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Estimating leaf area index of maize 
using UAV‑based digital imagery 
and machine learning methods
Liping Du1, Huan Yang2, Xuan Song3*, Ning Wei2, Caixia Yu2, Weitong Wang2 & Yun Zhao3

Leaf area index (LAI) is a fundamental indicator of crop growth status, timely and non-destructive 
estimation of LAI is of significant importance for precision agriculture. In this study, a multi-rotor 
UAV platform equipped with CMOS image sensors was used to capture maize canopy information, 
simultaneously, a total of 264 ground‐measured LAI data were collected during a 2-year field 
experiment. Linear regression (LR), backpropagation neural network (BPNN), and random forest (RF) 
algorithms were used to establish LAI estimation models, and their performances were evaluated 
through 500 repetitions of random sub-sampling, training, and testing. The results showed that RGB-
based VIs derived from UAV digital images were strongly related to LAI, and the grain-filling stage 
(GS) of maize was identified as the optimal period for LAI estimation. The RF model performed best 
at both whole period and individual growth stages, with the highest R2 (0.71–0.88) and the lowest 
RMSE (0.12–0.25) on test datasets, followed by the BPNN model and LR models. In addition, a smaller 
5–95% interval range of R2 and RMSE was observed in the RF model, which indicated that the RF 
model has good generalization ability and is able to produce reliable estimation results.

Leaf area index (LAI) refers to the total area of leaves per unit ground area, it is a key canopy structure parameter 
that is directly related to photosynthetic primary production, respiration, and evapotranspiration1. Maize is one 
of the most versatile crops in the world, it plays an important role in meeting the nutritional needs of millions of 
people and livestock production. The scientific and efficient estimation of LAI is of significance for the evaluation 
of maize growth potential, as well as providing reliable technical support for the optimization of field manage-
ment practices2. Remote sensing (RS) technology offers means to monitor crop growth parameters in an effective, 
repetitive, and comparative way due to its non-invasive and high-flux characteristics3. The traditional satellite-
based remote sensing images from MODIS, Landsat and SPOT5 with a spatial resolution of 1 km, 30 m, and 
10 m have been widely applied in crop growth monitoring4–6. However, it is insufficient to attribute the dynamic 
change of LAI during the crop growth period due to the lengthy revisit intervals and the presence of clouds.

In recent years, unmanned aerial vehicles (UAV) have been increasingly used as an innovative remote sensing 
platform in agricultural fields7. In comparison to satellite remote sensing, the spatial and temporal resolution 
of UAV can be adjusted flexibly according to the requirements. This is particularly beneficial for crop monitor-
ing with an short observation interval and cm-level spatial resolution8,9. Different sensors have been equipped 
on UAV for crop growth monitoring, of which the multispectral and hyperspectral sensors have shown great 
capability10,11. However, the high price and complex data processing process limited their popularization in 
agricultural observation, especially for developing countries with small-scale agriculture. Consequently, the 
UAV systems equipped with RGB cameras have received increasing attention due to their high spatial resolu-
tion and low cost.

Images captured by digital CMOS sensors contain not only red (R), green (G), and blue (B) bands of spectral 
information but also the spatial information of image pixels. The correlation between spectral features and crop 
LAI was commonly quantified by statistical regression models based on mono-temporal observation data12–14. 
Nevertheless, the spectral characteristics of crop canopy vary with growth stages, and the relationship between 
crop LAI and the image features is dynamic15. Thus, it is needed to accumulate sufficient information to establish 
models for characterizing crop LAI under different growth stages. In addition to this the non-linear relationship 
and multicollinearity could potentially exist between the spectral parameters and the LAI observed in multiple 
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periods, whereas traditional statistical regression models have deficiencies when dealing with such complex 
relationships16.

With advancements in UAV and computer processing capacity, machine learning (ML) algorithms have 
boosted the power of obtaining relevant insights from the UAV-based agricultural remote sensing domain17,18. 
ML algorithms have unique advantages in modeling nonlinearity and heteroscedasticity relationships between 
the large amount of information contained in the images and crop growth parameters, which has been recog-
nized as an effective approach for crop growth estimation19. Li et al. extracted the information from UAV-based 
images to estimate the LAI of rice by establishing different models, and random forest (RF) model exhibited the 
best predictive performance (R2 = 0.84)20. Azadbakht et al. evaluated the performance of different ML models 
in the inversion of wheat LAI21. Han et al. compared the performance of different ML methods to estimate the 
above-ground biomass of maize22. And Osco et al. predicted leaf nitrogen concentration and plant height with 
ML techniques and UAV-based multispectral imagery in maize23. These researches enriched the application of 
ML in UAV remote sensing, but the feasibility of combining ML and UAV-based RGB images for LAI estimation 
in maize during multiple growth stages has not been adequately investigated.

