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Purpose: To perform one-shot retinal artery and vein segmentation with cross-modality artery-vein (AV) soft-
label pretraining.

Design: Cross-sectional study.
Subjects: The study included 6479 color fundus photography (CFP) and arterial-venous fundus fluorescein

angiography (FFA) pairs from 1964 participants for pretraining and 6 AV segmentation data sets with various
image sources, including RITE, HRF, LES-AV, AV-WIDE, PortableAV, and DRSplusAV for one-shot finetuning and
testing.

Methods: We structurally matched the arterial and venous phase of FFA with CFP, the AV soft labels were
automatically generated by utilizing the fluorescein intensity difference of the arterial and venous-phase FFA
images, and the soft labels were then used to train a generative adversarial network to learn to generate AV soft
segmentations using CFP images as input. We then finetuned the pretrained model to perform AV segmentation
using only one image from each of the AV segmentation data sets and test on the remainder. To investigate the
effect and reliability of one-shot finetuning, we conducted experiments without finetuning and by finetuning the
pretrained model on an iteratively different single image for each data set under the same experimental setting
and tested the models on the remaining images.

Main Outcome Measures: The AV segmentation was assessed by area under the receiver operating
characteristic curve (AUC), accuracy, Dice score, sensitivity, and specificity.

Results: After the FFA-AV soft label pretraining, our method required only one exemplar image from each
camera or modality and achieved similar performance with full-data training, with AUC ranging from 0.901 to
0.971, accuracy from 0.959 to 0.980, Dice score from 0.585 to 0.773, sensitivity from 0.574 to 0.763, and
specificity from 0.981 to 0.991. Compared with no finetuning, the segmentation performance improved after one-
shot finetuning. When finetuned on different images in each data set, the standard deviation of the segmentation
results across models ranged from 0.001 to 0.10.

Conclusions: This study presents the first one-shot approach to retinal artery and vein segmentation. The
proposed labeling method is time-saving and efficient, demonstrating a promising direction for retinal-vessel
segmentation and enabling the potential for widespread application.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100363 ª 2023 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
The retina is the only window for monitoring vascular dis-
eases noninvasively. Retinal artery and vein (AV) segmen-
tation are important for downstream applications, such as
performing population analyses, diagnosing disease, and
planning treatments for the eye, heart, and brain.1e6 How-
ever, segmenting the retinal AV segmentation is a nontrivial
task. Although deep learning methods attain state-of-the-art
accuracy based on supervised training with large labeled
data sets, obtaining manual segmentation labels for the
retinal artery and vein requires considerable expertise and
high cost. In most retinal AV segmentation data sets, there
are only a few manually labeled images.7 The problem of
limited labeled data is exacerbated by eye diseases and
differences in image acquisition procedures across cameras
ª 2023 by the American Academy of Ophthalmology
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and institutions, which can produce wide variations in
resolution and image quality.

To overcome these challenges, collective studies have
focused on hand-engineered network architectures and data
augmentation.8e11 It is also common to enforce graphical
connectivity as vascular prior knowledge.12,13 However,
data augmentation such as random image rotations or
random deformations has a limited ability to emulate real
variation and provides no clue about the characteristic of
the artery and vein structure. Few-shot learning is pro-
posed to address data scarcity on several tasks for natural
images and magnetic resonance images,14,15 where the
model learns from a single or a few annotated prototypes.
Retinal AV segmentation in a one-shot setting is
1https://doi.org/10.1016/j.xops.2023.100363
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challenging yet particularly useful in the clinical scenario,
which has never been explored by prior arts.

Although previous work focused on segmenting artery
and vein from manual labeling, we aimed at a different way
to improve the data efficiency. It is based on our clinical
observations in ophthalmology. Fundus fluorescein angi-
ography (FFA) has been the gold standard for assessing
vascular disease for decades, which delineates the retinal
artery and vein perfusion dynamically in a clear way
through contrast dye injection.16 Furthermore, FFA is an
examination frequently performed in the ophthalmic clinic;
thus, there are plenty of images available, which provides
a great opportunity for incorporating FFA images for
automatic labeling.

