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Tissue-wide cell-specific proteogenomic modeling reveals novel
candidate risk genes in autism spectrum disorders
Abolfazl Doostparast Torshizi1 and Kai Wang 1,2✉

Autism spectrum disorders (ASD) are a set of complex neurodevelopmental diseases characterized with repetitive behavioral
patterns and communication disabilities. Using a systems biology method called MAPSD (Markov Affinity-based Proteogenomic
Signal Diffusion) for joint modeling of proteome dynamics and a wide array of omics datasets, we identified a list of candidate ASD
risk genes. Leveraging the collected biological signals as well as a large-scale protein-protein interaction network adjusted based on
single cell resolution proteome properties in four brain regions, we observed an agreement between the known and the newly
identified candidate genes that are spatially enriched in neuronal cells within cerebral cortex at the protein level. Moreover, we
created a detailed subcellular localization enrichment map of the known and the identified genes across 32 micro-domains and
showed that neuronal cells and neuropils share the largest fraction of signal enrichment in cerebral cortex. Notably, we showed that
the identified genes are among the transcriptional biomarkers of inhibitory and excitatory neurons in human frontal cortex.
Intersecting the identified genes with a single cell RNA-seq data on ASD brains further evidenced that 20 candidate genes,
including GRIK1, EMX2, STXBP6, and KCNJ3 are disrupted in distinct cell-types. Moreover, we showed that ASD risk genes are
predominantly distributed in certain human interactome modules, and that the identified genes may act as the regulator for some
of the known ASD loci. In summary, our study demonstrated how tissue-wide cell-specific proteogenomic modeling can reveal
candidate genes for brain disorders that can be supported by convergent lines of evidence.
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INTRODUCTION
Autism spectrum disorders (ASD) are a group of neurodevelop-
mental disorders predominantly characterized with behavioral
and communication impairments. According to the American
Psychiatric Association, autistic individuals share a spectrum of
symptoms including difficulties with interactions with other
people, repetitive behaviors, and inabilities to function properly
in a daily life1. According to the US Centers for Disease Control and
Prevention2,3, 1 out of 54 children are diagnosed with ASD across
the US. ASD are known for extreme heterogeneity in their genetic
components4–6 as well as 4:1 ratio of prevalence among men
compared to women7,8. Such pervasive disorders can be
attributed to distinct phenotypic subtypes. Accumulating evi-
dences suggest that myriads of genetic signatures of ASD might
converge to a tractable set of pathways or gene networks for
effective therapeutic practices9,10. At genome level, common
variants identified by genome-wide association studies11,12 as well
as other genetic perturbations such as copy number variants, de
novo mutations, and function-disrupting point mutations account
the ASD liability13,14. Thus far, large-scale genome-wide studies
such as iPSYCH project, with thousands of participants13, have
brought about outstanding insights into the genetic architecture
of ASD. However, there exists significant challenges to address
such as spatial distribution and enrichment patterns of genetic
hits across brain, cellular specificity of distinct brain regions, and
complementary role of less studied omics data such as proteome
granted that significant fraction of studies have focused on nucleic
acids, i.e., genomics, epigenomics and transcriptomics rather than
amino acids15.
Genetic association studies, such as GWAS, CNV, whole genome,

and exome sequencing6,14,16,17, have remarkable impact on

pinpointing genes and genetic variants associated with ASD.
Moreover, transcriptomic18–20 and proteomic studies21,22 have
significantly contributed to our understanding of the disease
machinery. However, there is no clear agreement between gene
expression levels and the abundance of their corresponding
encoded proteins15 given that, at best, there is a 40–60%
correlation between the mRNA and protein levels in certain
organisms23,24. Such disagreements may arise from the fact that
functionality of proteins are not solely determined by their
abundances but by other biochemical or biophysical properties
such as post-translational modifications and subcellular localiza-
tion25. In spite of fascinating progresses, critical questions remain
unanswered: are there any converging mediums to illustrate the
confluence of small effect sizes of all of the loci, considering
proteins as functional components of cellular machinery, how can
we model biochemical and biophysical properties of proteins in
parallel with genomic information to mimic the real circuitry of the
disease and unmask novel loci which may participate in ASD
development?, how we can create such a system level picture at
wide range of cell-types across distinct brain regions?. Addressing
these questions requires integrated mechanisms. Prikshak et al.10

had mapped ASD risk genes onto co-expression networks aimed
at recovering developmental trajectories which represent fetal
and adult cortical luminae. Notably, they had reported how FMRP
(encoded by FMR1) regulation as well as co-expression of common
transcription factors connect synaptic development with early
transcriptional regulation10. Recently, Ramaswamy et al.26

reported an integrative study leveraging mRNA and miRNA
expression, DNA methylation, and histone acetylation from ASD
and control brains to uncover convergent molecular subtypes of
ASD. Their research has led to a substantial expansion in the
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repertoire of differentially expressed (DE) genes as well as
identification of highly enriched hyper-acetylated noncoding
genomic regions. Additional integrated studies combining
protein-protein interactions27 and gene expression suggest
molecular convergence in subsets of ASD risk loci28–30. Yet, it
remains an open question on how intra-cellular molecular
interactions and protein trafficking paradigms within the cell in
certain central nervous system (CNS) regions can be employed to
identify highly-specific convergent gene modules to contribute to
ASD etiology.
To address these questions, we have employed our develop

