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Abstract

Vibrissa motoneurons in the facial nucleus innervate the intrinsic and extrinsic muscles that move the whiskers. Their
intrinsic properties affect the way they process fast synaptic input from the vIRT and Bötzinger nuclei together with
serotonergic neuromodulation. In response to constant current (Iapp) injection, vibrissa motoneurons may respond with
mixed mode oscillations (MMOs), in which sub-threshold oscillations (STOs) are intermittently mixed with spikes. This study
investigates the mechanisms involved in generating MMOs in vibrissa motoneurons and their function in motor control. It
presents a conductance-based model that includes the M-type K+ conductance, gM, the persistent Na+ conductance, gNaP,
and the cationic h conductance, gh. For gh = 0 and moderate values of gM and gNaP, the model neuron generates STOs, but
not MMOs, in response to Iapp injection. STOs transform abruptly to tonic spiking as the current increases. In addition to
STOs, MMOs are generated for gh.0 for larger values of Iapp; the Iapp range in which MMOs appear increases linearly with gh.
In the MMOs regime, the firing rate increases with Iapp like a Devil’s staircase. Stochastic noise disrupts the temporal
structure of the MMOs, but for a moderate noise level, the coefficient of variation (CV) is much less than one and varies non-
monotonically with Iapp. Furthermore, the estimated time period between voltage peaks, based on Bernoulli process
statistics, is much higher in the MMOs regime than in the tonic regime. These two phenomena do not appear when
moderate noise generates MMOs without an intrinsic MMO mechanism. Therefore, and since STOs do not appear in spinal
motoneurons, the analysis can be used to differentiate different MMOs mechanisms. MMO firing activity in vibrissa
motoneurons suggests a scenario in which moderate periodic inputs from the vIRT and Bötzinger nuclei control whisking
frequency, whereas serotonergic neuromodulation controls whisking amplitude.
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Introduction

Motoneurons in the facial nucleus [1] innervate the intrinsic

and extrinsic muscles that move the whiskers of rodents [2–6]. The

frequency range of exploratory whisking in rats is 5–15 Hz [4],

and the firing rate of vibrissa motoneurons can be as low as a few

Hz [7,8]. These motoneurons are not mutually coupled, and are

innervated by many brainstem areas [9]. Motoneurons that

project to intrinsic and extrinsic muscles receive rhythmic synaptic

input from the vIRT and Bötzinger nuclei respectively [10,11],

and both types of motoneurons are under the modulation of

serotonin and other neuromodulators [8,12]. It is still unclear how

those inputs are integrated, or the ways in which integration is

affected by the intrinsic properties of vibrissa motoneurons.

Intrinsic neuronal properties are often examined in in vitro
experiments. Like other neurons, vibrissa motoneurons fire

tonically under the application of applied current Iapp if Iapp is

above a critical value. Below this value, they may fire in mixed

mode oscillations (MMOs) [13], an alternation of subthreshold

oscillations (STOs) with spiking behavior (Figure 3A in [12] and

Figure 5A in [14]). At first glance, the inter-spike interval during

these MMO states appears irregular. From an ionic current

perspective, the firing of vibrissa motoneurons depends strongly on

the level of the persistent Na+ conductance gNaP [8], and

enhancing gNaP by a serotonergic agonist generates rhythmic

firing in vibrissa motoneurons. Spiking in vibrissa motoneurons is

followed by pronounced afterhyperpolarization, and the low firing

rate is explained by AHP conductances that are significantly

slower than AHP conductances in spinal motoneurons [8,15].

These neurons also exhibit an h-conductance and response in that

they ‘‘sag’’ to hyperpolarizing current steps [16].

In addition to rat vibrissa motoneurons, MMOs have been

found in mouse [17] and rat [18] spinal motoneurons. In spinal

motoneurons, the firing frequency in the tonic regime (‘‘primary

range’’), as well as the frequency of the STOs between spikes in the

MMO regime (‘‘sub-primary range) were reported to be about 40–

100 Hz [19]. Fast STOs in spinal motoneurons can be generated

from the interplay between the fast, transient sodium current and

two potassium currents: the delayed-rectifier current and an

afterhyperpolarization (AHP) current. The time scale of the first

two currents and the third current were reported to be 1 and

10 ms, respectively. MMOs were found to emerge from the

Shilnikov bifurcation of the resting state [19].

The current study deals with four unanswered questions: Which

mechanisms can lead to MMOs generation in vibrissa motoneu-
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rons? How can they be distinguished based on the properties of

their firing patterns? Is the mechanism in vibrissa motoneurons

different from that of spinal motoneurons [19]? What are the

functional advantages for motoneurons to be in the MMO mode?

This is done by analyzing a conductance-based model in vibrissa

motoneurons that can exhibit MMO activity [15].