This study addresses the label deficiency and the limited
generalizability of retinal AV segmentation via
crossmodality pretraining. To make the labeling automatic,
we leveraged several arterial and venous-phase FFA images
and registered their vasculature to generate AV soft labels.
By pretraining and finetuning, we successively transferred
the generic vascular information from FFA to color fundus
photography (CFP). We demonstrated the superior gener-
alizability of our method by one-shot segmentation on 6
data sets with different cameras. Our approach is the first
method to achieve proven generalizability with automatic
soft-label generation and pretraining.
Methods

Data

Figure 1 shows the workflow of the study. For cross-modality
pretraining, 2129 CFP images with 12 619 corresponding FFA
images in arterial or venous phase (within 10 to 60 seconds after
dye injection) from 2143 patients were retrospectively collected
from Zhongshan Ophthalmic Center of Sun Yat-Sen University
between November 2016 and December 2019. Human subjects
from multiple cohorts were included in this study. All patients were
anonymized and deidentified, and the study adhered to the tenets of
the Declaration of Helsinki. The institutional review board of
Zhongshan Ophthalmic Center approved the study. Individual
Table 1. Data Set Characteristics and the Train/Validation/Test Num
Segmenta

Data set No.
Train/Validation/

Test No. Location Field Siz

RITE 40 1/19/20 Macula 45� 565�5
HRF 45 1/22/22 Macula 45� 3504�

AV-WIDE 30 1/14/15 Macula 200� 1300�
2816�1
1500�9

LES-AV 22 1/10/11 Optic-disc 30�e45� 1620�
1958�2

PortableAV 30 1/14/15 Macula 50� 4096�

DRSplusAV 20 1/9/10 Macula
Optic-disc

40��45� 2592�

AMD ¼ age-related macular degeneration; DR ¼ diabetic retinopathy.
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consent for this retrospective analysis was waived. The FFA im-
ages were captured by Zeiss FF450 Plus (Carl Zeiss, Inc) and
Heidelberg Spectralis (Heidelberg Engineering) with a resolution
of 768 � 768. CFP images were captured by Topcon TRC-50XF
(Topcon Healthcare) and Zeiss FF450 Plus (Carl Zeiss, Inc),
with resolutions ranging from 1110 � 1467 to 2600 � 3200.

We included 6 clinical data sets for generalizability experi-
ments, the RITE (DRIVE-AV),17 HRF,18 LES-AV,19 AV-
WIDE,20,21 and 2 private data sets, PortableAV and
DRSplusAV. The private data sets were labeled manually by a
retinal specialist using Vessellabel software, as described in the
previous study.11 Data set characteristics are presented in
Table 1. In the one-shot setting, we randomly select 1 image
from each data set for training and split the remainder 1:1 for
validation and testing (Table 2). If the data set had an official
train/test split id (RITE), we randomly selected 1 image from
the training set and the rest as validation, keeping the testing in
line with the official id.
Cross-modality Pretraining

Image registration was based on the retinal vessels extracted from
the CFP and FFA. Retinal-vessel maps for CFP images were
extracted using the retina-based microvascular health assessment
system11 segmentation module, and vessels in FFA images were
extracted by a validated deep learning model.22 Figure 2
represents the image registration workflow. The arterial phase
FFA images were first registered with the venous-phase FFA im-
ages, and then both were registered with CFP. We did registration
by detecting key points from the corresponding vessel map using
AKAZE key point detector23 and the Nearest-Neighbor-Distance-
Ratio for feature-matching and random sample consensus24 for
generating homography matrices and outlier rejection. A validity
restriction was added to exclude erroneously registered pairs: the
value of the rotation scale was restricted to 0.8 to 1.3, and the
absolute value of rotation radian was < 2 before the warping
transformation. Furthermore, we filtered out pairs with a poor
registration performance (i.e., Dice coefficient < 0.5). Here, the
threshold value was empirically set based on the data set in our
experiments.

