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Abstract

Gene regulatory networks (GRNs) coherently coordinate the expressions of genes and control the behaviors of cellular
systems. The complexity in modeling a quantitative GRN usually results from inaccurate parameter estimation, which is
mostly due to small sample sizes. For better modeling of GRNs, we have designed a small-sample iterative optimization
algorithm (SSIO) to quantitatively model GRNs with nonlinear regulatory relationships. The algorithm utilizes gene
expression data as the primary input and it can be applied in case of small-sized samples. Using SSIO, we have quantitatively
constructed the dynamic models for the GRNs controlling human and mouse adipogenesis. Compared with two other
commonly-used methods, SSIO shows better performance with relatively lower residual errors, and it generates rational
predictions on the adipocyte responses to external signals and steady-states. Sensitivity analysis further indicates the
validity of our method. Several differences are observed between the GRNs of human and mouse adipocyte differentiations,
suggesting the differences in regulatory efficiencies of the transcription factors between the two species. In addition, we use
SSIO to quantitatively determine the strengths of the regulatory interactions as well as to optimize regulatory models. The
results indicate that SSIO facilitates better investigation and understanding of gene regulatory processes.
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Introduction

The interactions between genes, i.e. gene regulatory networks

(GRNs), coherently coordinate the expressions of all genes,

resulting in differential gene expressions that regulate most of

the cellular behaviors [1]. Understanding how gene expression is

regulated under different conditions is an important question in

molecular biology. Nowadays, sufficient amounts of gene expres-

sion data provide an opportunity to explore gene regulations at the

systemic level; moreover, quantitative models embodying the

dynamic and mechanistic details of the GRNs can be established

thereby [2]. Nevertheless, several practical problems such as small

sample size, complex dynamics and nonlinearity, high dimension,

etc., make the quantitative/dynamic modeling of GRNs a very

challenging task.

One of the main challenges in modeling a gene regulatory

network is the small sample size compared to the number of genes,

making the estimation of parameters (i.e. coefficients for regulation

strengths, action rates, etc.) inaccurate. Fortunately, this problem

can be alleviated by utilizing statistical methods to filter the

features in the raw data, e.g. selecting only the relevant features or

extracting the essential features. Popular statistical methods mainly

include principal component analysis (PCA) [3], principal

component regression (PCR) [4], and partial least-square regres-

sion (PLS) [5]. However, these linear feature-extraction methods

may lead to unsatisfying results when dealing with nonlinear

circumstances, as usually exemplified by biological networks. [6].

For better inference of bio-networks with nonlinear gene

regulations, we have designed a parameter estimation algorithm

- small-sample iterative optimization (SSIO), an approach that

infers GRNs based on gene expression data in case of small sample

sizes.

Adipocyte differentiation is an area of intensive research. Many

human diseases result from failure of adipocyte development,

primarily from extreme aberrations in the fat cell number. An

overabundance of fat cells may induce obesity, which is considered

to be a major risk factor for diabetes and hypertension [7]. The

course of adipocyte differentiation is highly controlled by a

complex cascade of signals, and the individual molecular

regulatory relationships have been extensively studied [8,9,10].

Many transcription factors (TFs) cooperate to modulate the

expression of the three key adipocyte genes, i.e. CEBPb, CEBPa
and PPARc. In computational modeling, the asymmetry between

the numbers of TFs and adipocyte genes (i.e. the number of TFs is

greater than the sample size) leads to the so-called small-sample-

size problem.

Using SSIO, we quantitatively constructed models of gene

regulations during the differentiations of mouse 3T3L1 adipocytes
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and human primary adipocytes, respectively. SSIO showed better

performance compared with two other commonly-used methods.

As shown by the data, most regulatory relationships are of the

same ranking of importance in both human and mice, whereas

some striking differences were observed between the two species as

well.

Data and Methods

Data
We obtained time-series gene expression data during adipocyte

differentiation from Mikkelsen et al. [11]. Gene expressions were

profiled in series at nine time points for human (day 22, 0, 1, 2, 3,

5, 7, 9, 14) and four time points for mouse (day 22, 0, 2, 7).