Results

Model of a vibrissa motoneuron
The single compartment, conductance-based model for a

vibrissa motoneuron was described in [15]. In brief, the current

balance equation is

C
dV

dt
~{gL(V{VL){INa{INaP{IKdr

{IAHP{IM{IhzInoisezIapp

ð1Þ

where V is the membrane potential of the neuron, C = 1 mF/cm2

is the membrane capacitance of the neuron, and the parameters of

the leak current are gL = 0.12 mS/cm2 and VL = 270 mV (see

‘‘Ionic currents of the model’’ in Methods). The applied current

injected into the neuron is denoted by Iapp, which is considered to

be constant in time unless otherwise stated. The ionic currents

consist of the transient Na+ current, INa; the persistent Na+

current, INaP; the delayed rectifier K+ current, IKdr; the slow AHP,

Ca2+-dependent K+ current, IAHP; the slow voltage dependent, K+

current, IM; and the hyperpolarization-activated h-current Ih. The

noise current is Inoise(t)~sj(t) [20], where j(t) is a Gaussian white

noise: vj(t)w~0 and vj(t)j(t0)w~d(t{t0); ,…. means

average over trials and d is the Dirac function (see [21]). The units

of s are mA6ms1/2/cm2. The value of s = 0 is used unless stated

otherwise.

STOs in noiseless neurons with gh = 0
The first step is to investigate the neuronal dynamics with no h-

conductance. This case is studied for two reasons. First, it is

simpler than the case with gh.0. Second, the dynamical regimes

defined for gh = 0 provide the basis over which more complicated

dynamics for gh.0 are identified. The relationship between the

firing pattern and Iapp in the model depends on the M-type K+

conductance, gM. For small gM, there is a transition from a rest

state to a firing state as Iapp increases. For example, the bifurcation

diagram for gM = 0.4 mS/cm2 (Figure 1A) shows that the rest state

is destabilized via a subcritical Hopf bifurcation, and a firing state

with a frequency of a few Hz emerges. There is a narrow bistable

regime [22]. At intermediate gM values, such as gM = 1 mS/cm2

(Figure 1B), the rest state is destabilized via a supercritical Hopf

bifurcation, and a state of STOs emerges. This state switches

abruptly to a firing state at a large Iapp value. This abrupt switch

corresponds to the canard scenario [23]. Examples of convergence

to these three states – rest, STO and firing – in response to step

currents are shown in Figures 1B1-3. When gM further increases,

the resting state is destabilized again by a subcritical Hopf

bifurcation, this time with an extended bistable regime (Fig-

ure 1C), and there are no STOs.

The phase diagram in the Iapp–gM plane shows that STOs are

obtained in a restricted Iapp regime, between a regime of

quiescence and a regime of tonic firing. For STOs to occur, gM

should be neither too small nor too large (0.42 mS/cm2 ,gM,

1.33 mS/cm2; Figure 2A). The Iapp value for which STOs emerge

increases with gM. The Iapp range in which STOs occur increases

and then decreases with gM. For STOs to occur, the persistent

sodium conductance gNaP should also be within intermediate

values (0.035 mS/cm2 ,gNaP ,0.057 mS/cm2; gM = 1 mS/cm2;

Figure 2B). The Iapp value for which STOs emerge decreases with

gNaP. The Iapp range in which STOs occur increases and then

decreases with gNaP. No MMOs were observed in the noiseless

model without gh.

MMOs in noiseless neurons with gh

When the h conductance gh is larger than zero, bifurcation

diagrams of the model neurons (Figure 3A) resemble those for the

case where gh = 0 (Figure 1B). For the reference parameter set

(gM = 1 mS/cm2), the system switches from a rest state (Figure 4A)

to STOs (Figure 4B) as Iapp increases. These STOs are

destabilized via a period doubling (PD) bifurcation at Iapp = IPD.

At Iapp = ISNP (ISNP.IPD) there is a saddle-node of periodics (SNP)

bifurcation. The neuron fires tonically for Iapp.ISNP (Figure 4H).

There is, however, one major difference between the model with

and without gh. For gh.0, there is a range of Iapp between IPD and

ISNP where no simple attractor (rest state or tonic firing) exists.

Instead, the model neuron exhibits MMOs characterized by

subthreshold oscillations between spikes (Figures 3, 4C–G).

The number of STOs between two consecutive spikes decreases

with Iapp, whereas the STO frequency depends only weakly on

Iapp (Figure 4). As a result, the average firing rate during the

MMO state increases with Iapp (Figure 3B). In most cases (e.g.,

Figure 4C–E,G), but not all (e.g., Figure 4F) the MMO state is

periodic. The labeling method of [23] is thus modified to define

the state during periodic MMOs by indicating the number of

spikes (as regular numbers) and STOs (as superscripts) in

consecutive episodes within one time period. The states shown

in Figure 4B–H are therefore: B. 01 is (an STO state). C. 13. D.

1112. E. 11. F. Aperiodic state. G. 21. H. 10 (tonic firing). The 11

state occupies the largest Iapp range (Figure 3B). For smaller values

of Iapp, the firing pattern resembles 1n for most of the Iapp interval,

where n is an integer. For the reference parameter set, the

maximal n is 5. There are narrower ranges where the firing

patterns are more complicated, such as 1112. Aperiodic, probably

chaotic patterns are also found. For Iapp values larger than that of

the 11 range, the neuron fires mostly in n1 patterns, and n
increases with Iapp. For large enough Iapp the firing patterns switch

to 10 and the neuron fires tonically without STOs between spikes.

The graph of the firing rate fR as a function of Iapp (Figure 3B) has

a Devil’s staircase shape [24].