After registration, we generated venous soft labels by sub-
tracting the venous-phase FFA image from its corresponding
arterial-phase image and merging the arterial phase and the sub-
tracted venous-phase image to generate an AV soft label.
ber of Images for the Experiment for One-Shot Artery and Vein
tion

e Eye Disease Camera

84 DR CR5 non-mydriatic 3CCD camera (Canon)
2336 DR, glaucoma Canon CR-1 nonmydriatic fundus camera

(Canon)
800
880
00

DR Optos 200Tx (Optos PLC)

1444
196

Glaucoma Visucam ProNm fundus camera with a ZK-5
(PRO NM/NMFA) 5 MP sensor

3072 Normal, DR,
AMD

Mediworks camera (Mediworks)

1944 Normal,
myopia

iCare DRSplus (Centervue)



Table 2. Model Performance on the Test Set after Training on One Image from Each Data set

Data set Vessel

AUC Accuracy Dice Score Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

RITE Artery 0.943 0.019 0.972 0.004 0.724 0.036 0.701 0.045 0.987 0.002
Vein 0.957 0.01 0.965 0.004 0.709 0.041 0.693 0.029 0.983 0.004

HRF Artery 0.952 0.015 0.975 0.004 0.685 0.048 0.683 0.044 0.987 0.002
Vein 0.962 0.007 0.972 0.004 0.696 0.034 0.685 0.026 0.986 0.003

LES-AV Artery 0.952 0.022 0.980 0.005 0.715 0.054 0.691 0.036 0.991 0.004
Vein 0.946 0.028 0.974 0.006 0.673 0.069 0.638 0.057 0.989 0.004

AV-WIDE Artery 0.901 0.026 0.965 0.008 0.585 0.056 0.574 0.052 0.982 0.006
Vein 0.926 0.015 0.964 0.005 0.586 0.052 0.590 0.043 0.981 0.004

PortableAV Artery 0.971 0.005 0.976 0.003 0.773 0.022 0.763 0.021 0.988 0.001
Vein 0.969 0.004 0.965 0.004 0.723 0.022 0.716 0.025 0.982 0.004

DRSplusAV Artery 0.953 0.012 0.964 0.005 0.729 0.028 0.707 0.032 0.983 0.003
Vein 0.951 0.006 0.959 0.003 0.674 0.020 0.623 0.013 0.983 0.002

AUC ¼ area under the receiver operating characteristic curve; SD ¼ standard deviation.
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We used CFP as input and the corresponding AV soft label
as ground truth to train pix2pixHD25 for cross-modality pre-
training. Pix2pixHD is a generative adversarial network (GAN)
that aims to model the conditional distribution of real vessels
given the input CFP via the following minimax game: the
generator G tries to translate CFP to a realistic-looking retinal-
vessel map to fool the discriminator D, whereas the discrimi-
nator D tries to distinguish the generated vessels from the real
label. The multiscale discriminator evaluates the generated
Figure 1. Graphical abstract of the study. A, Color fundus photopgraphy (C
Retinal vessels from the arterial-phase FFA and venous-phase FFA were extracte
soft labels were used to train a generative adversarial network (GAN) to gener
then fine tuned on one exemplar image from each segmentation data set to segm
¼ color fundus; FFA ¼ fundus fluorescein angiography; GAN ¼ generative ad
images patch by patch, thereby boosting the generator’s capa-
bility to create a high-resolution, distinct image. The objective
function included GAN loss, feature-matching loss, and
perceptual loss.