method called MAPSD31, Markov Affinity-based Proteogenomic
Signal Diffusion, for joint modeling of biochemical and biophysical
properties of proteins with genomic and transcriptomic signatures
of ASD aimed at identification of novel ASD candidate risk genes.
Upon collecting multiple sources of omics data from the literature,
MAPSD is able to generate tissue and cell-specific interactomes
followed by diffusing the known biological signals throughout the
protein-protein interaction networks (PPI) networks in order to
predict unannotated susceptible genes. MAPSD is designed to be
used in complex diseases where a wide array of biological data is
available. A good example of such diseases is schizophrenia (SCZ)
in which high polygenicity of the disease has been extensively
studied in the literature32. Our previous study on SCZ had revealed
a shortlist of novel disease associated candidate risk genes with a
similar enrichment patterns in specific cellular micro-domains in
neuronal cells in human cerebral cortex31. Given the availability of
valuable resources including distinct molecular data on ASD, this is
a great opportunity to account for the complexities of ASD
through a novel systems-level approach. Our findings indicate the
importance of parallel consideration of omics data-types in
improving the understanding of the genetic architecture of ASD.

RESULTS
Application of MAPSD to identify candidate genes for ASD
We used MAPSD31, a multi-omics data integration method, to
identify additional candidate genes for ASD from existing knowl-
edge. MAPSD first identifies omics information (genome, tran-
scriptome, proteome) on known candidate genes for a specific
disease from various sources; it then receives PPI networks,
subcellular localization of proteins within cellular micro-domains,
and protein abundances across >130 different combinations of
tissues and cell-types as well as a repertoire of other omics data-
types followed by diffusing the accumulating signal intensities of
available genetic signatures through tissue/cell-type adjusted PPI
networks, to uncover disease-relevant genetic drivers of the
disease with small effect sizes which cannot be captured using
available single-omics pipelines (Fig. 1a). In fact, MAPSD leverages
dedicated properties of proteins to initially adjust the PPIs given
the tissue or cell-type being studied.
To create the PPI, we assembled the PPI networks from three

sources including: PICKLE 2.333,34, The Human Reference Inter-
actome27, and human Interactome Database35. Upon removing
duplicate interactions, 232,801 interactions were used in the
study. Four layers of omics data on ASD were collected including
genome, epigenome, transcriptome, proteome, and connectome
(see Methods and Materials, Fig. 1a). We used the SFARI gene list
to obtain the genome data containing 1089 genes which have
been curated from the literature by human experts, where each
gene has varying degree of evidence to be associated with ASD.
The genome data consists of genetic mutations being categorized
into four groups based on SFARI gene set including: common
variants, rare variants, syndromic variants i.e., genes implicated in
syndromic forms of ASD where only a subpopulation of patients
develop autistic symptoms, and functional mutations, i.e., ASD
candidate genes not covered by the other categories whose

occurrence manifests autistic symptoms. As a part of PsychEN-
CODE consortium, Gandal et al.36 have drawn a map of
transcriptome-wide isoform-level dysregulated genes in ASD. We
included 1611 DE genes and 767 differentially spliced genes.
MAPSD requires an initial signal vector which is a collection of
ASD-associated risk loci from any of the omics data layers used.
For example, if a gene is DE and differentially methylated, then its
initial signal value will be 2. The initial signal vector used in MAPSD
included 3205 genes with signal intensities ranging from 1 to 4.
78% of the initial ASD loci had an initial signal of 1 while only 1.2%
had an initial signal level of 4 (Supplementary Table 1). Some of
the loci with significant signal intensities include: SHANK2, SHANK3,
RORA, and GRIN2A. We note that all the datasets curated in this
study are adjusted for sex to avoid any biases in the results.
The biochemical and biophysical properties of proteins being

used in this study were obtained from the Human Protein
Atlas37,38. This data is twofold: first, the protein abundances across
131 tissues/cell-types from normal humans; second, tissue-wide
subcellular localization of proteins within intra-cellular micro-
domains (Supplementary Fig. 1a). Projecting subcellular localiza-
tion information onto the PPI networks creates a more realistic
image of intra-cellular trafficking of proteins given that the
likelihood of interactions between two molecules residing in the
same micro-domain is higher than the ones localized far from
each other. On the other hand, the abundance of proteins at cell
resolution in tens of different tissues enables us to adjust the
topology of PPI networks and create a resilient network structure
dedicated to specific tissues and cell-types. Given the information
in the Human Protein Atlas37,38, 32 subcellular micro-domains
were used in this study (Supplementary Fig. 1b). Some of the
micro-domains where a large number of proteins are expressed
include cytosol, nucleoplasm, nucleus, and plasma membrane.
MAPSD receives all of these information and diffuses the disease
signals from known ASD loci to the entire human interactome
each adjusted for the given tissue being studied. In our study, four
specific brain regions were targeted including: cerebral cortex,
cerebellum (CB), caudate, and hippocampus. We executed MAPSD
and checked the initial ASD loci showing the highest signal
intensity in various brain regions. 247 genes were found to show
high signal intensities uniquely in the brain after signal diffusion
(Supplementary Table 2).

