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Abstract
Background: Recently, a marginalized particle‑extended Kalman filter  (MP‑EKF) 
has been proposed for electrocardiogram  (ECG) signal denoising. Similar to particle 
filters, the performance of MP‑EKF relies heavily on the definition of proper particle 
weighting strategy. In this paper, we aim to investigate the performance of MP‑EKF 
under different particle weighting strategies in both stationary and nonstationary noises. 
Some of these particle weighting strategies are introduced for the first time for ECG 
denoising. Methods: In this paper, the proposed particle weighting strategies use different 
mathematical functions to regulate the behaviors of particles based on noisy measurements 
and a synthetic ECG signal built using feature parameters of ECG dynamic model. One 
of these strategies is a fuzzy‑based particle weighting method that is defined to adapt its 
function based on different input signal‑to‑noise ratios  (SNRs). To evaluate the proposed 
particle weighting strategies, the denoising performance of MP‑EKF was evaluated on 
MIT‑BIH normal sinus rhythm database at 11 different input SNRs and in four different 
types of artificial and real noises. For quantitative comparison, the SNR improvement 
measure was used, and for qualitative comparison, the multi‑scale entropy‑based 
weighted distortion measure was used. Results: The experimental results revealed that the 
fuzzy‑based particle weighting strategy exhibited a very well and reliable performance in 
both stationary and nonstationary noisy environments. Conclusion: We concluded that the 
fuzzy‑based particle weighting strategy is the best‑suited strategy for MP‑EKF framework 
because it adaptively and automatically regulates the behaviors of particles in different 
noisy environments.
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Introduction
The electrocardiogram  (ECG) signal is a 
noninvasive and powerful clinical tool to 
measure the cardiac activity and diagnose 
its related diseases. Although it is very 
easy to acquire, it is often corrupted by 
environmental and nonenvironmental 
interferences such as power line interference, 
bioelectric activities of the issues not 
belonging to the area of diagnostic 
interest, noise originating from electrode 
misplacement or other electrical instruments, 
electromyographic  (EMG) noise or muscle 
artifact  (MA), and ECG signal amplitude 
modulation with respiration.[1] Such unwanted 
interferences may change or corrupt the 

morphological properties of ECG beats 
which are crucial for correct cardiac analysis 
and diagnosis. Therefore, ECG denoising 
remains a major concern for researchers, 
and many methods have been proposed to 
address this issue. Adaptive filters are the 
most commonly used techniques applied 
to remove baseline wander, EMG, and MA 
noises from ECG signals.[2,3] Statistical 
approaches such as principal component 
analysis,[4] independent component 
analysis,[5,6] and neural networks[7] also 
have been proposed to suppress the effects 
of noise in ECG beats. Because ECG is a 
nonlinear nonstationary signal that possess 
multi‑resolution properties, using wavelet 
transform has also been very popular in the 
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field of ECG denoising and processing.[8‑12] More recently, 
techniques based on empirical mode decomposition[13‑15] and 
variational mode decomposition[16] are also used to extract 
noise‑free signal from noisy ECGs. Although there are a lot 
of nonmodel‑based methods that can perform well in the 
field of ECG denoising, there are some undeniable benefits 
in using model‑based approaches. As it is known, most 
physicians analyze ECG signals based on their morphologies 
and their diagnostic conclusions are mainly based on the 
shapes and morphological patterns of signals. For example, 
when a physician claims that an ECG record has premature 
ventricular contractions  (PVCs), his/her deduction is based 
on the changes of morphological trends in normal ECG 
beats when PVCs happen. Model‑based methods are 
computerized techniques that allow computers to analyze 
ECG records based on their morphologies, and thus, they 
can offer more benefits to physicians and clinical experts. 
However, model‑based techniques need more calculation time 
which thanks to the advances in the development of powerful 
processors and parallel processing technologies; it is not a big 
deal anymore. In the field of model‑based analysis of ECG, 
the ECG dynamic model  (EDM) proposed by McSharry 
et al.[17] and its polar variants are very popular and have been 
used in model‑based Bayesian filtering frameworks for ECG 
denoising, segmentation, and arrhythmia detection. Many 
of these Bayesian frameworks are based on extended 
Kalman filtering  (EKF) approaches.[18‑25] Since ECG has 
a nonlinear nature itself and some noises accompanying 
it  (such as MA) are non‑Gaussian and nonstationary, in 
some works, it was proposed to implement nonlinear 
Bayesian frameworks, i.e., particle filters  (PFs) for ECG 
denoising.[26‑29] In the study by Hesar and Mohebbi,[29] they 
proposed a marginalized particle‑EKF  (MP‑EKF) that used 
marginalized particle filter  (MPF) and EKF frameworks 
with a novel particle weighting strategy to denoise 
ECG signals efficiently. This framework was evaluated 
in both stationary and nonstationary environments and 
exhibited good performance over previous linear Bayesian 
frameworks, especially at low signal‑to‑noise ratios  (SNRs) 
and in non‑Gaussian environments. The MP‑EKF in the 
study by Hesar and Mohebbi[29] benefitted from a particle 
weighting strategy which utilized synthetic ECG signals 
along with ECG signals to achieve better estimations. The 
synthetic ECG signals were built using EDM parameters and 
ECG linear phase wrapping.