In this study, the UAV platform equipped with a CMOS sensor was used to capture maize canopy images 
through multiple growth stages. The traditional linear regression (LR) model, backpropagation neural network 
(BPNN), and random forest (RF) model were developed and compared for maize LAI estimation. The specific 
objectives of this study were: (1) explore the potential of UAV-based digital imagery for maize LAI monitor-
ing; (2) evaluate the performance of different models and determine the optimal model for LAI estimation; (3) 
compare model performance in the whole growth period and individual growth stages; (4) indicate the optimal 
growth stage for maize LAI estimation.

Materials and methods
Experimental design.  A 2-year field experiment was conducted at the Modern Agricultural Research and 
Development Base of Henan Province (113° 35′–114° 15′ E, 34° 53′–35° 11′ N). In order to enhance the diversity 
of LAI data, a split-plot design with a variety of field management measures and three replications was selected 
for the experiment (Fig. 1). The size of each experiment plot was 40 m2, the soil texture was predominantly sandy 
loam and sandy clay loam, as determined by textural analysis of soil samples collected before planting. Maize 
cultivar Dedan-5 was used in the experiment, which was planted on June 12, 2019, and June 20, 2020, with a 
row spacing of 42 cm and a planting density of 7 seedlings·m−2. The soil and cultivar in field experiments were 

Figure 1.   The experimental design.
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representatives of those in the region. The irrigation, pesticide, and herbicide control practices followed local 
management for maize production.

LAI measurements and UAV‑based image acquisition.  The measurements of LAI were conducted at 
four growth stages including the tasseling stage (TS), flowering stage (FS), grain-filling stage (GS), and milk-ripe 
stage (MS) of maize in 2019 and 2020, a total of 264 LAI data of maize were collected during the 2-year field trial 
(Table 1). In order to reduce the impact of plant variability, the random sampling method was used to collect LAI 
samples. For each plot, three plants were randomly selected to measure the total green leaf area with the non-
destructive portable leaf area meter (Laser Area Meter CI-203; CID Inc.). And the average leaf area of selected 
plants represented the single plant leaf area in each experiment plot. The LAI of each plot was

where LA is the leaf area of a single plant in each plot; D is the planting density in one square meter.
PHANTOM 4 PRO (DJI-Innovations Inc., Shenzhen, China) is a multi-rotor UAV equipped with a 20-meg-

apixel visible-light camera that was employed to capture digital images. Aerial observations were conducted on 
the same dates as the LAI measurements, which was between 10:30 a.m. and 2:00 p.m. local time when the solar 
zenith angle was minimal. The UAV was flown automatically based on preset flight parameters and waypoints, 
with a forward overlap of 80% and a side overlap of 60%. A three-axis gimbal integrated with the inertial navi-
gation system stabilized the camera, the automatic camera mode with fixed ISO (100) and a fixed exposure was 
used during the flight. Altogether, 4192 images were taken in eight flights from a flight height of 29.36 m above 
ground, with a spatial resolution of 0.008 m.

The measurements of maize LAI were carried out with permission from the Modern Agricultural Research 
and Development Base of Henan Province. All experiments were carried out in accordance with relevant insti-
tutional, national, and international guidelines and legislation.

Image pre‑processing.  DJI Terra (version 2.3.3) was used to generate ortho-rectified images based on the 
structure from motion algorithms and a mosaic blending model. The main procedures are as follows: (1) extract 
feature points and match features according to the longitude, latitude, elevation, roll angle, pitch angle, and head-
ing angle of each image; (2) build dense 3D point clouds by using dense multi-view stereo matching algorithm; 
(3) build a 3D polygonal mesh based on the vector relationship between each point in the dense cloud; (4) 
establish a 3D model with both external image and internal structure by merging the mosaic image into the 3D 
model; (5) generate digital orthophoto map (DOM).