The phase diagram in the Iapp–gh plane (Figure 5) shows that

MMOs are obtained between an STO regime and a tonic firing

regime. The Iapp range in which MMOs are obtained increases

approximately linearly with gh; it approaches 0 as gh R0. The Iapp

range in which the neuron exhibits STOs varies only weakly with

gh.

Noise-induced MMOs
Individual ionic channels are discrete elements whose properties

can be given only probabilistically [25]. Spontaneous synaptic

release is also probabilistic [26]. In neuronal modeling, this

stochastic dynamics are often modeled by adding white stochastic,

Gaussian noise to the underlying deterministic dynamics [20].

Here, a second mechanism for MMOs generation is considered, in

which stochastic noise leads to MMOs firing patterns when the

noiseless neuron exhibits STOs or even quiescence or tonic firing.

To analyze noise effects, the properties of the motoneuron model

with a nonzero noise amplitude s were studied. To show the

impact of parameter s, the model was simulated in a regime

where it is at rest for s= 0 (no spikes, STOs or MMOs). Here,

weak or moderate noise generates voltage fluctuation but not

Mixed-Mode Oscillations
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spikes (Figure 6A). The standard deviation of the fluctuations sV is

defined as

sV~ SV2(t)Tt{SV (t)Tt
2

� �1=2 ð2Þ

where S:::Tt~ 1=Tð Þ
Ð T

0
dt::: means time average over a large time

T. The standard deviation sV increases linearly with s for small s
(Figure 6B), and spikes are observed for large enough s. Spikes are

not observed for s values below 0.1 mA6ms1/2/cm2, that yield

voltage fluctuations below 2 mV.

Noise may generate MMOs when they do not exist for the

noiseless neuron, or increase their range of appearance when they

do. First, I study a case in which the noiseless neuron does not

exhibit MMOs: gh = 0, gM = 1 mS/cm2. It exhibits STOs for Iapp

between IHB = 1.45 mA/cm2 and IPD = 1.7 mA/cm2 (Fig. 1B). It

spikes tonically for Iapp.IPD. A (relatively small) noise level of

s= 0.01 mA6ms1/2/cm2 transfers STOs or tonic spiking activity

to MMOs in the Iapp in a restricted range around IPD

(Figure 7A2,3), but not far from that value (Figure 7A1,4).

Increasing s expands the range of noise-generated MMOs

(s= 0.1 mA6ms1/2/cm2; Figure 7B). Second, I study a case in

which the noiseless neuron can exhibit MMOs: gh = 0.3 mS/cm2,

gM = 1 mS/cm2 (Figure 5). Small levels of noise such as

s= 0.01 mA6ms1/2/cm2 only enlarge the MMO regime mildly

(Figure 7C). Large noise levels also cause the generation of MMO

patterns in the regime where, without noise, the neuron exhibits

STOs or fires tonically (s= 0.1 mA6ms1/2/cm2; Figure 7D) or

even when is silent (s= 0.32 mA6ms1/2/cm2; not shown).

Effects of noise on the appearance of MMOs are also

demonstrated by plotting the firing rate and the coefficient of

variation (CV) of the model neuron as a function of Iapp when

there are no MMOs without noise (gh = 0; Figure 8AI,II) and when

the noiseless neuron can exhibit MMOs (gh = 0.3 mS/cm2; Figure

Figure 1. Bifurcation diagrams of the vibrissa motoneuron model with gh = 0. The values of the membrane potential V (top panels) and the
firing rate fR (medium panels) are plotted as functions of Iapp for fixed points (thin lines) and limit cycles (thick lines) for gM = 0.4 mS/cm2 (A),
gM = 1 mS/cm2 (B) and gM = 1.4 mS/cm2 (C). For limit cycles, minimal and maximal voltages during the cycle are plotted. Solid lines denote stable
solutions, and dotted lines denote unstable solutions. Stable sub-threshold oscillations are shown in blue, whereas stable tonic firing states are
shown in solid thick black lines. Solid circles denote bifurcations from the following types: Hopf (HB), saddle-node of periodics (SNP) and period
doubling (PD). Panels B1-B3 at the bottom present the voltage time traces for gM = 1 mS/cm2 and Iapp = 1.4, 1.6 and 1.8 mA/cm2 respectively. These Iapp

values are denoted by the arrows below the abscissa in panel B (top).
doi:10.1371/journal.pone.0109205.g001
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8BI,II). In the first case, the regime of noise-induced MMOs is