The MP‑EKF in the study by Hesar and Mohebbi[29] had 
some drawbacks:
1.	 Similar to other model‑based methods, the MP‑EKF in 

the study by Hesar and Mohebbi[29] could not perform 
well in ECG segments with varying morphologies or 
arrhythmia because its particle weighting strategy’s 
trust level to measurements did not vary with respect to 
different morphologies

2.	 The parameters of EDM were not estimated properly 
using linear ECG phase wrapping, especially when 

angular frequency was changing significantly. This 
caused the synthetic ECG signal to be misaligned with 
respect to the original signal.

To address the first problem, an adaptive particle 
weighting strategy was proposed in the study by Hesar 
and Mohebbi[30] which enabled the MP‑EKF to perform 
well in the presence of different arrhythmia and even in 
ECG lead disconnection situations. This strategy used 
fuzzy logic, correlation, and EDM feature parameters to 
adjust its trust level to handle different morphologies in 
a single ECG segment. To have better denoising outputs 
and maximal overlaps between synthetic ECG signals 
and their corresponding ECG signals, a nonlinear ECG 
phase wrapping based on dynamic time warping  (DTW) 
was implemented which leads to better estimation of 
EDM parameters, more accurate synthetic ECG, and 
reliable particle weighting.[30] Unlike the first strategy 
proposed in the study by Hesar and Mohebbi[29] for 
MP‑EKF, the behavior of fuzzy‑based particle weighting 
strategy has not been investigated yet in different noisy 
environments. In this paper, first, we propose several new 
particle weighting strategies, and then, we evaluate the 
denoising performance of MP‑EKF using different particle 
weighting strategies. To do so, the denoising performance 
of MP‑EKF was evaluated on MIT‑BIH normal sinus 
rhythm database at 11 different input SNRs and in four 
different types of artificial and real noises  (Gaussian 
white noise, pink, brown, and real MA noise) for each 
particle weighting strategy. For quantitative comparison, 
the SNR improvement measure, and for qualitative 
comparison, the multi‑scale entropy‑based weighted 
distortion (MSEWPRD) measure were used. The results 
demonstrated that in comparison to previous strategies and 
the new nonlinear strategies proposed for MP‑EKF in the 
field of ECG denoising, the fuzzy‑based particle weighting 
strategy exhibited a very well and reliable performance 
in both stationary and nonstationary noisy environments 
from both SNR improvement and MSEWPRD viewpoints, 
especially at low‑input SNRs.

This paper is organized as follows. Methods Section 
focuses on ECG phase wrapping, EDM extraction, MP‑EKF 
theories, and equations. In Results Section, several new 
particle weighting strategies along with the fuzzy‑based 
particle weighting strategy are presented. The experimental 
results and analyses are given in Discussion Section, and 
finally, conclusions are drawn in the last section.