MAPSD-identified risk genes-encoded proteins are enriched in
specific subcellular domains in neuronal cells
Executing MAPSD resulted in a set of 1209 genes which showed
the highest signal intensity in the brain. Of which, 247 genes were
ASD-associated genes initially fed to MAPSD and 962 were newly
identified. We separated the two gene sets and investigated their
spatial enrichment in the brain within the Human Protein Atlas.
We observed that 154 ASD genes (62%) were highly enriched in
neuronal cells within cerebral cortex while cerebral cortex shared
the largest fraction of ASD risk genes (~80%, Fig. 1b). We sought
to evaluate the set of the newly identified genes in the brain. Out
of 962 new susceptibility disease risk genes, 719 genes (~75%)
were enriched in all of the cell-types in cerebral cortex where 605
genes were specifically enriched in neuronal cells within this
region (~63% of the entire genes, Fig. 1c). Notably, these
observations reveal an agreement between the enrichment
patterns of the both gene sets and ensures reliable cell-
specificity of MAPSD.
We were interested in finding where ASD risk genes localize in

subcellular micro-domains. We used subcellular localization data
from the Human Protein Atlas37,38. First, checking the ASD loci
with the highest MAPSD signal in the brain, we observed
significant enrichment of the disease susceptibility risk loci in
neuronal cells in cerebral cortex (Fig. 1d). 82% of these loci were
enriched in different cell-types across cerebral cortex. Among
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which, five subcellular micro-domains harbored ~54% of the
entire loci essentially enriched in neuronal cells including: cytosol
(16%), nucleoplasm (13%), and nucleus (9%), plasma membrane
(7%), and vesicles (8.6%). This is a strong indication that not all of
the domains within a cell are disrupted by the disease. Similarly, in
the newly identified gene set, ~78% of the identified loci were
enriched across various cell-types in cerebral cortex. 46% of these
loci were enriched in specific cellular micro-domains including
cytosol (16%), nucleoplasm (11%), nucleus (6%), plasma mem-
brane (6%), and vesicles (7%) (Fig. 1e). We checked if there were
any differences between the obtained enrichment proportions in
the both gene sets. No significant difference between the
proportions of enrichment percentage in cytosol, nucleoplasm,
nucleus, plasma membrane, and vesicles were observed (two-
sample z-test at significance level of 0.05). This observation
supports how the identified genes and their protein products are

similarly localized within subsets of cell-types in the brain
compared to ASD risk genes. Some of these observations have
been made in autistic individuals. For example, a study by
Beheshti et al.39 shows how ASTN2, a gene associated with ASD
through disruptive copy number variation, binds to surface of
synaptic proteins affecting their trafficking leading to the
modulation of synaptic strength. In addition, certain subcellular
micro-domains to show a strong association with the disease in
our study have been corroborated to be implicated in ASD. For
instance, plasma membrane40, nucleus41, and cytosol42 have been
recognized to implicate in ASD. We were interested to conduct a
functional enrichment analysis to check what biological pathways
are enriched for the set of the identified candidate risk gene.
Using WebGestalt43, we performed a pathway enrichment
analysis. We observed a number of pathways significantly
enriched including: Neuroactive ligand-receptor interaction
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(a)

Caudate Cerebellum
Cerebral 
cortex Hippocampus Caudate Cerebellum

Cerebral 
cortex Hippocampus

Subcellular localization

(d) (e)

Subcellular localization of ASD-associated genes at protein level with 
the highest MAPSD signal intensities in the brain

Subcellular localization of the newly identified genes at protein 
level with the highest MAPSD signal intensities in the brain

Enrichment of ASD-associated genes in different 
cell-types with highest MAPSD signals in the brain

(b) (c)

Enrichment of the identified genes in different cell-
types with highest MAPSD signals in the brain

Purkinje cells

Cells in granular layer 

Neutrophil
Neuronal cells
Glial cells
Cells in molecular layer

Endothelial cells
Cell types (D-E)

Cell types (B-C)

Fig. 1 A schematic of MAPSD and Enrichment patterns of MAPSD brain-specific gene-encoded proteins at cell resolution and subcellular
domains using the Human Protein Atlas data. a A schematic of MAPSD which starts with raw signal vector of a gene list and diffuses them
onto 131 combinations of tissues and cell-types given the structural topology of the PPI network and biochemical and biophysical properties
of proteins. Darker cells represent high intensity genes regarding a specific cell, vice versa; b Enrichment of MAPSD original ASD risk genes at
single cell resolution in four brain regions; c Enrichment of MAPSD newly identified ASD risk genes at single cell resolution in four brain
regions; d Enrichment of MAPSD original ASD risk genes is various subcellular domains in five cell-types across four different brain regions;
e Enrichment of MAPSD newly identified ASD risk genes is various subcellular domains in five cell-types across four different brain regions.
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(FDR= 3.4e−14, Ratio: 3.5), SNARE interactions in vesicular
transport (FDR= 0.01, Ratio: 1.6), and Glutamatergic synapse
(FDR= 0.027, Ratio: 1.7). In fact, these pathways have been
previously found to be involved in ASD44–46 providing further
evidence on potential contribution of the identified risk genes to
the disease.