Vegetation indices (VIs) derived from the UAV‑based digital imagery.  Digital imagery records 
the intensity of visible red (R), green (G), and blue (B) bands in individual pixels24. In order to enhance the 
vegetation parameters contained in the digital image, fourteen commonly used RGB-based VIs were collected, 
and their correlation with the LAI of maize at different growth stages was evaluated. Table 2 shows the detailed 
information of the selected RGB-based VIs.

Centered on the point where LAI was measured, regions of interests (ROIs) with a size of 100*100 were 
clipped from the digital image. Python 3.7.3 was used for extracting the R, G, B information of maize and com-
puting the RGB-based VIs from ROIs. In order to reduce the effects of light and shadow, the R, G, B color space 
of the image was normalized according to the followings:

(1)LAI = LA ∗ D

(2)r =
R

R + G + B

(3)g =
G

R + G + B

Table 1.   Description of samplings.

Year Planting date Sensing and sampling date Number of samples

2019 June 12

30 July (TS) 33

6 August (FS) 33

13 August (GS) 33

19 August (MS) 33

2020 June 20

9 August (TS) 33

17 August (FS) 33

26 August (GS) 33

3 September (MS) 33
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where r, g, and b are the normalized values. R, G, B are the pixel values from the digital images based on 
each band.

Pearson correlation analysis.  Before regression analysis, the Pearson correlation analysis was performed 
to determine the relationship between maize LAI and different RGB-based VIs extracted from the digital image. 
Pearson correlation coefficient ( r ) reflects the degree of linear correlation between two variables, which is 
between − 1 and 1. The calculation formula of Pearson correlation coefficient was expressed as follows:

where X , Y are variables, n is the number of variables.

Regression methods.  Linear regression (LR).  Linear regression is an approach for modelling the rela-
tionship between dependent and independent variables. The case of one independent variable is called unary 
linear regression (ULR), the expressions can be expressed as follows:

where ε is deviation, which satisfies the normal distribution. x , y are variables. β0 , β1 are the intercept and 
slope of the regression line, respectively.

For more than one independent variable, the regression process is called multiple linear regression (MLR), 
the expressions can be expressed as:

where x1,x2 , …, xn , y are variables, β0 , β1 , β2 , …, βn are coefficients that determined by least square method 
and gradient descent method38.

The RGB-based VIs with the highest Pearson correlation coefficient was used to establish the ULR model, 
and VIs with a correlation coefficient higher than 0.7 were used to establish the MLR model. In each growth 
stage, 70% of observation data were randomly selected for establishing models, and the remaining 30% of data 
were used as the testing dataset to assess the model performance.

Back propagation neural networks (BPNN).  In this study, a three-layer BPNN model was established for LAI 
estimation (Fig. 2). RGB-based VIs with a correlation coefficient higher than 0.7 were selected as the input vari-
ables. Tan-Sigmoid activation function was used in the hidden layer, and the Levenberg–Marquardt algorithm 
was selected as the training function. The maximum epoch of BPNN training was set to 1000, the learning rate 
was set to 0.005, and the MSE was set to 0.001. The observation data set was split into the training set and the 
testing dataset with a ratio of 7:3. The training dataset was used to fit the weights and bias of the BPNN model, 
the testing dataset was used to evaluate the model performance. Before training, data normalization was con-
ducted for the input and output variables, and the denormalization was required to convent the output variable 
back into the original units after training.

(4)b =
B

R + G + B

(5)r =

∑n
i=1

(

Xi − X
)(

Yi − Y
)

√

∑n
i=1

(

Xi − X
)2
√

∑n
i=1

(

Yi − Y
)2

(6)y = β0 + β1x + ε

(7)y = β0 + β1x1 + β2x2 + · · · + βnxn

Table 2.   RGB-based VIs for LAI estimation.