Methods
In this section, first, the previous works for denoising 
ECG using MP‑EKF are briefly reviewed. The first two 
subsections provide basic information for readers about 
EDM and MP‑EKF theories and equations. It is worth 
to mention that some unwanted mathematical mistakes 
were present in the definition of MP‑EKF in the studies 
by Hesar and Mohebbi[29,30] and they are corrected in 
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this paper. In the last subsection, we review the previous 
particle weighting strategies proposed for MP‑EKF in 
the field of ECG denoising and introduce several other 
new strategies that are based on nonlinear mathematical 
operators that have the potential to be used inside 
MP‑EKF framework.

The marginalized particle‑extended Kalman filtering 
theory

In the study by Hesar and Mohebbi,[29] an MP‑EKF‑based 
filtering framework for ECG denoising was introduced. 
This framework used the polar variant of EDM that was 
proposed by Sameni et al.[18] The model in Eq. 1 describes 
the ECG signal as summation of several Gaussian Kernels 
corresponding to ECG feature segments, i.e., P, Q, R, S, 
and T waves in polar space. This model is given by:
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In the above model, k , zk , k  are phase, amplitude, and 
angular velocity at time‑step k, respectively. In addition, 
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j k j
= −( ) ( )mod 2 , where δ is the sampling period, 

and the feature parameters a b
j j j
, ,  ( , , , , )j P Q R S T∈  are the 

amplitude, angular width, and location of each Gaussian 
Kernel, respectively. ηφ ,  , and ηω  are random Gaussian 
white noises which model the uncertainty in EDM.

The measurement  (observation) model in the study by 
Hesar and Mohebbi[29] was constructed using similar 
approaches in the studies by Sameni et  al. and Sayadi 
et  al.[18‑20] In addition to noisy ECG amplitudes, two 
additional measurements were obtained. First R‑peaks 
were detected, and linear phases (ranging from  –π to π) 
were assigned to ECG samples between each R‑R interval. 
Another measurement was acquired by the differentiation 
of linear phase between two consecutive R‑R peaks and 
considered as angular velocity observation. As a result, 
the measurement model is shown below:

φ ϕ

ω

k

k

k

k

k

k

k

ks z
u
v

Ω
















=































+

1 0 0
0 1 0
0 0 1

.
ww

R E u v w u v w

k

k k k k
T

k k k

















= [ ] [ ]{ }

,

, , , ,

� (2)

where y sk k k
T

k
= Ω[ , , ]  is the measurement vector and the 

noise vector v u v wk k k
T

k
= [ , , ]  describes the measurement 

model’s uncertainty. Eqs. 1 and 2 are rewritten into 
following form:

( ) ( )1x g x , xNL L NL NL NL
k k k k kf+ = ω + � (3a)

( ) ( )1x x mod 2L L L L L
k k k k kA G + = + ω � (3b)

y x x ek k k
NL

k k
L

k
NL Lh C= ( ) + + � (3c)

In this model, AkL =










1
0 1

δ
,  

x x x,k
L

k k
T

k
NL

k k
NL

k
NL

kz f z+ + + + += = ( ) =1 1 1 1 1[ , ] ,ϕ ω  

ω ωk
NL

j j j

T

k
L T

a b j P Q R S T=   ( ) =  ∈η θ η ηφ ω, , , , ,, , , ,

Q
Q

Q
Q E Q Ek

k
L

k
NL k

NL
k
NL

k
NL

k
L

k
L

k
L=









 = ( ) = ( )0

0
, }, }{ {ω ω ω ω

T T

R
R

R
R E v v R E u w u wk

k
NL

k
L k

NL
k k k

L
k k k k=









 = =

0
0

, }, }{ {[ , ][ , ]T T

g x k
L

k
NL

j P Q R S T
k

j j

j

j

j

a

b b
, exp

, , , ,

ω( ) 







 += − −

∈{ }
∑ ω δ

θ θ
η

∆ ∆
2

2

22

In addition, hk
NL

k
NL

k
NLx x( ) =

















0
1
0

 and Ck
L =

















1 0
0 0
0 1

. 

Considering the assumptions above, and inspired by MPF 
equations designed for mixed linear/nonlinear state 
models,[31] we proposed to implement an MP‑EKF 
filtering framework for ECG denoising.[29] This method 
used a novel combination of marginalized particle filter and 
EKF frameworks to overcome the shortcomings of PF and 
EKF.