Tissue and developmental stage-specific expression of the
identified ASD risk genes
At the gene level, we looked on the enrichment of the identified
candidate genes on various tissues in the human body as well as
characterizing their expression during neurodevelopment. Using
the gene expression levels on 53 tissues from the Genotype-Tissue
Expression project, GTEx47, we mapped the ASD and MAPSD risk
genes onto the GTEx data and obtained the enrichment P-values
across all of the available tissues. First, for each gene, we obtained
the tissue in which the gene shows the highest expression level.
14 regions related to CNS were included in this analysis including
tibial nerves and 13 brain regions as follows: frontal cortex,
cerebral hemisphere, cortex, spinal cord, CB, nucleus accumbens,
anterior cingulate cortex, caudate, hypothalamus, substantia nigra,
amygdala, putamen, and hippocampus. We found both ASD and
the new gene set which had the highest signal intensities in the
brain to be significantly enriched in frontal cortex, cerebral
hemisphere, cortex, spinal cord, and nucleus accumbens (Fig. 2b).
Notably, neither gene sets were enriched on some specific brain
regions such as amygdala, hippocampus, and putamen.

Given that ASD are neurodevelopmental disorders, we were
interested to check if any of the two gene sets are perturbed
during the development of human brains. To do this, we used the
Atlas of the Developing Human Brain (BrainSpan)48 on 16 brain
regions including: amygdaloid complex49, posterior (caudal)
superior temporal cortex (area 22c) (STC), anterior (rostral)
cingulate (medial prefrontal) cortex (MFC), dorsolateral prefrontal
cortex (DFC), orbital frontal cortex (OFC), inferolateral temporal
cortex (area TEv, area 20) (ITC), hippocampus50, ventrolateral
prefrontal cortex (VFC), primary auditory cortex (A1C), primary
visual cortex (V1C), striatum (STR), primary motor-sensory cortex
(M1C), posteroventral (inferior) parietal cortex (IPC), primary
somatosensory cortex (S1C), CB, and mediodorsal nucleus of
thalamus51. Then, we categorized the BrainSpan data into two
large sets of prenatal and postnatal developmental stages.
Prenatal stage includes: 0–12 post-conception weeks (pcw),
13–24 pcw, and 25–36 pcw. Postnatal stages include: 0–2 yr,
3–8 yr, 9–16 yr, and >17 yr. Next, we averaged the expression
levels of the both gene sets across different stages of pre- and
postnatal stages and looked for DE genes at FDR < 0.05 (Fig. 2a,
Supplementary Table 3). A constant pattern in both gene sets
were observed in which almost half of the genes are DE during
transition from prenatal to postnatal stages.
We were interested in further focusing on the top DE genes in

each brain region, so we obtained the genes to be DE in all of the
sixteen brain regions. Next, we checked all of the MAPSD brain-
specific high intensity signal genes (Supplementary Table 4). We
found that 229 ASD genes (~93%) are DE during developmental

Enrichment of known ASD and the identified genes in tissue-
wide GTEx data at gene expression level
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Fig. 2 Tissue-specific enrichment of ASD risk genes and the new gene set identified by MAPSD. a Number of DE genes for ASD risk genes
and the identified MAPSD genes across 16 brain regions in prenatal versus postnatal stages of brain development; b Enrichment of both new
and known ASD risk genes at gene expression level in different tissues using GTEx data (Remaining insignificant tissues are not shown);
c Enrichment statistics of the MAPSD identified genes across six cell-types in the brain in scRNA-seq data from normal human brain; d–g t-SNE
plots for four genes being identified by MAPSD to be DE in distinct cell-types between normal and ASD brains. Acronyms: Amygdaloid
complex, posterior (caudal) superior temporal cortex (area 22c) (STC), anterior (rostral) cingulate (medial prefrontal) cortex (MFC), dorsolateral
prefrontal cortex (DFC), orbital frontal cortex (OFC), inferolateral temporal cortex (area TEv, area 20) (ITC), hippocampus, ventrolateral
prefrontal cortex (VFC), primary auditory cortex (A1C), primary visual cortex (V1C), striatum (STR), primary motor-sensory cortex (M1C),
posteroventral (inferior) parietal cortex (IPC), primary somatosensory cortex (S1C), cerebellum (CB), and mediodorsal nucleus of thalamus, AST-
FB: fibrous astrocytes, AST-PP: protoplasmic astrocytes; OPC: oligodendrocyte precursor cells, IN-PV: parvalbumin interneurons; IN-SST:
somatostatin interneurons; IN-SV2C: SV2C interneurons; IN-VIP: vasoactive intestinal polypeptide interneurons; L2/3: layer 2/3 excitatory
neurons; L4: layer 4 excitatory neurons; L5/6: layer 5/6 corticofugal projection neurons; L5/6-CC: layer 5/6 cortico-cortical projection neurons;
Neu-mat: maturing neurons; Neu-NRGN-I: NRGN-expressing neurons; Neu-NRGN-II: NRGN-expressing neurons.
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phases in at least one brain region. The number of brain regions
that the ASD genes were enriched for ranged from 1 to 16. Within
the newly identified gene set, 714 gene (80%) were DE across
various number of regions ranging from 1 to 16.
We looked for demonstrating if any of the identified genes are