VIs Full name Formula References

BRRI Blue-Red Ratio Index b/r 25

RGRI Red Green Ratio Index r/g 26

BGRI Blue Green Ratio Index b/g 27

NGRDI Normalized Green–Red Difference Index (g − r)/(g + r) 28

NGBDI Normalized Green–Blue Difference Index (g − b)/(g + b) 29

EXR Excess Red Vegetation Index 1.4r − g 30

EXG Excess Green Vegetation Index 2g − r − b 31

EXB Excess Blue Vegetation Index 1.4b− g 32

EXGR Excess Green minus Excess Red Vegetation Index EXG − EXR 33

CIVE Color index of vegetation 0.44r − 0.88g + 0.39b+ 18.79 34

VARI Visible Atmospherically Resistant Index (g − r)/(g + r + b) 28

MGRVI Modified Green Red Vegetation Index (g2 − r2)/(g2 + r2) 35

RGBVI Red Green Blue Vegetation Index (g2 − b× r)/(g2 + b× r) 36

VDVI Visible-band Difference Vegetation Index (2g − r − b)/(2g + r + b) 37



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15937  | https://doi.org/10.1038/s41598-022-20299-0

www.nature.com/scientificreports/

Random forest (RF).  RF is a non-parametric ensemble ML method that operates by constructing a multitude 
of decision trees at training time and outputting the average prediction of the individual trees (Fig. 3). The boot-
strapping approach was used to collect different sub-training data from the input training dataset to construct 
individual decision trees.

The construction process of RF regression model is as follows:

(1)	 The value of n_estimators was tested from 50 to 1000 in increments of 50, and the value of 500 was finally 
selected according to higher R2 and lower RMSE.

(2)	 At each node per tree, m_try RGB-based VIs was randomly selected from all 14 vegetation indices, and the 
best split was chosen according the lowest Gini Index. m_try was tested from 3 to 10, and the final value 
was 6.

(3)	 The other parameters in the RF model were kept as default values according to the RandomForestRegressor 
function in Scikit − learnlibrary.

(4)	 For each tree, the data splitting process in each internal node was repeated from the root node until a pre-
defined stop condition was reached.

(5)	 Similar with LR and BPNN model, the RGB-based VIs with a correlation coefficient higher than 0.7 were 
selected as the input variables, and the output variable is LAI.

Data analysis and performance evaluation.  The repeated random sampling validation method was 
used to evaluate the generalization performance of different models. The training and testing dataset were ran-
domly split 500 times. For each split, the LR, BPNN, and RF models were fitted to the training dataset, and the 
estimation accuracy was evaluated using the testing dataset. The coefficient of determination (R2), root mean 
square error (RMSE), and Akaike information criterion (AIC) of the training dataset were used for the assess-
ment of models39, and the estimation accuracy was evaluated by R2 and RMSE of the testing dataset. Mathemati-

Figure 2.   Three-layer BPNN model.

Figure 3.   Random forest model.
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cally, a higher R2 corresponds to a smaller RMSE, and thus represents better model performance. The procedures 
of LAI inversion using UAV-based digital imagery and ML methods were shown in Fig. 4.

The construction and evaluation of models was performed using Python 3.7.3 in Windows 10 operating 
system with Intel Core i7-9700 processor, 3.00 GHz CPU, and 32 GB RAM. The processing software is Spyder. 
The statistical analysis and figure plotting were performed in R × 64 4.0.3.

Results
Descriptive statistics.  Table 3 shows the descriptive statistics of the measured LAI covering four growth 
stages, eleven treatments, and 2 years. The results indicated that there were significant differences in the LAI 
during the 2-year field experiment. The LAI at individual growth stages ranged from 1.98 to 4.51 with high 
coefficients of variation (7.68–15.72) in terms of the wide range of N treatments and different straw returning 
measures. Furthermore, the large variability of LAI was supposed to cover most of the possible situations, which 
also provides convincible datasets for the applicability of UAV-based digital imagery for maize LAI estimation.

Correlation of the RGB‑based VIs and LAI.  Figure  5 shows the Pearson’s correlation coefficients 
between RGB-based VIs and the LAI of maize. The results indicated that most RGB-based VIs including RGRI, 
NGRDI, EXR, EXGR, MGRVI, RGBVI, and VDVI had significant correlations with LAI at different growth 
stages. The maximum correlation was observed at GS, with the highest correlation coefficient of 0.90 (VARI, 
MGRVI). The correlations were also strong at TS and FS, with the highest correlation coefficients of 0.81 and 
0.84, respectively. While the correlation between RGB-based VIs and LAI decreased at MS (EXGR: 0.75; VDVI: 
0.75; RGBVI: 0.74). Generally, there was a strong correlation between RGB-based VIs and the LAI of maize at 
individual growth stages, but the correlation was much weaker with regard to the whole growth period (EXGR: 
0.79; EXR: 0.73; NGRDI: 0.69; MGRVI: 0.69).