Eq. 3a is rewritten in the following form:
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Step 5: For each particle i N= …1, , , perform Kalman filter 
measurement update according to:
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importance distribution according to Eq. 3, i.e.,
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Step 7: For each particle i N= …1, , , perform the first time 
update for the linear part of particle (first prediction) using:
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Kalman filter prediction using:
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( )  are the predicted mean vector and 
covariance matrix for the linear part of particle xk

i
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( )  at 
time‑step k + 1, respectively.

Nonlinear electrocardiogram phase wrapping for 
electrocardiogram dynamic model extraction and 
synthetic electrocardiogram generation

The denoising performance of MP‑EKF in the study 
by Hesar and Mohebbi[29] benefited from a synthetic 
signal called “ECGsynth” which had the same length as 
the original ECG signal and was built using the EDM 
characteristic parameters of that signal. Therefore, the 
construction of EDM is a very crucial step for MP‑EKF 
as model‑based framework. An accurate phase wrapping 
not only results in building a reliable EDM[33] but also 
leads to the construction of a more sensible synthetic 
ECG, which in turn improves the performance of the 
particle weighting strategy in MP‑EKF. In prior studies, 
the parameters of EDM are estimated using linear polar 
ECG phase wrapping technique. However, linear phase 
wrapping is not accurate when angular frequency  (ωk) is 
changing significantly. This situation has two undesirable 
consequences: (1) The parameters of EDM are not 
estimated properly. (2) The synthetic ECG signal is 
misaligned with respect to the original signal. To solve 
this problem, in the study by Hesar and Mohebbi,[30] it 
was proposed to assign nonlinear phases to ECG samples 
using DTW approach proposed by Akhbari et  al. and 
Niknazar et  al.[25,34] To illustrate the differences between 
the linear and nonlinear phase wrapping approaches, 
two synthetic ECG signals are displayed in Figure  1. In 
Figure 1, although the angular frequency does not change 
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considerably, it leads to an improper synthetic ECG 
formation. The synthetic signal made with linear phase 
wrapping approach in Figure 1 has some temporal delays 
that are visible on T waves  (around 0.6 s and 2.7 s) with 
respect to ECG signal. These delays would impair the 
performance of MP‑EKF in estimation of correct signal 
trajectories. However, the synthetic signal built based 
on nonlinear phase wrapping approach  (new synthetic 
ECG) has an acceptable harmonic correspondence with 
ECG signal.

Theoretical aspects of different particle weighting 
strategies for marginalized particle‑extended 
Kalman filtering in the field of electrocardiogram 
denoising

In the study by Hesar and Mohebbi,[29] it was 
suggested that to get better denoising results in noisy 
environments, the behaviors of particles in MP‑EKF 
could be controlled based on the behaviors of both 
noisy and synthetic ECG signals. The particle weighting 
strategy in the study by Hesar and Mohebbi[29] used the 
following equation:
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w w
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,
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,
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Each strategy in Eqs. 11–13 has specific properties. 
Eq. 12 imposes the strictest law to the particles. In 
Eq. 12, the weight of a single particle is high if and only 
if when that particle is very close to both synthetic and 
noisy ECG signals. This strategy is suitable for situations 
when the input SNR is low, and we want to suppress the 
noise effects. However, theoretically, at low‑input SNRs, 
it does not guarantee a proper output. On the other hand, 
Eq. 13 has the most lenient rule. The weight of a particle 
in Eq. 13 is high when that particle is close to synthetic 
or noisy signal or both of them. Eq. 13 is appropriate 
for situations when the input SNR is high, and we want 
to trace the trajectory of ECG signal very accurately. 
However, at high‑input SNRs, the particles are not 
supposed to trace the trajectories of signals exactly. 
Although the weighting strategy in Eq. 11 is stricter than 
Eq. 10, it is somewhat between rules of Eqs. 12 and 13. 
It is less lenient than Eq. 13 and less strict than Eq. 12. 
Theoretically, it can be used at mid‑input SNRs. In the 
study by Hesar and Mohebbi,[30] it was proposed to use 
an adaptive particle weighting strategy that was derived 
from Eq. 10. As you know, Eq. 10 can be written as 
follows:

w w
d dk

i
k
i

synth k
i

measur k
i= +









−1

1 2α α

,
( )