specific markers of brain cells in postmortem adult brains. For this,
we used single-cell RNA-seq (scRNA-seq) data from Lake et al.52

which covers >60,000 single cells from human adult frontal cortex,
visual cortex, and CB. They had categorized the clustered cells into
several groups including52: excitatory (Exc) and inhibitory
neuronal (In) subtypes in the cortex, Purkinje (Purk) neurons and
cerebral granule (Gran) cells as well as non-neuronal cells such as
astrocytes (Ast), microgolia (Mic), oligodendrocytes (Oli) and their
precursor cells (OPCs), endothelial cells (End), and pericytes. We
obtained the list of the marker genes across six cell-types where
their expression levels were significantly higher compared to
other cells including: Exc neurons, In neurons, cerebral hemi-
sphere cluster cells, Oli/OPCs, cerebral hemisphere Ast (CH-Ast),
and cerebral hemisphere OPCs (CH-OPCs). We found that all of the
MAPSD genes with the highest signal in the brain are highly
enriched in all of these sets. Yet, the enrichment degress in
neuronal cells such as In (Fisher’s exact test P value= 3 × 10−24)
was apparently higher than non-neuronal cells such as CH-OPCs
(Fisher’s exact test P value= 2 × 10−2, Fig. 2c). The details of Fig. 2c
has been provided in Supplementary Table 6. This observation
provides a strong evidence on how certain cell-types are involved
in the disease and what genes markers are perturbed during
neurodevelopment.
We looked for enrichment of MAPSD findings across diverse

cell-types in the brain at the single cell resolution. We used the
identified DE genes across 17 cell-types in scRNA-seq data from a
study by Velmeshev et al.19 to intersect with the newly identified
gene set. Notably, we found 20 genes to be DE across unique cell-
types between ASD and normal brain tissues (Supplementary
Table 5). 15 genes (~71% of the total) were found to be DE only in
neuronal cells, two genes in Mic, two genes in Ast, and two genes
in endothelial (End) cells. As an example, we created t-SNE plots
for four MAPSD-identified genes which were DE in Velmeshev
et al. scRNA-seq data19 including KCNJ3, STXBP6, EMX2, and GRIK1
(Fig. 2d–g, darker cells denote higher expression). These genes we
significantly expressed in vasoactive intestinal polypeptide inter-
neurons, parvalbumin interneurons, protoplasmic Ast, and vasoac-
tive intestinal polypeptide interneurons, respectively while being
downregulated in ASD individuals in the same cell-types. We
queried these genes to illustrate if there were any evidences on
association of these genes with ASD or other brain diseases. We
found eight genes to be associated with psychiatric and
developmental diseases including: ELAVL4, EMX2, GRIA4, UNC13B,
GABRG2, GRIK1, GRM3, KCNJ3, and KCNH5. Using tri whole-exome
sequencing on GRIA4, Martin et al.53 had identified de novo
pathogenic variants in unrelated individuals suffering from
intellectual disabilities. This gene encodes GluR4, an AMPA
receptor subunit which is found on excitatory glutamatergic
synapses53. Such receptors are highly abundant in the CNS and
bear critical impacts on glutamatergic synapses whose
functions are well-documented in learning and memory54.
Implications of GRM3 in SCZ has been revealed through a massive
metal-analysis leading to the identification of three SNPs in this
gene55. This gene has also been reported to represent structural
defects which had been observed in SCZ and attention deficit
hyperactivity disorder56. We found multiple evidences on associa-
tion of KCNH557,58, KCNJ359, and GABRG260,61 with epilepsy. Other
genes are also implicated in human cortical development62 and
maintenance of axonal and synaptic structures63,64. Our findings
sheds light of a limited set of novel cell-specific genes with
potential implications in ASD that can be further investigated to
create a larger picture of ASD machinery.