Models were trained with a batch size of 4 and a learning rate of
0.0002. During training, images were resized to 768 � 768 and
augmented by random horizontal/vertical flipping, random rotation
(0e30 degrees), and random resized crop (ratio from 0.5e2). A
total epoch of 20 was preset for each training.
FP) and fundus fluorescein angiography (FFA) images were registered. B,
d and matched respectively to generate artery-vein (AV) soft labels. C, The
ate realistic AV soft segmentation (pretrain). D, The pretrained GAN was
ent retinal artery and vein (one-shot segmentation). AV ¼ artery-vein; CF
versarial network.
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Figure 2. Demonstration of color fundus photography (CFP) and fundus fluorescein angiography (FFA) image registration. First, arterial-phase FFA was
registered with venous-phase FFA, then CFP was registered with venous-phase FFA.

Ophthalmology Science Volume 4, Number 2, April 2024
We selected the best model from 20 candidate models with the
best visual authenticity in terms of the balance of arterial and venous
color intensity. This selection was conducted by an ophthalmologist
(D.S.) who manually assessed the quality of generation based on 15
images that were randomly chosen from the validation set. The
4

demonstration of the balance of arterial and venous color intensity is
shown in Figure 3. Images with good visual authenticity (right,
Figure 3) have a balanced red and blue color filling, where arteries
and veins were not overwhelmingly filled by adverse color. To
provide further information about the quality of image generation,
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we reported several quantitative metrics that are commonly used to
assess image generation quality. These metrics include the Fréchet
inception distance,26 structural similarity measures,27 mean
absolute error, and the peak signal-to-noise ratio. Higher structural
similarity measures, peak signal-to-noise ratio, lower mean absolute
error, and Fréchet inception distance values indicate higher quality in
generating images.

One-shot AV Segmentation

To demonstrate the generalizability of our pretraining approach, we
performed experiments on one-shot segmentation across data sets
with apparent different camera modalities, a challenging but
practical scenario. We performed comparative experiments for
each data set, training on 1 image, and validating and testing on the
remaining images.

All models were trained with a batch size of 1 and a learning
rate of 0.0002. During training, images were resized to 768 � 768
except for the AV-WIDE data set (resized to 1024 � 1024) and
augmented by random horizontal/vertical flipping and random
cropping. A total epoch of 15 was preset for each training. The
model with the highest area under the receiver operating charac-
teristic curve (AUC) on the validation set was selected. We eval-
uated the performance of each segmentation model on the test set
by AUC, accuracy, Dice coefficient, sensitivity, and specificity.

To investigate the reliability of one-shot finetuning, we con-
ducted experiments by finetuning the pretrained model with a fixed
10 epochs on a different single image for each data set. We then
tested the models on the remaining images and calculated the mean
and standard deviation of the AUC, accuracy, Dice coefficient,
sensitivity, and specificity of multiple models for each data set.

Results

Cross-modality Pretraining

After excluding 165 CFP and 1077 FFA images that failed
crossmodal registration, there were 6479 CFP-arterial-
Figure 3. Demonstration of artery and vein visual authenticity. Red denotes art
From left to right, arterial dominates (red color overfills), venous dominates (b
venous FFA registered pairs from 1964 participants
included in model development. The flowchart is presented
in Figure 1. Participants’ mean (standard deviation) age was
48.30 (16.60), and 1051 (53.5%) participants were men. The
data set was split by 9/1 at patient-level as the training and
validation set.

Objective Evaluation

Quantitative comparisons between real and generated AV
soft labels were performed on the internal test set, and the
mean absolute error, peak signal-to-noise ratio, structural
similarity measures, and Fréchet inception distance were
19.38, 20.08, 0.65, and 31.55, respectively.

Subjective Evaluation

We manually chose the eighth epoch, which demostrated the
best AV visual authenticity, as the model weights for sub-
sequent finetuning. The visual authenticity on the validation
set was demonstrated in 3 scenarios: arterial dominates,
venous dominates, and good authenticity (Figure 2). For
arterial dominates, the artery (red channel) was fully filled
with dye intensity, while the venous channel (blue
channel) was also overly filled with red color. For venous
dominates, the artery was insufficiently perfused, with low
red color intensity. The image with good authenticity was
realistic, and the arterial and venous color intensity was
balanced.