characterized by firing rates between that of tonic firing (around

6 Hz here) and 0, and by CV values between 0 and 1. For all levels

of noise, the firing rate increases with Iapp and CV decreases with

it, since temporal maxima in V(t) correspond more frequently to

spikes than to sub-threshold oscillations. A different situation is

found when MMOs are observed without noise (gh = 0.3 mS/

cm2). For s= 0, the firing rate as a function of Iapp exhibits a

Devil’s staircase shape, and the CV fluctuates between 0 and

positive values that have maxima around 0.08–0.28. This occurs

because CV is 0 when the number of STOs between each pair of

consecutive spikes is fixed; namely the state is 1n for any n (with

fixed n for all t; Figure 4C,E). As Iapp increases, the neuron tends

to fire in more complex periodic manner (Figure 4D), aperiodi-

cally (Figure 4F), or in modes such as n1 (figure 4G). In all such

firing patterns, CV is positive. It goes back to 0 when the neuron

switches to tonic firing (Figure 4H). Adding a small amount of

noise smooths the firing rate versus Iapp curve as well as the CV

curve, and extends the Iapp interval in which MMOs are observed

on both sides. The CV is large (,0.7–1) when MMOs begin to

emerge as Iapp increases, but then decreases as the firing patterns

become similar to the MMOs observed for s= 0. As Iapp increases

further, the CV increases as it follows a smooth version of the

curve for s= 0, and then decreases again to near zero as the firing

pattern switches to tonic firing. The CV vs. Iapp (or vs. fR) curve is

therefore non-monotonous and has an N-shape form for moderate

levels of noise. Only for large noise levels (s= 0.1 mA6ms1/2/cm2

and above in Figure 8) does the CV decrease monotonically with

Iapp whereas the firing rate increases monotonically with it.

To further explore non-random firing patterns in the case where

MMOs are generated by the effect of both an intrinsic mechanism

and noise, the firing rate fR and the coefficient of variation CV are

computed in a simple model. In this simple model, the membrane

potential V of a neuron oscillates between a high and a low voltage

with a time period tp. When V reaches its maximal value, the

neuron either fires a spike at random with a probability p or does

not fire and goes back to its minimal value with a probability of 1-

p. The spike duration is very small and refractoriness is neglected,

such that the time period between two consecutive maxima of V
does not depend on whether the peak occurs during a spike or a

maximum V value of an STO, under a Bernoulli process [27]. The

average inter-spike interval (,ISI. = 1/fR) is geometrically

distributed (see ‘‘a simple model of MMOs generated by noise

alone’’ in Methods) with an average tp/p, variance t2
p(1{p)=p2

and CV
ffiffiffiffiffiffiffiffiffiffi
1{p
p

. Therefore, for a Bernoulli process,

tp~fR(1{CV2) ð3Þ

Since the STO frequency that underlies MMOs depends only

weakly on Iapp, if the spiking can in fact be well described by a

Bernoulli process, then predicting tp from fR and CV should

display a weak dependence on Iapp. In fact, for large s

Figure 3. Bifurcation diagrams of the vibrissa motoneuron
model with gh = 0.3 mS/cm2. (A) The values of the membrane
potential V (top panel) and the firing rate fR (bottom panel) are plotted
as functions of Iapp for fixed points (thin lines) and limit cycles (thick
lines) for gM = 1 mS/cm2. For limit cycles, minimal and maximal voltages
during the cycle are plotted. Solid lines denote stable solutions, and
dotted lines denote unstable solutions. Stable sub-threshold oscillations
are shown in blue, whereas stable tonic firing states are shown in solid
thick black lines. Solid circles in the top panels denote bifurcations from
the following types: Hopf (HB), saddle-node of periodics (SNP) and
period doubling (PD). The firing rate in the MMOs state is plotted in red
in the bottom panel. (B) The firing rate fR in the MMOs state is plotted as
a function of Iapp at a larger scale. The types of mixed mode states (see
text, Figure 4 and [23]) are indicated above the curve.
doi:10.1371/journal.pone.0109205.g003

Figure 2. Phase diagrams of the vibrissa motoneuron model
with gh = 0. The dynamical states of the model neuron are plotted in
the gM-Iapp plane (A) and in the gM-Iapp plane (B). A regime of STOs (light
grey) is obtained between the regimes of quiescence and tonic firing.
Red lines denote the Hopf bifurcation (HB), and blue lines denote the
saddle-node of periodics (SNP) or period doubling (PD) bifurcations.
doi:10.1371/journal.pone.0109205.g002
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(0.32 mA6ms1/2/cm2), tp weakly decreases with Iapp, as takes place

for tonic spiking with no noise (Figure 8AIII and 8BIII, orange). In

contrast, for small and moderate noise levels, tp strongly increases

as Iapp decreases, by about a factor of 5, within the Iapp regime

where without noise, the model neurons exhibit MMOs (and even

when they exhibit STOs). This behavior is caused by the low

values of CV with respect to what is expected from a Bernoulli

process, which stem from the fact that the MMOs are generated

by an intrinsic neuronal mechanism. Note that for gh = 0, the

calculated values of tp in the regime where the noiseless neurons

exhibits STOs are below what is expected from Eq. 3. This is

because CV is close to 1, beyond what is expected from a Bernoulli

process. The model neuron tends to fire in clusters of spikes

(Figure 7B1). An explanation of this behavior is beyond the scope

of this article.