,
( )

� (14)

where α α1 2 1= = . However, hypothetically, α1  can be 
different from α2  if the power of noise is known. For 
example, for good signal tracing at high‑input SNRs, α2 can 
be set higher than α1 (scenario 1). In very noisy signals, 
contrariwise, α1  can be defined higher than α2  (scenario 2). 
Therefore, Eq. 14 can be rewritten as the follows:

Figure  1: Comparison of synthetic electrocardiogram signals made 
with linear and nonlinear phase wrapping in an electrocardiogram 
segment from record “16272” (chosen from MIT‑BIH normal sinus rhythm 
database[35])
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One can see that while Eqs. 14 and 15 deliver similar 
results, Eq. 15 has fewer variables to deal with. For 
example in Eq. 15, at higher‑input SNRs, α1  can be tuned 
lower than 0.5  (α1 0 5< .   [scenario 1]), and at lower‑input 
SNRs, it can be tuned higher than 0.5  (α1 0 5> .  
[scenario 2]). In the study by Hesar and Mohebbi,[30] a 
fuzzy‑based scheme was proposed that 
automatically and adaptively resolved these challenges. 
This scheme was based on two simple rules for 
ECG segments having normal beats. These rules are as 
follows:
•	 Rule 1: if λk is high, α1  is low

•	 Rule 2: if λk is low, α1  is high.

where

λk corr ecg k N k

ecg k N k
syn

noisy

= − +

− +

max( ( ( : ),

( : )))

1

1 � (16)

In Eq. 16, corr x y( , ) denotes the normalized 
cross‑correlation function of two signals x and y and ecgsyn  
represents the synthetic signal  (ECGsynth) and ecgnoisy
denotes the real noisy ECG signal. As you can see, k  is 
the similarity factor in time‑step k between noisy ECG 
signal and its synthetic representative.

Founded upon the aforementioned rules, a simple 
Sugeno‑type fuzzy inference system was designed in 
the study by Hesar and Mohebbi.[30] Using fuzzy system, 
the particle weighting procedure in Eq. 15 is automatic 
and more adaptive. With this method, MP‑EKF is able 
to automatically and adaptively balance its behavior with 
regard to different input SNRs.

For the rest of the paper, for simplification, let us denote 
the MP‑EKFs using particle weighting strategies in Eqs. 
10–15, “MP‑EKF plus,” “MP‑EKF multiply,” ‘MP‑EKF 
min,” “MP‑EKF max,” and “MP‑EKF fuzzy plus,” 
respectively.

Figure 2: Mean and standard deviation of k for DB1 in two noise types for 
n = 15 (muscle artifact and white Gaussian noise)[30]

Results
To investigate the proposed particle weighting strategies 
in the previous section, the performance of MP‑EKF using 
each strategy was evaluated on MIT‑BIH normal sinus 
rhythm database.[35] 200 signal segments from different 
subjects were selected from MIT‑BIH normal sinus rhythm 
database  (DB1). Each segment consisted of normal ECG 
beats with no significant arrhythmias with duration of 30 
s and sampling frequency of 128 Hz. These segments were 
also used in the study by Hesar and Mohebbi[29] to evaluate 
the performance of MP‑EKF over EKF/EKS frameworks. 
Four types of noise, Gaussian white noise, pink noise, 
brown noise, and MA noise, were selected for experiments. 
The first three noises were produced using the following 
spectral density:

S f
f

( ) ∝ 1
β

� (17)

where S(f) and f are the noise spectral density function 
and frequency in Hz. The parameter  is 0, 1, and 2 for 
Gaussian white, pink, and brown noise, correspondingly. 
For the nonstationary MA noise generation, real MA 
from the MIT‑BIH Noise Stress Test Database was 
used.[36] This noise had a sampling rate of 360 Hz and it 
had to be resampled to 128 Hz  (sampling frequency of 
test ECG segments). The SNRs 10, 8, 6, 4, 2, 1, 0, −1, 
−3, −4, −5 dB were chosen to simulate the same noisy 
situations in the study by Hesar and Mohebbi.[29] For 
quantitative comparison, the SNR improvement measure, 
and for qualitative comparison, the MSEWPRD[37] were 
used. The SNR improvement measure is given by:

imp dB SNR SNR

log

output input[ ] = − =

( ) − ( )
( ) − (

∑
∑

10
2

i n o

i d o

x i x i

x i x i))


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







2

� (18)

Figure 3: Fuzzy membership functions of k 
[30]
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where xo, xn, and xd represent the original ECG signal, 
the noisy ECG signal, and the denoised ECG signal, 
respectively.[19] MSEWPRD is a weighted percentage 
root‑mean‑square difference  (WPRD) between the subband 
wavelet coefficients of the original and filtered signals 
with weights equal to the multi‑scale entropies of the 
corresponding subbands.[37] To calculate this metric, both 
signals must be decomposed using wavelet filters up 
to L levels. The number of levels depends on the nature 
of the signal and the sampling frequency. For sampling 
frequency of 128 Hz, we chose L = 4. The Daubechies 9/7 
bi‑orthogonal wavelet filters[38] were used for calculation of 
wavelet coefficients.

Before implementation of fuzzy‑based particle weighting 
strategy in Eq. 15, to identify which values of k , can be 
attributed as low or high, several experiments were 
conducted in the study by Hesar and Mohebbi.[30] For each 
segment in DB1, the values of k  were calculated and 
averaged in 11 input SNRs and for two noise types: the 
stationary white Gaussian noise and the nonstationary 
non‑Gaussian MA noise. Figure  2 illustrates the mean and 
standard deviation of k .  It is realized that the values of 
k  for nonstationary MA noise are higher than those for 
stationary white Gaussian noise, which indicates that for an 

equal input SNR, α1  can be set lower for MA noises. In 
other words, if the effect of nonlinear baseline drift is 
suppressed in noisy ECG, MP‑EKF particles can trust 
noisy measurements more confidently.

Based on the results of Figure  2, the fuzzy membership 
functions of k  are constructed  [Figure  3]. Next step is 
defining α1 . Many experiments were run to determine 
which values of α1  would grant best results from SNR 
improvement and MSEWPRD viewpoints.[30] In these 
experiments, the range of “low α1 ” and “high α1” were 
0.3–0.49 and 0.51–0.6, respectively. Values outside these 
ranges were also examined but did not yield good 
MSEWPRD results. The experiments revealed that best 
results were achieved using values 0.48 and 0.52 for 
“low α1 ” and “high α1 ,” respectively. The best results 
using these values are demonstrated in Figures 4‑8.

In each SNR and in each simulation, each segment 
received a different random noise input. Similar to the 
study by Hesar and Mohebbi,[29] in this paper, the numbers 
of particles for all MP‑EKFs were chosen 200 resulting 
70–80 s calculation time for each simulation.

Figures  4 and 5 show the performance results of 
different MP‑EKFs from SNR improvement viewpoint 

Figure 4: The mean (top) and standard deviation (bottom) of signal‑to‑noise ratio improvements versus different input signal‑to‑noise ratios for DB1 for 
marginalized particle‑extended Kalman filter using different weighting strategies: (left) White Gaussian noise, (right) pink noise
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in four noise types. It is clear in Figure  4 that 
“MP‑EKF fuzzy plus” outperformed others in white 
Gaussian environments. At high‑input SNRs and in 
white Gaussian noise, the performance of “MP‑EKF 
min” was better than “MP‑EKF plus,” “MP‑EKF 
max,” and “MP‑EKF multiply.” However, at low‑input 
SNRs, its performance was fallen below than others. 
“MP‑EKF multiply” performed better than others 
in mid‑SNRs, except “MP‑EKF fuzzy plus.” The 
performance of “MP‑EKF max” was very similar 
(but not better) to “MP‑EKF plus” for white Gaussian 
noise. Overall, it can be deduced that “MP‑EKF fuzzy 
plus” and “MP‑EKF plus” are appropriate choices for 
noisy environments corrupted by white Gaussian noise. 
For artificial pink and brown noises, the situation is 
different. In pink noises, although “MP‑EKF fuzzy 
plus” proved to perform better than “MP‑EKF plus,” 
they were beaten by “MP‑EKF max.” Another fact 
that can be seen in Figure  4 is the low performance of 
both “MP‑EKF multiply” and “MP‑EKF min” for pink 
noises. Based on the results in Figure  4, “MP‑EKF 
fuzzy plus” is a good choice for high‑input and 
mid‑input SNRs and “MP‑EKF max” is a good choice 
for very low‑input SNRs. Nevertheless, if we wanted 
a robust and stable performance for all input SNRs, 