Figure 4.   Flowchart of LAI inversion using UAV-based remote sensing and ML methods.

Table 3.   Descriptive statistics of the measured LAI.

Growth stage Samples Min Max Mean Standard deviation Coefficient of variation (%)

TS 66 1.98 3.90 2.89 0.45 15.72

FS 66 2.76 4.31 3.62 0.39 10.71

GS 66 3.20 4.51 3.95 0.30 7.68

MS 66 2.43 4.08 3.41 0.36 10.55

ALL 264 1.98 4.51 3.47 0.54 15.60
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LAI estimation performance in the whole growth period.  The performances of different regression 
models for maize LAI estimation were explored through 500 times data splitting, training, and testing (Fig. 6). 
Results revealed that the performance of the MLR model (Training: R2 = 0.66, RMSE = 0.30, AIC = 22.43; Testing: 
R2 = 0.64, RMSE = 0.32) with multiple RGB-based VIs as input variables was better than that of the ULR model 
(Training: R2 = 0.63, RMSE = 0.32, AIC = 29.33; Testing: R2 = 0.63, RMSE = 0.32). The average R2 of the BPNN 
and RF models was 0.71 and 0.77, respectively in the training dataset, and the RF model has higher accuracy 
and lower complexity (RMSE = 0.21, AIC = − 20.2). In addition to this, the RF model had better performance 

Figure 5.   Pearson correlation coefficients between RGB-based VIs and LAI.
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in the testing dataset with an average R2 of 0.71 and an average RMSE of 0.25 compared with the BPNN model 
(R2 = 0.67; RMSE = 0.30).

Figure 7 shows the predicted and measured LAI of each regression model. The result suggests that the data 
points are generally close to the 1:1 line, especially when using the BPNN and the RF models. The performances 
of the LR models were inferior to the BPNN and the RF models due to the complex relationships between the 
RGB-based VIs and measured LAI data during the entirety of the growth period. It was further observed that a 
small portion of data points associated with low values of measured LAI was located above the diagonal for all 
the models, which suggested that the LAI may be overestimated with digital imagery in the case of small leaf 
area of maize.

LAI estimation performance at individual growth stages.  Figure 8 indicated that the performance 
of LAI estimation with UAV-based digital imagery varied with growth stages. GS was the optimal growth stage 
for LAI estimation with R2 ranging from 0.75 to 0.88, and RMSE ranging from 0.12 to 0.15, followed by FS 
(R2: 0.65–0.8, RMSE: 0.17–0.21) and TS (R2: 0.59–0.72, RMSE: 0.20–0.23), the lowest estimation accuracy was 
observed in MS (R2: 0.52–0.71, RMSE:0.19–0.25) since part of the leaves of maize was withered during this 
period, which resulted in a significant increase of soil pixels in the digital image, and affects the value of RGB-
based VIs.

The R2, RMSE, and AIC of different regression models for maize LAI estimation at individual growth stages 
were shown in Fig. 9. It was observed that the R2 increased, whereas the RMSE and AIC decreased with the 
increase in the number of input variables in LR models, especially at the TS and MS. There was little difference 
in R2 between the BPNN model and the MLR model in each growth stage, but the RMSE and AIC of the BPNN 
model were much lower than the MLR model, which suggests that the BPNN model had higher accuracy for 
LAI estimation, and could interpret data with fewer parameters.

Compared with the LR and the BPNN models, the RF model was considered as the best performing model at 
individual growth stages with higher R2 and lower RMSE on both training and testing datasets. At GS, the average 
R2 of the RF model reached 0.90 on the training dataset and 0.88 on the testing dataset, with RMSE at the lowest 
levels. The RF model also showed good performance even at MS with poor data quality (R2 = 0.72, RMSE = 0.20).

Taking the GS stage as an example, the predicted LAI of the whole experimental area was compared with the 
measured value based on UAV-based digital imagery to further explore the application potential of the proposed 
LAI estimation models. Figure 10 shows the RMSE between the predicted LAI of different models and the meas-
ured values of each experimental plot. Generally, the ML algorithms used in the study can accurately simulate the 
LAI under different field treatment measures. It is confirmed that the RF model has the highest LAI estimation 
accuracy, with RMSE between 0.20 and 0.26 for the whole area, while the RMSE of the ULR model and MLR 

Figure 6.   Performances of different regression models for LAI estimation in the whole growth period (a R2 of 
different regression models. b RMSE of different regression models. c AIC of different regression models.).