Response of a motoneuron pool to constant and periodic
inputs

There are about 50–100 motoneurons projecting to each

vibrissa muscle [1,4], with no chemical or electrical synapses

among them. These neurons receive periodic stimulation from the

vIRT or the Bötzinger nuclei [10], and are also slowly modulated

Figure 4. Voltage time traces of the model neuron in response
to step current injection at t = 0. Parameters are as in Figure 3
(gh = 0.3 mS/cm2). The values of Iapp are written in units of mA/cm2. (A)
Iapp = 1.41, the membrane potential of the neuro goes to rest. (B)
Iapp = 1.8, the neuron exhibits sub-threshold oscillations. (C) Iapp = 1.9,
the neuron fires in an MMOs mode, with 3 sub-threshold oscillations
between each pair of consecutive spikes. (D) Iapp = 2.0, the neuron fires
in an MMOs mode. The number of STOs between pairs of consecutive
spikes switches alternately between 1 and 2. (E) Iapp = 2.06, the neuron
fires in an MMOs mode with one STO between two consecutive spikes.
(F) Iapp = 2.1, the neuron fires aperiodically. (G) Iapp = 2.12, The neuron
fires two spikes, shows one STO, and then the cycle starts again. (H)
Iapp = 2.2, the neuron fires tonically. The dynamical states are indicated
above each panel.
doi:10.1371/journal.pone.0109205.g004

Figure 5. Phase diagram of the vibrissa motoneuron model in
the gh-Iapp plane. Regimes of STOs (light grey) and MMOs (dark grey)
are obtained between the regimes of quiescence and tonic firing. The
red line denotes Hopf bifurcation (HB), the green line denotes period
doubling (PD) bifurcation, and the blue line denotes saddle-node of
periodics (SNP) bifurcation.
doi:10.1371/journal.pone.0109205.g005

Figure 6. Voltage fluctuations generated by stochastic noise.
(A) Voltage time traces of the model neurons with gM = 1 mS/cm2,
gNaP = 0.04 mS/cm2, gh = 0, Iapp = 1.4 mA/cm2, s= 0.032 mA6ms1/2/cm2.
For s= 0, the model neurons are at rest for this parameter set. With
noise, the membrane potential fluctuates. (B) The standard deviation of
the voltage sV as a function of the noise level s. This figure
demonstrates how the noise strength affects the magnitude of voltage
fluctuations without any intrinsic STOs mechanism.
doi:10.1371/journal.pone.0109205.g006
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by serotonin that increases their excitability [12]. To assess the

ways in which the two stimuli control the activity of a motoneuron

pool controlling cells in a single muscle, a simulation is tested on a

pool of N = 50 uncoupled motoneurons (N is the number of

neurons) with gh = 0.3 mS/cm2 and a noise level

s= 0.032 mA6ms1/2/cm2, that differ only by the realization of

the noise (i.e., with different seeds for the noise of different neurons

[28]). The excitability of the neurons, controlled naturally by

neuromodulations and quantified here by Iapp, is within or around

the MMOs regime. All the neurons are stimulated by the same

periodic input, which is Ic during the first 20 ms of the period

Tper = 1/f and 0 otherwise (Figure 9). For moderate values of Ic

and values of f around the frequency of peaks (of STOs or spikes)

of the non-stimulated neurons, the MMO nature of the dynamics

is maintained, and the stimulus simply locks the spikes to its pace

(Figure 9A). Since the firing frequency is lower than the peak

frequency, different neurons with different noise realizations will

not necessarily fire during the same stimulus period. If, on average,

the neuron fires every n cycles of the stimulus, the number of

spikes in each stimulus will be on average N/n, as shown in the

rastergram in Figure 9B for Iapp = 2 mA/cm2 and Ic = 0.15 mA/

cm2. While most neurons fire during the ‘‘up’’ phase of the

stimulus, some neurons fire somewhat later. To quantify the level

of synchrony of the motoneuron pool, the total force developed in

the muscle is computed. It is assumed that each spike, fired at time

ts, generates a force twitch in the cells it innervates

f (t)~
A

t2{t1
e{(t{ts)=t2{e({t{ts)=t1

� �
H(t{ts) ð4Þ

where H is the Heaviside function, t1 = 5 ms and t2 = 6 ms [29]

and A = 1 in arbitrary units. The force contributions of motor units

(i.e., muscle cells that are innervated by the same motoneuron) are

summed linearly. The total muscle force F, plotted in Figure 9C,

shows that the motoneuron spikes are partially synchronized [30].

The amplitude, however, is about twice as small as the force

amplitude developed for Iapp = 2.4 mA/cm2, for which the isolated

neuron fires every cycle (Figure 8C). These results reflect the

following motor control scenario: when the non-stimulated

motoneurons are in or around the MMOs regime, and motoneu-

rons function under the effects of neuromodulators such as

serotonin, the firing frequency is controlled by a moderate periodic

frequency whereas the firing amplitude can be controlled by

neuromodulators.

Discussion

Summary of the results
Experimentally, vibrissa facial motoneurons may fire in a mixed

mode oscillation (MMO) state in response to constant current

injection Iapp [12,14]. This firing mode affects the integration of

synaptic and neuromodulatory inputs. This study investigated the

generation of MMOs using a computational model [15]. A

noiseless model does not exhibit MMOs without h conductances,

but subthreshold oscillations (STOs) are obtained with moderate

values of gM and gNaP (Figures 1,2). Addition of the h-type

conductance gh enables the generation of MMOs, with a firing

frequency that depends on Iapp like a Devi’s staircase (Figures 3,4).

The MMO range increases linearly with gh (Figure 5). Small levels

of stochastic noise increase the MMO regime by converting STOs

or tonic firing to MMOs, often with CV values significantly lower

than 1. Large noise levels generate MMOs with firing statistics

indicating a Bernoulli process. Based on these results, it is possible

to determine which one of three MMO mechanisms generates

MMOs in a neuron based on intracellular recordings. This study

shows how, by using the MMO mode, fast synaptic and slow

neuromodulatory inputs can control the frequency and amplitude

of whisking, respectively.