“MP‑EKF fuzzy plus” would be the proper option. 
By looking at Figure  5, it can be seen that for brown 
noise, “MP‑EKF max” acted worst, and once again, 
“MP‑EKF fuzzy plus” outmatched “MP‑EKF plus.” On 
the other hand, “MP‑EKF multiply” and “MP‑EKF min” 
performed better than others. However, at high‑input 
SNRs, “MP‑EKF multiply” could not achieve a 
desirable performance. The results in Figure  5 implied 
that it is recommended to use “MP‑EKF min” for noisy 
environments corrupted by brown noise. In Figure 5, the 
performance results of the MP‑EKFs for real MA noises 
are demonstrated. Like pink noise, “MP‑EKF multiply” 
and “MP‑EKF min” performed worse than others in MA 
noises. For MA noises, “MP‑EKF fuzzy plus” achieved 
best results at low‑input SNRs, and “MP‑EKF plus” 
attained best results at high‑ and mid‑input SNRs. From 
Figures  4 and 5, it can be concluded that from SNR 
improvement viewpoint, “MP‑EKF fuzzy plus” yielded 
acceptable, reliable, and stable results in all types 
of noises and Eq. 15 can be attributed as the suitable 
particle weighting strategy for MP‑EKF.

Discussion
In this paper, several particle weighting strategies are 
proposed in MP‑EKF framework for ECG denoising. One 

Figure 5: The mean (top) and standard deviation (bottom) of signal‑to‑noise ratio improvements versus different input signal‑to‑noise ratios for DB1 for 
marginalized particle‑extended Kalman filter using different weighting strategies: (left) brown noise, (right) muscle artifact noise
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of these strategies which proved to perform well in both 
Gaussian and non‑Gaussian nonstationary environments 
was an adaptive fuzzy‑based particle weighting strategy. 
This strategy manifested a noticeable superiority over 
other existing particle weighting strategies proposed for 
MP‑EKF from SNR improvement viewpoint.

For further illustration, an example of denoising in the 
presence of MA noise is shown in Figure 6 to explore the 
behaviors of the proposed particle weighting strategies. It 
is mentioned earlier that “MP‑EKF min” has the softest 
regulation on particles. It seems that this rule could not 
avoid particles in tracing the baseline drift. Another 
deficiency is seen around time interval 12.9–13.5 s when 
“MP‑EKF min” failed to preserve the morphology of 
ECG. These shortcomings are somewhat present in the 
output of “MP‑EKF multiply”  [Figure 6d] too. However, 
“MP‑EKF multiply” managed to suppress the baseline 
drift better than “MP‑EKF min.” The performance of 
“MP‑EKF max”  [Figure  6b] was better than the two 
aforementioned MP‑EKFs. Although “MP‑EKF max” 
could not recover the morphology of ECG completely 
in time interval 4.2–4.7 s, it removed the baseline drift 
effects in the most parts of ECG segment and preserved 

the morphology of ECG around time interval 12.9–13.5 s. 
From Figure  6e and f, it is inferred that “MP‑EKF plus” 
and “MP‑EKF fuzzy plus” are more successful than other 
MP‑EKFs in dealing with MA noise. It is also realized 
that “MP‑EKF plus” performed better than “MP‑EKF 
fuzzy plus” in preserving the morphology of ECG. This 
fact can also be seen in the SNR improvement results for 
MA noises in Figure 5. As it is said earlier, the results in 
Figure 5 imply that for MA noises, at high‑ and mid‑input 
SNRs, “MP‑EKF plus” was superior to “MP‑EKF fuzzy 
plus.” However, at low‑input SNRs, “MP‑EKF fuzzy 
plus” outmatched “MP‑EKF plus.”