The identified risk genes demonstrate ASD-relevant
phenotypes in mouse models
Generating loss-of-function mutations in the mouse genome
followed by evaluation of the mutant line for developmental/
neurological phenotypes is a compelling approach to test the
hypothesis regarding the involvement of candidate genes in
ASD65. We sought to evaluate how our identified list of candidate
genes may predispose to phenotypic traits that are relevant to
ASD. We limited our list to the 21 candidate genes which are
shared in the study by Velmeshev et al.19 We used Mouse Genome
Informatics (MGI) database66 and queried these candidate genes
for behavioral and neurological phenotypes that are relevant to
ASD. 14 out of 21 genes showed phenotype annotations related to
behavioral and neurological impairments as well as phenotypes
related to nervous system. 10 genes were related to both
categories including: ELAVL4, EMX2, MAGI2, GRIA4, UNC13B, CPE,
GABRG2, GRIK1, GRM3, and MAGI1. Five genes were related either
to behavioral/neurological impairments or phenotypes related to
the nervous system including: ADGRL2, GPATCH8, KCNJ3, ASIC2,
and KCNH5. For each of these candidates, we listed behavioral and
neurological phenotypes in Table 1. We found multiple autistic
behavioral phenotypes to be shared by the majority of the
identified risk genes. For example, abnormal startle reflex and
behavior as well as abnormal anxiety-related response were
shared by EMX2, MAGI2, GABRG2, GRM3, KCNJ3, and KCNH5. We
observed hyperactivity/hypoactivity and impaired motor capabil-
ities as relatively consistent behavioral patterns among these
knockout mice while abnormal neuron physiology was shared
predominantly as a common phenotype in the nervous system.
We sought to investigate if any of these genes are associated with
any Mendelian diseases. Using Online Mendelian Inheritance in
Man (OMIM) database67, we queried the 15 genes showing
phenotypic manifestations of neurological impairment in mice.
We found five genes to be associated with some known
Mendelian diseases including neurodevelopmental impairments
seizure, and certain types of epilepsy and Parkinson’s disease
(Table 1). Epilepsy is a neurological disorder characterized by
seizures, cognitive impairments, and psychological abnormal-
ities68. Nephrotic syndrome is a set of symptoms indicating
impaired functionality of kidneys including accumulation of
protein in urine, swelling in some organs, and high levels of
cholesterol in blood69,70. In fact, these observation provides
further evidences about confidence of the identified candidate
genes. Similarly, we found that the majority of these putative risk
genes directly impact nervous system development leading to
severe changes of morphology of distinct brain regions. For
instance, from knockout mice studies, we observed that dysregu-
lation of EMX2 leads to abnormal axon extension and cerebral
cortex morphology, as well as decreased cochlear nerve
composition and perturbed pallium development. In conclusion,
these results signifies strong evidences with regard to association
of the identified risk genes with ASD and lays a solid groundwork
for trans-omic studies of neurological impairments.

The identified risk genes are potential regulators of known
ASD risk genes
There have been thousands of genes identified to be associated
with the ASD risk. Although remarkable, they do not provide
insights if they converge in certain pathways of submodules of a
large regulatory network. To shed light on possible concentration
of ASD risk genes within PPI networks, we looked for the
topological structure of submodules of the global PPI network
around the identified risk genes. In the previous section, we
illustrated eight genes which have not been implicated in ASD
and were not available in SFARI gene list71. We extracted these
genes and all of their neighbors within the network (Fig. 3). They
bear 61 interactions in total covering 57 genes. Notably, 22 genes
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(%39) of the entire neighboring genes are existing ASD risk genes.
We found GRIA4 to share 13 interaction among which 6 genes are
known ASD loci including GRIA1, CACNG2, CAMK2A, PRKCA, GRIP1,
and SDCBP while 60% of GABRG2 interacting genes were found to
be known disease risk loci. Similarly, UNC13B was directly
connected to 15 genes including 6 known ASD risk genes (Fig.
3). We hypothesized that, although not directly, perturbation of
our identified risk genes may potentially explain disruption of the
disease associated modules and can assist in revealing a larger
picture of the disease architecture.
We found three genes GRM3, GRIA4, and GABRG2 to form an

interconnected module mediated by existing risk genes. These
three genes were interconnected through four genes three of
which known ASD loci including PRKCA, SDCBP, and GRIP1. Given
that these genes have been implicated in other neurological
disorders, they may act as potential drivers of ASD, too. We looked
for the initial signal levels of the ASD-associated genes connected
to the abovementioned eight genes represented in green nodes
in Fig. 3. Of these 22 genes, 13 genes had an initial signal intensity
of 1, four genes having intensity of 2 and 3, respectively followed
by a single gene with the signal level of 4. CAMK2A was the only
high signal gene which was connected to GRIA1. All of the genes
connecting GRM3, GRIA4, and GABRG2 had an initial signal of 1.
Large fraction of low-signal ASD genes is a testament to
importance of aggregating small-effect size disease loci in order
to amplify low signal intensities to unmask un-explored disease
drivers.