Comparison of spinal and vibrissa motoneuron firing
patterns

Mixed mode oscillations are found experimentally in both rat

[18] and mouse [19] spinal motoneurons, as well as rat vibrissa

motoneurons. In these cases, conductance-based models reveal

MMOs as well. In experiments and models of the two types of

motoneurons, persistent inward conductances such as gNaP are

needed to obtain MMOs [18]. In models of both types, adding

noise extends the MMO range and makes the discharge more

Figure 7. Voltage time traces of the model neuron in response
to step current injection at t = 0. The values of Iapp are indicated to
the right of the traces. (A) gh = 0, s= 0.01 mA6ms1/2/cm2. The noiseless
neuron does not exhibit MMOs, but this level of noise generates MMOs
near the transition between quiescence and tonic firing. (B) gh = 0,
s= 0.1 mA6ms1/2/cm2. For this larger noise level, MMOs are generated
in a more widespread I a p p regime. (C) g h = 0.3 mS/cm2,
s= 0.01 mA6ms1/2/cm2. The noiseless neuron generates MMOs. This
level of noise increases the Iapp regime in which MMOs are obtained
only slightly. The MMOs are less ordered, and the number of STOs
between spikes varies from one inter-spike interval to another. (D)
gh = 0.3 mS/cm2, s= 0.1 mA6ms1/2/cm2. MMOs appear in Iapp regimes
in which the noiseless neuron is quiescent or fires tonically, and the
firing patterns look less ordered.
doi:10.1371/journal.pone.0109205.g007
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irregular. There are, however, major differences between the firing

patterns of these two types of motoneurons. The firing rate of rat

vibrissa motoneurons, as well as the MMO frequency, is about 5–

10 Hz [7,14], which is substantially lower than that of spinal

motoneurons of rats [18] and mice [19], which is about 20–

100 Hz. Therefore, the h-conductance with kinetics on the order

of 100 ms, which is critical for generating MMOs in the model

presented here, is not expected to play a major role in spinal

motoneurons dynamics. In fact, it is sufficient to generate MMOs

in a ‘‘minimal’’ model of spinal motoneurons with only transient

Na+, delayed rectifier K+ and M-like K+ conductances [19],

whereas in the present model additional gNaP and gh are needed.

Another important difference has to do with the behavior just

outside the Iapp regime where MMOs emerge. In the present

model the neuron exhibits STOs at Iapp values just below those

where MMOs exist. This behavior occurs because as Iapp is

increased, the rest state is first destabilized by a supercritical Hopf

bifurcation (HB) (Figure 5), and MMOs are only observed after a

period doubling (PD) bifurcation at a further larger Iapp value. In

contrast, in the spinal motoneuron model there is no STO regime,

since the rest state is destabilized by a subcritical HB while a

homoclinic trajectory arises (Shilnikov’s homoclinic bifurcation

scenario; see Figure 8 in [19]). Therefore, the existence of an STO

regime points to which mechanism is responsible for intrinsic

MMOs generation.

In the Shilnikov scenario, the dynamical system escapes spirally

from an unstable fixed point [31]. This implies that for spinal

motoneurons, the MMO amplitude increases from cycle to cycle

until the neuron fires a spike, as shown both experimentally and in

the model [19]. In contrast, in the present model the amplitudes of

membrane potential oscillations remain constant between spikes

(Figures 4,7). The method suggested here serves to determine

whether MMOs are generated by the intrinsic mechanism based

on gh described in this work, or by that of [19]. Specifically, the

intrinsic mechanism analyzed here exhibits a significant regime of

STOs in Iapp values below the MMOs regime, and the STOs

amplitude is about constant with time. In the Shilnikov-based

spinal motoneuron mechanism, there are no STOs for lower Iapp

values, and the STO amplitude increases with time. These

different firing types can be distinguished based on intracellular

recording.

Distinguishing an intrinsic from a noise-induced
mechanism

MMOs can be generated by an intrinsic mechanism, or by

stochastic noise that transforms an STO state, a quiescent state, or

a tonic firing state into an MMO state. The method presented

here distinguishes between these two options based on recordings

of the firing patterns for varying values of Iapp. The first step is to

measure or compute the firing rate fR and the coefficient of

variation CV as functions of Iapp. An increase in fR, together with

Figure 8. Properties of firing patterns without and with an intrinsic MMOs-generating mechanism. The firing rate fR (I), the coefficient of
variation CV (II) and the time period tp, computed assuming a Bernoulli process (Equation 3) (III) are plotted as a function of Iapp for gh = 0 (A) and
gh = 0.3 mS/cm2 (B). The colors of the lines denoting the values of s (in mA6ms1/2/cm2) are: black – 0, red – 0.01, green – 0.032, blue – 0.1 and orange
– 0.32. The vertical dotted lines denote the Iapp values of the transitions between different dynamical states (quiescence, STOs, MMOs and tonic firing)
of the noiseless neuron.
doi:10.1371/journal.pone.0109205.g008
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a smooth decrease of CV as a function of Iapp indicates that the

STOs are generated by noise, although this cannot rule out the

existence of an intrinsic mechanism for MMOs that is smeared out

by large noise (Figure 8). If fR increases with Iapp and CV varies

non-monotonically with Iapp, there is an intrinsic mechanism

underlying the MMO firing pattern. Another method is to

compute the time period tp between peaks of oscillations (either

STOs or spikes) assuming a Bernoulli process according to

Equation 3. If there is a range of Iapp where fR rises by an order of

magnitude while tp decreases by the same order, this is an

indication of an intrinsic mechanism.