Figure 7.   Comparison between the predicted LAI and measured LAI with different regression models.
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model was relatively low. In addition, it is noticed that plots with high N application usually had relatively lower 
LAI estimation accuracy. For instance, the RMSE of T9 and T10 were more than 0.3 higher than that of T1 and 
T2. This is due to the fact that in plots with high N application, vegetation cover is usually high and RGB-based 
VIs calculated based on UAV images tend to be saturated, which increases the estimation error of LAI40,41.

Discussion
The linkage between UAV‑based digital imagery and LAI.  UAV-based digital imagery has been 
recognized as a prospective approach for agricultural machine vision applications due to its low cost, large quan-
tities of information volume, and maneuverability. However, it is insufficient to use the original spectral feature 
of digital sensors for quantitative analysis of crop phenotypic information because the digital imagery contains 
only three bands of spectral information. The RGB-based VIs, obtained by diverse spectral transformation of 
visible bands, have been recognized as an effective way to enhance the crop spectral features that have been 
widely used in the extraction of crop canopy information42. In this study, fourteen RGB-based VIs, which are 
most frequently referred to in the previous research, were collected to explore their correlation relationship with 
the LAI of maize. It was observed that RGRI, NGRDI, EXR, EXGR, MGRVI, RGBVI, and VDVI were strongly 
related to LAI at all growth stages, which indicates that there is a great potential for establishing maize LAI esti-
mation models with RGB-based VIs derived from digital images. Similar results were also found in wheat LAI 
prediction with a digital orthophoto map43.

Comparison of different regression models.  In this study, we mitigated the impact of data splitting on 
model performance through a 500-time repeated random sub-sampling and evaluated the accuracy and robust-
ness of the LR model, the BPNN model, and the RF model. The LR model is the most basic regression model in 
the field of ML44, and it can be divided into the ULR model and MLR model according to the number of input 
variables. The results suggested that the LR model had the lowest accuracy in maize LAI estimation, which is 
consistent with the results of the study by Li et al.20. The performance of the MLR model was better than that of 
the ULR model. This is attributed to the increasing number of input RGB-based VIs, which allow more spectral 
information to be used for modeling, therefore making up for the deficiency of spectral information saturation 
caused by a single input variable41. It is worth noting that the improvement of model performance was more 
obvious at the MS when the number of soil background pixels increased in the UAV-based digital image. From 
this, it can be inferred that the combination of multiple RGB-based VIs could reduce the influence of environ-
mental background in the UAV-based digital imagery to a certain extent. In general, the performances of both 
the ULR and the MLR models were relatively poor compared with the BPNN and the RF models, which indi-
cates the potential applicability of non-linear structures for LAI estimation22.

BPNN is a powerful ML algorithm that has the advantages of strong non-linearity and self-organization abil-
ity when dealing with complex and nonlinear approximation problems45,46. Compared with the LR models, the 
three-layer BPNN model used in this study has significantly improved the LAI estimation performance in the 
whole growth period. However, Fig. 7 indicated that there was only a slight improvement in the average R2 and 
RMSE for individual growth stages and, the 5–95% range of R2 and RMSE on the testing dataset showed apparent 
extension through multiple times of dataset split. This phenomenon is predominantly due to the strong sample 
dependencies of the BPNN model47. The performance of the BPNN model is closely related to the typicality of 
training samples. In the entire growth stage, more sample features could be used for training at each dataset split, 
which guarantee a higher stability of model performance. Regarding the individual growth stages, the smaller 
data size makes the extracted training data unable to fully reflect the general rule and weakens the stability of 

Figure 8.   Comparison of LAI estimation models at different growth stages (a average R2 of different regression 
models. b Average RMSE of different regression models.).
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the BPNN model. Therefore, the BPNN model could not exhibit better performance for LAI estimation than the 
MLR model when the data size is small, which is consistent with the inference proposed by48.