DISCUSSION
ASD are complex neurodevelopmental diseases with hundreds of
genetic or environmental factors contributing to the evolution of
the disease phenotypes. Significant endeavor in various domains
such as GWAS or transcriptome studies have enriched our
understanding of molecular mechanisms that may cause or
contribute to the development of the disease. However, the
majority of the research have focused on nucleic acids (genome
and transcriptome studies) where proteomics has garnered less

attention. At the proteome domain, there are several important
aspects in ASD domain which have not been addressed such as
biochemical and biophysical properties of proteins as well as their
tissue/cell-specific characteristics which may affect PPIs and that
how they can contribute to the disease onset and progression. In
this study, using a novel single cell-based systems biology
approach, we modeled intra-cellular protein trafficking patterns
as well as subcellular localization of the proteins in tens of
different tissues. We identified a new set of disease susceptibility
genes followed by extensive examination of these genes to gather
additional support of the findings.
With the advent of single cell-based technologies, exciting

opportunities have been created for more accurate investigation
of the disease machinery. Launching large-scale proteomic
projects such as the Human Protein Atlas paved the way to make
novel discoveries by modeling mutual correspondence between
genome, transcriptome, and proteome. In this paper, we collected
all of the available genomic, transcriptomic, and proteomic data
on ASD followed by leveraging the single cell protein abundances
from the Human Protein Atlas project. These multi-omic data were
then fed to the MAPSD, a novel network-based systems biology
method which models biophysical and biochemical properties of
proteins including tissue/cell-specific protein abundances as well
as subcellular localization of proteins in distinct cellular micro-
domains. Our findings led to the identification of a list of new
susceptibility genes that may contribute to the disease pathogen-
esis. Based on our analysis, the algorithm converged at the
diffusion time t= 4. The final signal intensities generated by
MAPSD are real numbers and are calculated for every gene
(n= 16,185) in the network across all the tissues and cell-types.
Then, the genes with the highest signal intensities in brain-related
tissues or cell-types are picked as susceptible risk genes.
A key observation being made was the enrichment of known

ASD genes in neuronal cells within the human cerebral cortex. This
observation is in line with the previous findings regarding
associations between cortices such as prefrontal cortex and
anterior cingulate cortex with ASD72. These regions have been
recognized to play a key role in critical cognitive processes such as

Fig. 3 Modules of the identified ASD risk genes in the PPI network used for signal diffusion. Red nodes denote the new potential risk
genes and green nodes represent existing ASD-associated risk genes. Width of borders of the green nodes represent the number of evidences
available on this gene regarding its association with ASD in that thicker boundaries indicate larger evidence.
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decision making and motivation73,74. An important finding was the
similarity of enrichment patterns of known ASD risk genes and the
newly identified genes by MAPSD. In addition, we found that the
encoded proteins of the new candidate genes highly co-localize in
certain cellular micro-domains including: cytosol, nucleoplasm,
nucleus, and vesicles. These micro-domains have been indicated to
be impacted during neurodevelopment leading to autistic
phenotypes41,75. Applying MAPSD to the collected data, we
observed that the identified candidate genes resemble the same
localization patterns as known ASD risk genes. This creates a
certain level of confidence about potential association of these
genes with ASD which made us put them under extra tests. Given
that ASD are a clinically heterogeneous class of neurodevelop-
mental disorders76, we were interested in studying the expression
variations of these genes over the course of neurodevelopment.
Considering 16 brain regions from BrainSpan, we showed that over
half of the known ASD genes as well as the new identified
candidate loci are DE between prenatal and postnatal stages. We
found that the disrupted biological pathways by the candidate risk
genes show an overlap with previous findings such as Glutama-
tergic Synapse, Cholinergic Synapse, Embryonic and Cardiac
Development as well as signaling pathways such as Insulin and
Neurotrophin Signaling pathways77. To further investigate the list
of the identified candidate risk genes, we obtained the list of ASD-
associated genes by Ramaswamy et al.26 which contained an
expanded list of 5439 dysregulated genes in ASD. Comparing our
findings with this set of genes, we observed a significant overlap
(Fisher’s exact test P value= 8 × 10−8, n= 171). We sought to
check if the overlapping gene set is enriched for any biological
functions. We conducted a pathway enrichment analysis on the list
of overlapping genes and observed multiple neuronal-related
pathways including: retrograde endocannabinoid signaling
(P= 5.5 × 10−3, ratio= 1.7), circadian entertainment (P= 8 × 10−3,
ratio= 1.6), neuroactive ligand-receptor interaction (P= 0.01,
ratio= 1.5), and glutamatergic synapse (P= 0.01, ratio= 1.5). Such
an observation serves as additional evidence regarding biological
relevance of the outcomes of this research.
Using the gene expression data on 53 human tissues from the