MMOs in various types of neurons and models
In the present model with gh = 0, the transition between STOs

and tonic firing is abrupt, reminiscent of a canard transition

[32,33] (Figure 1B). For gh.0, the STOs are destabilized via a PD

bifurcation, MMOs are generated, and tonic firing is restored via

an SNP bifurcation (Figure 3). A similar bifurcation scenario was

observed in a model of fast-spiking cortical neurons [23]. That

model did not include h-conductance, but rather implemented a

K+ conductance gKs that was slow at hyperpolarized potential.

MMOs were observed only if gKs was above a certain positive

critical value. In contrast, in the present model, MMOs are

observed in vibrissa motoneurons for any positive value of gh. The

reason for this effect is unknown.

In addition to motoneurons, MMOs have been observed in

other neuronal types. For example, MMOs with frequencies of a

few Hz were observed in cortical interneurons [34], pyramidal

cells of the frontal cortex [35], and stellate cells of the entorhinal

cortex [36–38]. The conductances gNaP, gM and gh were found to

be important for the generation of MMOs in the enthorhinal

cortex [39,40], and stochastic noise contributes to them as well

[41,42]. In another model of these neurons [43], STOs (but not

MMOs) emerged from the interplay between INaP and Ih. In the

present model neither subthreshold oscillations nor mixed-mode

oscillations are observed without IM. This difference between the

present model and the one described in [43] stems from the fact

that hr, the half-maximum potential of the activation curve of Ih in

the present model (see ‘‘Ionic currents of the model’’ in Methods)

is about 14–17 mV more hyperpolarized than the resting

potential, whereas hr in the Dickson et al. model [43] is more

depolarized than at rest by 11–21 mV; hence the h current is more

effective at membrane potentials near spike threshold. In the

present model, the value for hr is consistent with the experimental

observation by Hattox et al. [12] in vibrissa motoneurons, showing

that the sag effect is substantial only much below resting potential.

Mixed mode oscillations have been found in models of layer 5

pyramidal neurons [44] and in the Hodgkin-Huxley model of the

squid giant axon when the activation time constants th or tn were

reduced, as a result of the ‘‘canard’’ effect [45].

Functional significance
Control the whisking frequency and whisking amplitude in a

coordinated manner, both between motoneurons that project to

the same muscle and those that project to different muscles, is a

challenge to the nervous system [46]. Since vibrissa facial

motoneurons are uncoupled [8], and about 50–100 motoneurons

project to each muscle, this coordination needs to emerge from the

inputs to the motoneurons. The most obvious sources are the

rhythmic input from the vIRt and Bötzinger nuclei in the

Figure 9. Response of a motoneuron pool to periodic
stimulation from a CPG and neuromodulation. 50 uncoupled
motoneurons are simulated, each receiving constant input Iapp = 2 mA/
cm2 mimicking the excitability effects of neuromodulators such as
serotonin, and periodic stimulation from a CPG with a frequency
f = 10 Hz. The periodic stimulation is Ic = 0.15 mA/cm2 during the first
20 ms of each cycle with a duration of Tper = 1/f, and 0 otherwise.
Different neurons have different noise realizations. Additional param-
eters: gh = 0.3 mS/cm2, s= 0.032 mA6ms1/2/cm2. Realizations of the
noise are different across motoneurons. (A) The membrane potential V
as a function of t for two neurons (black). The stimulus pattern is
schematically plotted above each panel (red) to emphasize the
synchrony of spikes with the stimulus. (B) Rastergram of the spikes
(black circles) of the 50 motoneurons. The stimulus is Ic between each
pair of adjacent red lines. (C) The total force amplitude F, in arbitrary
units (A = 1, Equation 4), generated by a whole muscle whose cells are

innervated by the pool of motoneurons (black). The dotted blue line
denotes a similar simulation with Iapp = 2.4 mA/cm2.
doi:10.1371/journal.pone.0109205.g009
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brainstem [10,11] and serotonergic modulation [12], although

sensory feedback from the trigeminal ganglion [16] may affect

motoneuron firing. If neurons are ‘‘standard’’ class I or II types

[22,47], neuromodulation can abruptly transform them from a

silent state to a tonically active state, but the interaction of the

rhythmic input with the tonically-firing neurons may generate

complex firing patters. In their work on spinal motoneurons,

Iglesias et al. [19] suggested that MMO patterns can be used to

make the transition between quiescence and a high firing rate

more moderate by reducing the neuronal gain. This effect is seen

in the vibrissa motoneurons as well (Figure 8). In the whisker

system, however, MMOs can serve another purpose.