The RF model showed the best performance for LAI estimation with the highest R2 and lowest RMSE, and 
the 25–75% and 5–95% interval ranges of each evaluation index were narrowed down in both the whole growth 
period and each growth stage. This indicated the RF model has strong stability and generalization ability in 
LAI estimation. The result was in agreement with the studies reported by Zha et al.49 in rice nitrogen nutrition 
estimation. The superior estimation performance of the RF model is mainly attributed to the numerous inde-
pendent, complex and powerful learners, which makes the algorithm more robust to the noises contained in the 
variables, and results in high model accuracy regardless of the data splitting48. Besides, the random selection of 

Figure 9.   Performances of different regression models for LAI estimation at individual growth stages (Left. R2 
of different regression models. Middle. RMSE of different regression models. Right. AIC of different regression 
models.).
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variables and the bootstrap aggregating algorithm in the RF model can efficiently reduce the autocorrelation of 
input RGB-based VIs as well as avoid over-fitting50,51.

The optimal growth stage for  maize LAI estimation.  The ability to rapidly estimate crop LAI in 
real-time based on UAV-based imagery is a promising area of potential research. In this study, multiple times 
field observations were carried out at four typical growth stages of maize including TS, FS, GS, and MS. At each 
growth stage, the relationship between LAI and RGB-based VIs was investigated, and the estimation accuracy of 
different algorithms was analyzed. Results suggested that the RGB-based VIs of the GS, FS, and TS had higher 
correlations with the LAI of maize, while the correlation at MS was relatively poor. Besides, the LAI estimation 
performance of different regression models varied with the change of growth stages, the highest estimation 
accuracy was observed at GS, followed by FS, TS, and MS. These findings indicated that RGB-based VIs derived 
from UAV imagery performed well in LAI estimation in the middle growth stages of maize.

Implications for future work.  The result of this study showed the feasibility of the UAV-based digital 
imagery and ML algorithms for maize LAI estimation at both the whole growth period and individual growth 
stages. To improve the diversity and detail of select datasets, a 2-year field experiment in a split plot with differ-
ent nitrogen treatments and straw returning measures was conducted. Additionally, a loop was added in each 
algorithm to randomly split the dataset many times in order to reduce the impact of data splitting on estimation 
errors, as well as test the stability of models. It is expected that the combination of UAV-based digital imagery 
and ML methods could be transferred to different crop types as well as different crop growth parameters such 
as plant height, above-ground biomass, and yield. Furthermore, the UAV-based digital image used in this study 
has not been processed by pixel segmentation, which may have a negative impact on the estimation accuracy of 
LAI, especially at certain growth stages. It is also an important part that needs to be explored in further research.

For traditional ML, feature extraction is generally completed manually, it is laborious and requires experience 
and professional knowledge, therefore, deep learning is becoming a hot subject since it could let the computer 
automatically learn features from images and eliminates the complex manual information extraction process. 
But the UAV-based digital imagery has a centimeter-level resolution and carries a large amount of information, 
it requires plenty of computing resources to complete training of a deep learning model. In the next step of 
research, we will seek the support of the cloud computing platform, the convolutional neural network (CNN), 
a typical deep learning algorithm, is going to be implemented in the estimation of LAI based on UAV-based 
imagery, and the results will be compared and discussed with those of this study.

Figure 10.   RMSE between the predicted LAI and the measured values for the whole experimental area.
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Conclusions
This study demonstrated the feasibility of UAV-based digital images and ML algorithms for maize LAI estimation 
through a 2-year field trial. The RGB-based VIs including RGRI, NGRDI, EXR, EXGR, MGRVI, RGBVI, and 
VDVI derived from digital images had significant correlations with LAI of maize at individual growth stages, but 
the correlation was weaker with regard to the whole growth period. GS was the optimal stage for LAI estimation, 
followed by FS, TS, and MS. The RF model showed the highest accuracy for LAI estimation with an average R2 of 
0.71, RMSE of 0.25 for the whole growth period, and R2 ranged from 0.71 to 0.88, RMSE ranged from 0.12 to 0.2 
for individual growth stages. The smaller 5–95% interval range of R2 and RMSE of the RF model suggested that 
the model was less affected by dataset size and outliers compared with other ML algorithms, which indicated that 
the combination of UAV-based digital imagery and the RF method is a promising way for timely and accurately 
monitoring LAI with high spatial resolution. Furthermore, this approach may offer a theoretical framework that 
could be transferred to different crop types as well as different crop growth parameters.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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