Expression levels were normalized using the Robust Multi-array

Average method and truncated to a minimum value of 20 [11].

Linear interpolation was used to reconstruct partial mouse data at

intermediate time points duiring optimisation [12], because of the

shortage of time-series data.

Partial least-square regression method
Partial least-square regression (PLS) is often used for dimension

reduction when dealing with small-sized samples of gene

expression data [5]. The algorithm is mainly performed as

described by Höskuldsson [13], and modified to some extent in

this work:

(1) Normalize the feature space. In this paper, the values of each

gene are treated by dividing each feature with standard deviation

and multiplying each feature with mean value to reduce bias of

truncated data from Mikkelsen [11], since high expression levels

are considered to be of significance [14].

Yi/Yi
:mean(Yi)

std(Yi)
ð1Þ

(2) Find direction vectors of PLS. For one-dimensional output, the

first direction vector p1 is defined based on the covariance of input

and output:

p1~
Xn

i~1

c1
i
:xi ð2Þ

and

c1
i ~

cov(xi, y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

cov2(xi, y)

s ð3Þ

where n is the dimension of input, xi is the ith input, y is output,

and cov(xi, y) is the covariance of input and output;

(3) Regress the input and output with the direction vectors of PLS

separately:

xi~axi1
:p1zrxi1 ð4Þ

y~ay1
:p1zry1 (5)

where axi and ay are linear regression coefficients for the ith input

and output, and rxi and ry are the corresponding residuals;

(4) Replace xi by its residual rxi, y by ry; and then calculating the

next direction vector using formula (1) and (2). Regress the

residuals until they are small enough or the vector number is close

to the sample size [13];

(5) Output the sequence of fitted PLS direction vectors, and

recover the linear coefficients by the PLS transformations:

y~
Xm

i~1

ai
y
:pizrend ð6Þ

Figure 1. Flow chart of the SSIO algorithm.
doi:10.1371/journal.pone.0110563.g001
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Figure 2. The gene regulatory network (GRN, a - Model 1) and the modified GRN (b - Model 2) of adipogenesis. Blank ovals are
adipogenic factors, blue ovals are anti-adipogenic factors, and green ovals are the three key markers. Rectangles are combinations of TFs, where solid
lines indicate positive regulations and dash lines indicate negative regulations.
doi:10.1371/journal.pone.0110563.g002

Dynamic Modelling Adipocyte Network

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e110563



where m is the total number of direction vectors, pi is the ith
direction vector, ay

i is the linear regression coefficient, and rend is

the final residual.

As m is frequently smaller than the dimension of input, the

linear coefficients are thus recovered from the PLS transforma-

tions. Each direction vector pi is transformed from linear

combination of the original input:

pi~P
i{1

j~1
(I{½cj

1,c
j
2,::,cj

n�
T :½aj

x1,a
j
x2,:::,aj

xn�):½ci
1,ci

2,::,ci
n�

T ð7Þ

where I is the diagonal matrix.

For positive regulations with negative weights assigned by PLS,

the weights are modified to small positive values, and vice versa.

The number of direction vectors corresponds to both the fitting

results and the complexity of the regression model. The log-

penalized regression method is used to ensure better generalization

capability of the model [15]. In this study, the first n modified

direction vectors of PLS with small residuals are maintained for

further analysis by the penalized regression method.

n/ arg min ½two norm residual errorDDy{
Xm

i~1

ai
y
:pi DD�: log (1zm)

ð8Þ

As external signals inculding cAMP and glucocorticoid receptor

(GR; coupling with the ligand) play leading roles in the regulation

of CEBPb, data in the interval between preadipocyte and

immature adipocyte were removed when optimizing the weights

of the transcription factors targeting CEBPb.