One-shot Segmentation

Table 2 shows one-shot segmentation performance evalu-
ated on each held-out test set. The proposed method ach-
ieved good performance across all cameras, with AUCs
ranging from 0.901 to 0.971, accuracy from 0.959 to 0.980,
erial fluorescein dye filling, and blue denotes veinous fluorescein dye filling.
lue color overfills), and good visual authenticity (most realistic).
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Figure 4. Examples of color fundus photograph (CFP) from each data set (first column), the manual labeling (second column), the soft artery and vein
(AV) segmentation predicted by the pretrained model (third column), and the one-shot finetuned AV segmentation results (fourth column).

Ophthalmology Science Volume 4, Number 2, April 2024
Dice score from 0.585 to 0.773, sensitivity from 0.574 to
0.763, and specificity from 0.981 to 0.991. Figure 4, from
left to right, shows examples of CFP images from
6

different data sets, the manual labeling, the soft AV map
predicted by the pretrained weight, and the final AV
segmentation on each test set. For comparison, we also



Table 3. Performance Comparison with Full-Data Training Methods

Data set Method Vessel

AUC Accuracy Dice Score Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

RITE Morano et al28 Artery 0.97 0.002 0.89 0.007 - - 0.87 0.02 0.91 0.007
Vein 0.97 0.001 - -

Ma et al29 Artery/Vein - 0.93 - 0.92 0.93

Shi et al11 Artery 0.95 0.94 0.57 0.86 0.94
Vein 0.95 0.94 0.63 0.87 0.95

Current method Artery 0.94 0.02 0.97 0.004 0.72 0.04 0.70 0.05 0.99 0.002
Vein 0.95 0.01 0.97 0.004 0.71 0.04 0.69 0.03 0.98 0.004

HRF Karlsson et al30 Artery/Vein - 0.96 0.96 0.97 0.95
Shi et al11 Artery 0.95 0.93 0.46 0.83 0.93

Vein 0.96 0.94 0.50 0.87 0.94
Current method Artery 0.95 0.02 0.98 0.004 0.69 0.05 0.68 0.04 0.99 0.002

Vein 0.96 0.007 0.97 0.004 0.70 0.03 0.69 0.03 0.99 0.003
LES-AV Kang et al31 Artery/Vein - 0.92 - 0.94 0.90

Shi et al11 Artery 0.97 0.95 0.86 0.96 0.58
Vein 0.97 0.95 0.85 0.96 0.61

Current method Artery 0.95 0.02 0.98 0.005 0.72 0.05 0.69 0.04 0.99 0.004
Vein 0.95 0.03 0.97 0.006 0.67 0.07 0.64 0.06 0.99 0.004

AV-WIDE Khanal et al32 Artery/Vein 0.98 0.80 0.003 0.78
Shi et al11 Artery 0.91 0.95 0.68 0.96 0.45

Vein 0.92 0.95 0.73 0.96 0.47
Current method Artery 0.90 0.03 0.97 0.008 0.59 0.06 0.57 0.05 0.98 0.006

Vein 0.93 0.02 0.96 0.005 0.59 0.05 0.59 0.04 0.98 0.004

AUC ¼ area under the receiver operating characteristic curve; SD ¼ standard deviation.
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listed the performance of AV segmentation in previously
published papers (Table 3).

The Effect and Reliability of One-shot
Finetuning

Table 4 shows the segmentation results of the pretrained
model without finetuning when applied to the full images
in each data set. Table 5 represents segmentation
Table 4. The Reliability of One-shot Finetuning. Artery and Vein Se

