), which did not begin 

downloading until after entering the wait phase. Downloads could be quit during the wait 

phase. Humans were also asked to rate each video on a scale from 1 (least enjoyable) to 4 

(most enjoyable) after viewing and to rank the genres at the end of the session.
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Fig. 2. The amount of time spent waiting increases commitment to continuing reward pursuit in 
mice, rats, and humans.
(A to C) Probability of earning a reward in the wait zone as a function of countdown time 

remaining in (A) mice, (B) rats, and (C) humans. Black data points indicate trials in which 

subjects had just entered the wait zone. Colored data points indicate time remaining in the 

countdown after subjects had already waited varying times (fig. S3). Linear regressions are 

plotted with 95% confidence interval shadings. (D to F) Slopes calculated from each linear 

regression in (A) to (C) (‘‘observed”) and slopes recalculated iteratively from black data 
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points to match colored data ranges in (A) to (C) (“adjusted controls”) (fig. S5) are plotted 

±1 SEM. The colored tick on the x axis indicates time in the wait zone until the first 

significant sunk cost effect was observed. ANOVAs were used to compare slopes of linear 

regression models, testing for interactions with sunk cost conditions and controls, correcting 

for multiple comparisons. Not significant (n.s.), P > 0.05; *P < 0.05; **P < 0.01; ***P < 

0.001; ****P < 0.0001.
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Fig. 3. Resources spent while deliberating do not contribute to the sunk cost effect.
(A to C) Amount of time spent in the offer zone choosing to skip versus to enter did not 

influence the probability of earning versus quitting once in the wait zone after subjects chose 

to enter (fig. S6). Linear regressions are plotted with 95% confidence interval shadings. (D) 

Slopes calculated from linear regressions are plotted ±1 SEM and are not significantly 

different from each other or zero in mice (F = 1.545, P = 0.229), rats (F = 0.767, P = 0.392). 

or humans (F = 0.117. P = 0.737), on the basis of an ANOVA with post-hoc comparisons 

against zero. n.s., P > 0.05.
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