Here, a control mechanism is suggested based on motoneurons

that fire in an MMO mode (Figure 9). Moderate levels of periodic

input control the population firing frequency. The serotonergic

modulation controls the cell excitability and is modeled here by

varying Iapp. Other possible effects of serotonergic modulation,

which are not considered here, may have additional consequences

for the network dynamics. The spiking activity of neurons is

locked, although not fully, to the ‘‘up’’ state of stimulating periodic

activity, whereas the number of STOs between spikes is controlled

by the neuromodulation. Increasing the level of cell excitability

will increase the number of neurons firing at each period, and, as a

result, the whisking amplitude, but the population frequency will

remain unchanged. If the intrinsic excitability of the motoneuron

population is heterogeneous, the total number of neurons that fire

can be controlled in a graded manner. The statistical nature of

motor control is consistent with the fluctuations in whisking

amplitudes from cycle to cycle [48–50]. In contrast, the

fluctuations in the length of consecutive time periods, controlled

by the periodic input, can be small, as demonstrated experimen-

tally [4]. This control mechanism enables the division of labor

among muscle cells, where each cell contracts once every few

cycles [5,51]. In this scenario, intrinsic cellular properties, phasic

input and neuromodulation participate in controlling the frequen-

cy, phase and amplitude of whisking movement.

Methods

Ionic currents of the model
The following equations and parameters for the ionic currents

are implemented [15]. Reference values of parameters are used

unless otherwise stated.

Transient Na+ current, INa: INa(V ,h)~gNam3
?(V )h V{VNað Þ,

m?(V ) ~ 1zexp { V z28ð Þ=7:8½ �f g{1
, dh=dt~ h?(V ) { h½ �=

th(V ), h?(V ) ~ 1zexp V z50ð Þ=7½ �f g{1
, th(V ) ~ 30| exp½

((Vz 50)=15)z exp({(V z 50)=16) �{1
, gNa = 100 mS/cm2,

VNa = 55 mV.

Persistent Na+ current, INaP; INaP(V ,p)~gNaPp?(V )

V{VNað Þ, p?(V ) ~ 1zexp { V z53ð Þ=5½ �f g{1
, gNaP =

0.04 mS/cm2.

Delayed rectifier K+ current, IKdr: IKdr(V ,n)~gKdrn
4 V{ð

VKÞ, dn=dt~ n?(V ) { n½ �=tn(V ), n?(V ) ~ 1zexp V z23ð Þ=½f
15�g{1

, tn (V )~7: exp ((Vz40)=40) z (exp� 1{ (V z 40)=½
50) �{1

, gKdr = 20 mS/cm2, VK = 280 mV.

Slow AHP, Ca2+-dependent K+ current, IAHP: based on the

work of [52], this activation current is modeled as a voltage-

dependent activation with half-maximum potential above thresh-

old. In this form, spikes are needed to activate the AHP channels.

IAHP(V ,u)~gAHPu V{VKð Þ, du=dt~ u?(V ) { u½ �=tu, u?(V ) ~

1zexp V z25ð Þ=3½ �f g{1
, gAHP = 10 mS/cm2, tu = 75 ms.

Slow voltage dependent, K+ current, IM: IM(V ,z)~gMz V{ð
VKÞ, dz=dt~ z?(V ) { z½ �=tz, z?(V ) ~ 1zexp V z45ð Þ½f
=4:25�g{1

, gM = 1 mS/cm2.

Hyperpolarization-activated h-current Ih: Ih(V ,r)~ghr V{ð
VhÞ, dr=dt~ r?(V ) { r½ �=tr(V ), r?(V ) ~ 1zexp V z83:9ð Þ½f
=27:4�g{1

, tr(V ) ~ 6000 exp((V z 140)=21:6) z exp({(V z½
40)=22:7) �{1

, Vh = 227.4 mV gh is usually set to 0 or 0.3 mS/

cm2.

Numerical methods
Simulations of differential equations without noise were

performed using the fourth-order Runge-Kutta method with a

time step of 0.01 ms implemented as a C program or within the

software package XPPAUT [53]. Simulations of stochastic

differential equations were conducted using the Euler method

with the same time step. Simulations with a smaller time step

(0.001 ms) did not reveal any observable differences. Bifurcation

diagrams of deterministic dynamical systems were computed using

XPPAUT.

MMOs as a Bernoulli process
The analysis uses a neuron whose voltage oscillates at a time

period tp. Each oscillation peak may become a spike with a

probability p or a maximum of an STO with a probability of 1-p.

For simplicity, the same tp is assumed whether the first or second

peak of the membrane potential is a spike or an STO. The inter-

spike interval (ISI) equals tp with a probability p and ntp with a

probability of (1{p)n{1p for an integer n$2. For this Bernoulli

process, the average ISI and ISI2 are therefore [27]

vISIw~
X?
n~1

ntp(1{p)n{1p ð5Þ

vISI2
w~

X?
n~1

n2t2
p(1{p)n{1p ð6Þ

where ,…. represents time-average. I define q = 1-p and use the

identities

X?

n~1

nqn{1~
d

dq

X?

n~1

qn~
1

p2
ð7Þ

X?

n~1

n(n{1)qn{2~
d2

dq2

X?

n~2

qn~
2(1{p)

p3
ð8Þ

to obtain vISIw~tp=p, vISI2
w~t2

p(2{p)=p2, and therefore

CV~
vISI2

w{vISIw2
� �1=2

vISIw
~

ffiffiffiffiffiffiffiffiffiffi
1{p

p
ð9Þ
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