Data set Vessel

AUC Accuracy

Mean SD Mean SD

RITE Artery 0.947 0.012 0.968 0.006
Vein 0.951 0.010 0.961 0.006

HRF Artery 0.951 0.010 0.974 0.006
Vein 0.959 0.006 0.971 0.005

LES-AV Artery 0.963 0.008 0.978 0.005
Vein 0.942 0.017 0.967 0.007

AV-WIDE Artery 0.919 0.014 0.973 0.005
Vein 0.910 0.010 0.962 0.005

PortableAV Artery 0.924 0.042 0.968 0.006
Vein 0.926 0.037 0.964 0.006

DRSplusAV Artery 0.966 0.007 0.969 0.004
Vein 0.968 0.005 0.967 0.003

AUC ¼ area under the receiver operating characteristic curve; SD ¼ standard
outcomes after finetuning the model with a fixed 10
epochs using a different single image from each data
set iteratively and testing on the remaining images. The
segmentation outcomes after one-shot finetuning were
better than those without finetuning, as shown by the
increased performance on each data set. For each data set,
the standard deviations of the segmentation results across
models were small, with all of them ranging from 0.001
to 0.102.
gmentation Results of the Pretrained Model with No Finetuning

Dice Score Sensitivity Specificity

Mean SD Mean SD Mean SD

0.418 0.054 0.288 0.046 0.997 0.001
0.384 0.064 0.254 0.047 0.997 0.001
0.480 0.041 0.358 0.051 0.996 0.001
0.463 0.062 0.331 0.054 0.996 0.001
0.542 0.055 0.393 0.050 0.998 0.001
0.395 0.073 0.299 0.067 0.993 0.001
0.378 0.074 0.263 0.059 0.996 0.001
0.107 0.037 0.068 0.024 0.993 0.001
0.367 0.059 0.259 0.048 0.995 0.001
0.275 0.061 0.192 0.049 0.993 0.001
0.451 0.039 0.300 0.034 0.999 0.000
0.434 0.051 0.294 0.040 0.997 0.001

deviation.
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Table 5. Segmentation Results after Finetuning the Pretrained Model with a Fixed 10 Epochs on Different Single Image from Each Data
set Iteratively, and Test on the Rest of the Images

Data Set Vessel

AUC Accuracy Dice score Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

RITE Artery 0.963 0.014 0.973 0.004 0.674 0.044 0.572 0.058 0.994 0.002
Vein 0.954 0.016 0.977 0.004 0.661 0.052 0.567 0.067 0.994 0.002

HRF Artery 0.959 0.014 0.975 0.004 0.667 0.037 0.571 0.075 0.994 0.003
Vein 0.945 0.021 0.976 0.005 0.625 0.059 0.533 0.102 0.994 0.004

LES-AV Artery 0.958 0.019 0.980 0.005 0.692 0.058 0.615 0.086 0.994 0.002
Vein 0.962 0.012 0.983 0.004 0.702 0.049 0.620 0.068 0.995 0.002

AV-WIDE Artery 0.924 0.013 0.975 0.004 0.524 0.050 0.414 0.055 0.995 0.002
Vein 0.908 0.019 0.976 0.004 0.518 0.049 0.418 0.052 0.994 0.002

PortableAV Artery 0.939 0.043 0.971 0.007 0.530 0.075 0.446 0.080 0.991 0.002
Vein 0.928 0.046 0.970 0.007 0.536 0.074 0.483 0.084 0.989 0.002

DRSplusAV Artery 0.978 0.006 0.978 0.003 0.718 0.028 0.622 0.043 0.995 0.001
Vein 0.973 0.010 0.979 0.003 0.716 0.036 0.632 0.055 0.994 0.001

AUC ¼ area under the receiver operating characteristic curve; SD ¼ standard deviation.
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Discussion

We presented a cross-modality pretraining method and
demonstrated its superiority in an extreme case when only
one exemplar is used for training. After finetuning 1 labeled
image for each specific image type, the algorithm is versatile
across a set of unlabeled images with substantial variation.
Our work strives to bridge clinical, algorithm development,
and practical generalization compactly.

Previous AV segmentation models were trained using
human-labeled ground truth from CFP. There are several
drawbacks: first, it is labor-intensive and expertise-
demanding. Second, manual labeling is subject to intra-
grader and intergrader variation. Third, the artery and vein
may be ambiguous to identify in some cases when their
color is similar, especially for the small vessels around the
optic disc. Fourth, human graders may overestimate the
vessel caliber because of the low contrast of the fundus
photo, especially for small vessels.