Sigmoid function
Sigmoid functions have been used to model nonlinear gene

regulations extensively [16,17]. They exhibit the saturation

characteristic and are robust when dealing with extreme values;

and the combination weights of the TFs within a sigmoid function

amount to the regulatory strengths which are analogous to the

parameters (e.g. efficiency coefficients and orders) in the Hill

equation. We therefore used sigmoid function to formulate gene

regulatory relationships [16]. Assuming A is the linear combina-

tion of transcription factors (TFs) of a target gene, and k1, k2 and

k3 are the modified coefficients. The sigmoid function of A is

defined as:

f (A)~
k1

1ze{k2
:(A{k3)

ð9Þ

and

A~
Xn

i~1

(qi
:xi) ð10Þ

where n is the total number of TFs, qi is the weight of the ith TF

Xi. The sign of qi is positive when Xi performed positive regulation,

and vice versa. If negative TFs dominate the target gene

expression, A is negative, and the function of A is thus modified as:

Figure 3. Simulated dynamic expression levels of the three key markers, human CEBPb (a, b), CEBPa (e, f), PPARc (i, j), and mouse
CEBPb (c, d), CEBPa (g, h), and PPARc (k, l), without (Model 1) or with (Model 2) additional feedbacks. Lines are expression levels simulated
within real experimental periods, and dots are data predicted after the end time point. Simulated expression levels are shown in blue (when an
external signal is present) and red (no external signal) respectively. The experimental expression levels are displayed as green dots.
doi:10.1371/journal.pone.0110563.g003
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f (A)~
k1

1ze{k2
:({DADzk3)

~
k1

1ze{k2
:(Azk3)

ð11Þ

Expectation Maximization algorithm
An Expectation Maximization (EM) algorithm was used to

calculate the unobserved values of the linear combinations of TFs

[18]. The algorithm works as follows:

(1) Initialize the parameters set;

(2) Expectation Step: calculate the expected values for missing

features;

(3) Maximization Step: compute the revised parameter estimates;

(4) Iterate (2) and (3) until convergence.

Bayesian Information Criterion
Bayesian Information Criterion (BIC) is a popular criterion for

model evaluation [19]. For regression problems, the BIC formula

is:

BIC(P)~ ln (err2)zP:
ln N

N
ð12Þ

where P is the effective number of parameters, err2 is the residual

error comparing with training data, and N is the number of data

items in the training set.

Normally, the total number of parameters remains unchanged

in known regulatory networks. When using our algorithm, the

effective number of parameters may change as optimal parameters

are selected [20]. The number of direction vectors rather than

number of original features is regarded as the effective parameter

number in PLS. In addition, when optimizing the weights for the

TF combinations, a new direction vector is computed in each

iteration, and the conbination weights are computed based on the

new direction vector. The criteria associated to the effective

parameter number included: (1) Relative changes of direction

vectors, which were calculated as sum of the absolute differences in

anti-tangents of the weights between consecutive iterations; (2)

Logarithm of iteration number, which is used as a penalty. The

effective number of parameters is equal to the relative change

multiplied by the penalty.

Ordinary Differential Equation model
An Ordinary Differential Equation (ODE) model was con-

structed for the dynamics of the adipogenic gene network. Sigmoid

functions were used to formulate the transcriptional regulations;

and degradations of mRNAs were assumed to follow the first-order

kinetics [21]. The ODEs were solved by the Gear’s method [22].

When simulating the gene expressions with the presence of

stimuli, cAMP and GR signalings were added to the gene

regulatory network at preadipocyte (day 0 for both human and

mouse) and withdrawn at immature adipocyte (day 3 for human

and day 2 for mouse), when the insulin receptor (IR) signaling also

came into effect [27]. The signal intensities of cAMP and GR were

set to decrease over time from pre- to immature- adipocyte. As the

mouse expression data were not available between these time

points, signal intensities of stimuli had to be assigned as constants.

Details of the ODEs and all the associated parameters were

presented in Texts S1, S2 and S3 and Tables S1, S2, S3 and S4.