GTEx consortium, we made critical findings regarding spatial
enrichment of ASD risk genes and the new identified loci. We
showed that known ASD risk genes are highly expressed in
specific brain regions including frontal cortex, cerebellar hemi-
sphere, and nucleus accumbens. For the purpose of comparison,
we repeated the same analysis of the new set of genes and
observed an almost similar enrichment levels in the same areas.
The only brain region where the new candidate gene set did not
pass the significance threshold is CB where ASD risk genes
showed a borderline statistical significance. Diving deep into the
scRNA-seq from human brain tissue also further showed that a
large fraction of the identified risk genes are in fact signature
markers of inhibitory and excitatory neurons. An important
discovery of this study was further validated by the scRNA-seq
data from ASD brain by Velmeshev et al.19. We showed that 21
candidate genes which have not been captured previously by bulk
transcriptional experiments were actually DE in specific cellular
subpopulations in the brain. We sought to investigate the effect of
subcellular localization on the outcome of MAPSD. For this, we
assigned a weight of 1 to all of the edges in the PPI network and
ran the algorithm. 291 genes showed the highest signal intensity
in the brain after signal diffusion among them 101 genes were
shared with the original list of genes identified by MAPSD
(n= 962). Then we looked at the list of the candidate genes that
were found to be dysregulated in the Velmeshev’s study19.
However no overlapping genes were observed between the
MAPSD results and their list of genes while 21 genes were found
to be shared by the Velmeshev’s study when incorporating the
subcellular localization information indicating the importance of
considering localization information when running the model. We

note that the outcomes of this study are merely a result of
computational modeling without a functional assessment of the
risk genes in diseases etiology. Moreover, MAPSD solely relies on
molecular data to characterize potential disease-associated genes
while not employing paired clinical information. Therefore, this is a
limitation that the users of this method should consider.
In conclusion, using a novel systems biology technique, called

MAPSD, we could successfully model proteome-specific informa-
tion at the single cell resolution and pinpoint intra-cellular micro-
domains where ASD risk genes-encoded proteins are enriched. As
the outcome of the model, we identified a list of novel candidate
loci whose disruption in mouse models increasingly leads to
autistic phenotypic traits. We believe that the identified ASD risk
loci as well as the systems biology approach used in this study
paves the way to gain further insights into the genetic
architecture of the disorder.

METHODS
Markov affinity-based proteogenomic signal diffusion
(MAPSD)
MAPSD is a network-based systems biology method aimed at identifying
tissue and cell-specific candidate risk genes in complex diseases. MAPSD
models biochemical and biophysical properties of proteins along with
other available molecular data collected by the user to create a signal
intensity vector of the known signatures of the disease. Next, the created
signal vector is diffused through the regulatory network or PPI network fed
to the model followed by adjusting the signals given the tissue and cell-
type of interest to identify candidate risk genes. MAPSD is available at
https://github.com/adoostparast/MAPSD. The tissue-wide protein abun-
dance levels and subcellular localization information are available in the
MAPSD directory. MAPSD requires a list of genetic signatures (a sample is
provided in the MAPSD GitHub directory) and a PPI network as well as
proteomics information for adjusting the PPI networks. Users can readily
use the proteomics data available at MAPSD GitHub account without any
changes.

Creating the signal vector
The initial signal matrix S, is an overlaid column vector which contains the
cumulative levels of biological evidences such as transcriptional signatures,
methylation, GWAS, etc. For each level of information for a specific gene,
we add a point 1 if there was a significant hit such as an FDR threshold of
0.05 on transcriptome signals and 5 × 10−8 for GWAS loci. To create S, first
we introduce evidence matrix EG×L where G denotes the total number of
genes and L is the number of omics data layers. Therefore:

Eij ¼ 1; if for gene i there is an evidence in layer j

Eij ¼ 0;Otherwise

�

Next, using E, we can create S as follows: Si ¼
PL

j¼1 eij . As example if a
gene i is DE and differentially methylated, then Si= 2. To avoid generating
spurious signals, we should make sure that the data being collected to
create the signal vector have been generated from the same tissue or
appropriate surrogate tissues.

Data sets used in the study
SFARI Gene set 3.0 is used for collecting genetic signatures of ASD which
are categorized as rare single gene mutation, functional mutations,
common variants, and syndromic loci. SFARI gene list71 included 1089
genes. Pre-calculated list of DE and differentially spliced ASD genes were
obtained from PsychENCODE project36. This data are available on
PsychENCODE Knowledge Portal under Synapse ID syn4587609.
To study the expression patterns of genes during neurodevelopment,

we download the RNA-seq data from the Atlas of the Developing Human
Brain (BrainSpan)48 and calculated the DE genes between prenatal and
postnatal stages using t-test followed by false discovery rate correction
(FDR < 0.05). To characterize spatial expression of genes in different brain
regions, we used GTEx V878 and downloaded the processed RNA-seq data
on the human brain. To characterize the ASD manifestations of disrupting
the candidate risk genes, we used MGI database66. MGI contains knockout
mouse models to investigate the phenotypic similarities between human
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patients and mouse models. We queried the candidate risk gene in MGI
search tab and downloaded the resulting output.
Protein-protein interactions were collected from three sources including:

PICKLE 2.333,34, The Human Reference Interactome27, and human
Interactome Database35. Next, duplicate interactions were removed
leading to 232,801 unique interactions to be used in the study.

DATA AVAILABILITY
All the generated results in this study are available in supplementary tables.
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The code for running MAPSD is available at https://github.com/adoostparast/MAPSD.
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