We noted in clinical practice that FFA has been the
gold standard for retinal vascular visualization and disease
assessment. The injected fluorescein dye circulates within
the blood flow, highlighting the vascular wall and the true
trajectory of blood flow coming into arteries and then
veins. By combing FFA and CFP, our approach is also a
type of transfer learning where knowledge from FFA
images helps with AV segmentation from CFP. After
pretrained by automatically generated AV soft labels, the
model captures the robust anatomical nature of the vessel,
despite image type variance. The data sets we used to
demonstrate the generalizability of the model were
composed of different fields of view (ranging from 30 to
200), with different eye diseases and different pixel
characteristics (clear and blurry). Images from the Porta-
bleAV were taken by a low-cost portable camera (Medi-
works, FC162); the affordability of such cameras shows
promise for wide deployment. However, image pixel
characteristics from the portable camera vary with custom
8

high-quality hospital-based fundus cameras (such as
Topcon). Such domain variance may set a bottleneck for
deep learning models trained on other common cameras.
Here, we demonstrate that, by pretraining and finetuning,
the camera variance could be addressed with minimal
characteristic data.

Notably, when compared with previously published
methods for AV segmentation on public data sets
(Table 3),11,28,30,31,33 the model’s performance was slightly
lower (for AUC, Dice score, and sensitivity); however, the
specificity of our model was nearly perfect (all > 0.98),
indicating there were few false-positives by our method. It is
also encouraging to know that we trained the model on 1
image from each data set, whereas other methods used full-
data training.

We also conducted sensitivity experiments to prove the
necessity and reliability of the one-shot finetuning.
Although the pretrained model demonstrated the ability to
segment artery and vein on new data sets with AUCs > 0.9,
the one-shot finetuning can further increase its segmentation
performance, as evidenced by the improved AUC, Dice
score, and sensitivity on each data set. Moreover, using 1
image to iteratively finetune the model yielded robust
generalization.

The study has several advantages. It is the first to
utilize FFA information for retinal AV segmentation and
is fully automatic. The FFA delineates the artery and
vein clearly by dynamic dye filling, which is more
objective and accurate than human labeling. The FFA
sample includes a series of eye diseases, which contains
substantial variation while maintaining stable vascular
information. Second, we did comprehensive experiments
on 6 data sets with different image cameras and mo-
dalities to test the generalizability of the method. Third,
even though one-shot AV segmentation is hard and has
not been explored before, the performance of our model
was reasonably good across data sets. This study, with
successful implementation in retinal AV segmentation,
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implies a promising perspective to solve the data scar-
city issue in supervised medical image analysis by
leveraging large-scale weak supervision generated in
clinical practice.

There are also limitations to our study. First, models do
not achieve supreme segmentation performance, mainly
due to the loss of small vessels; future studies are needed to
enhance small vessel segmentation performance. Sec-
ondly, to create AV soft labels, our framework registered
arterial and venous-phase FFA images in a pixel-wise
manner, which lends itself to several plausible future ex-
tensions (e.g., through deep feature fusion to better unify
cross-modality features in an end-to-end manner). It is also
worth exploring its extension to other imaging modalities
with vessel-like structures. Third, the evaluation method
we used to select the pretrained model was subjective,
which may limit its applicability. To mitigate this issue, we
provided the results of common image generation metrics
for reference. Further research is still required to develop
evaluation metrics that can quantitatively assess AV visual
authenticity.
Conclusion

We presented a cross-modality pretraining method to
address the label deficiency problem in retinal AV seg-
mentation and demonstrated the method’s generalizability
in the one-shot scenario. The method enables generalizable
AV segmentation, which is plausible for many downstream
applications (e.g., vessel quantification, biomarker identi-
fication, and disease prediction). Our approach is likely to
have an impact in the field of retinal AV segmentation.
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