To explore the diagnostic distortion effects in the 
outputs of the aforementioned MP‑EKFs, we calculated 
the MSEWPRD for DB1. The results are mentioned in 
Tables 1‑4; however, for better view, they are illustrated 
in Figures 7 and 8. In Figure 7, it is clear that “MP‑EKF 
fuzzy plus” attained the lowest MSEWPRD in white 
Gaussian noise at all input SNRs. This means that in 
white Gaussian interferences, “MP‑EKF fuzzy plus” 
preserves the clinical information better than others. 
In pink noises, “MP‑EKF max” along with “MP‑EKF 
fuzzy plus” achieved lower MSEWPRDs. Although 

Figure 6: Typical filtering results for record “17453” from DB1 in the presence of muscle artifact noise in signal‑to‑noise ratio 6 dB. (a) Original 
and noisy,  (b) “marginalized particle‑extended Kalman filter max,”  (c) “marginalized particle‑extended Kalman filter min,”  (d) “marginalized 
particle‑extended Kalman filter multiply,” (e) “marginalized particle‑extended Kalman filter plus,” (f) “marginalized particle‑extended Kalman filter 
fuzzy plus”
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“MP‑EKF fuzzy multiply” and “MP‑EKF min” did not 
yield desirable results for white Gaussian, pink, and MA 
noises, they surprisingly managed to outperform other 
methods in brown noises  [Figure  8]. In MA noises, 
as it is shown in Figure  8, “MP‑EKF fuzzy plus” 
and “MP‑EKF plus” performed better than others. At 
high‑  and mid‑input SNRs, “MP‑EKF plus” was better 
than “MP‑EKF fuzzy plus;” however, at low‑input 
SNRs, “MP‑EKF fuzzy plus” was superior. Based 
on the SNR improvement and MSEWPRD results in 
Figures  4, 5, 7, 8, and Tables  1‑4, we concluded that 
in comparison to other proposed strategies for MP‑EKF 
in the field of ECG denoising, the fuzzy‑based adaptive 
particle weighting strategy is still the best‑suited 
strategy for MP‑EKF framework.

Conclusion
In this paper, we explored the performance of MP‑EKF 
under different particle weighting strategies in both 
stationary and nonstationary noises. In this paper, 
we proposed three novel nonlinear particle strategies 
that unlike adaptive fuzzy‑based strategy, these new 
strategies did not need any preprocessing or knowledge 
about ECG segments which make them easy to 
implement. Despite introducing new particle weighting 
strategies in this paper, the experimental results revealed 

that the fuzzy‑based particle weighting adaptive 
fuzzy‑based strategy demonstrated better performance 
in many input SNRs and was more reliable than others 
in most types of noises, although in certain types of 
noises  (e.g., brown noise), the dominance of adaptive 
fuzzy‑based strategy was broken by one of the newly 
proposed particle weighting strategies. With adaptive 
fuzzy‑based strategy, the MP‑EKF can adaptively adjust 
its behavior with respect to different input SNRs and 
nonstationary environments. This particle weighting 
strategy automatically controls the behavior of particles 
according to input SNRs. At low‑input SNRs, this 
strategy lowers the particles’ degree of trust to the 
measurements while increasing their degree of trust to 
the synthetic ECG. At high‑input SNRs, the particles’ 
degree of trust to the measurements is increased and 
the degree of trust to synthetic ECG is decreased. To 
further improve the performance of MP‑EKF, we used 
nonlinear phase wrapping in its observation model using 
DTW.
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Figure 7: The mean (top) and standard deviation (bottom) of multi‑scale entropy‑based weighted distortions versus different input signal‑to‑noise ratios 
for DB1 for marginalized particle‑extended Kalman filter using different weighting strategies: (left) white Gaussian noise, (right) pink noise
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