As expression levels of the human GATA2 were truncated to

the minimum value 20 for most of the time points, transcriptional

regulations from GATA2 were excluded in the modeling of

human adipogenesis, i.e. all weights of the GATA2-associated

regulations were set to zero.
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Bistability analysis
Positive feedbacks can give rise to bistability in bio-systems [23],

i.e. deviations in initial values may result in distinct equilibriums

under the same regulatory framework. To calculate the equilib-

riums for each gene, the ODE system was simulated in an

adequately long time frame (t = 100, corresponding to day 98 after

the induction of differentiation), and equilibriums of gene

expressions were tracked via a trust-region method [24].

Small-sample iterative optimization algorithm
Numerous techniques have been developed for parameter

estimation based on time-series data. In this work, we have

developed a new small-sample iterative optimization algorithm

(SSIO) for parameter estimation by integrating PLS, a penalized-

regression, sigmoid functon, EM algorithm and BIC.

For a regulatory network with n genes, the dynamic expression

level of the ith gene (Y i, i = 1, …, n) is described as

dyi

dt
~F (Xi){di

:yi ð13Þ

Figure 4. Results of local sensitivity analysis. Alteration of stability is observed in the human (a) but not in mouse (b).
doi:10.1371/journal.pone.0110563.g004

Figure 5. Steady-state gene expressions in human and mouse adipocyte differentiation. The bistable states of CEBPa (a, b) and PPARc (c,
d) due to elevation of CEBPb transcription rate, bistability of CEBPb (e, f) and PPARc (g, h) due to CEBPa elevation, and bistability of CEBPb (i, j) and
CEBPa (k, l) due to PPARc elevation, are shown. Blue solid/red dash: low/high initial values in adipocyte differentiation.
doi:10.1371/journal.pone.0110563.g005
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where F(Xi) is a function of the expression levels of the TFs

controlling the ith gene expression, which describes the

transcription rate of the ith gene; and d i is the degradation rate

constant.

The sigmoid function is used to approximate the nonlinear

regulations between the TFs and their target genes:

F (Xi)~
ki1

1ze

{ki2
:((
Pm
j~1

qij
:Xij ){ki3)

ð14Þ

where ki1, ki2 and ki3 are the modified coefficients of the

expressions of the TFs regulating the ith gene; Xij is the

expression level of the j th TF, and it is weighted by qij. In the

studied network, if no TF is responsible for the expression of the i
th gene, then F(X) is set as

F (Xi)~k1 ð15Þ

Usually, if the total number of TFs in a network is greater than

the number of time points, dimension reduction is required for

parameter estimation. Partial Least Squares (PLS) is one of the

widely-used dimension-reduction methods, which outperforms

Principal Component Analysis (PCA) and Principal Components

Regression (PCR) [5]. Therefore, PLS is used to reduce the feature

dimensions for genes regulated by multiple TFs. Together with

(11), the dynamic expression of the ith gene is obtained:

dyi

dt
~

ki1

1ze

{ki2
:((
Pm
j~1

qij
:Xij ){ki3)

{di
:yi ð16Þ

The Expectation Maximization (EM) method is further used to

gradually estimate the model parameters, because only partial

parameters could be directly obtained by PLS. Degradation

constants and the modified coefficients of transcription rates,

altogether with the weights qij, are optimized by a traditional

nonlinear least-squares method (e.g. the trust-region method). The

proposed algorithm is described in detail below:

N Step 1: Initialize and normalize the weights for all the TFs of

each gene (Yi) using PLS, where expression levels of TFs are

independent variables, and the level of the ith gene (Yi) is the

dependent variable.

N Step 2: Initialize k , k , k and d .i1 i2 i3 i

N Step 3: Loop from Step 4 to Step 8 until all the weights

converge to a predefined criterion (relative change ,1e-08), or

the number of iterations exceed the maximum threshold (e.g.

100).

N Step 4: Optimize ki1, ki2, ki3 and di using the trust-region

method [24]: In each iteration, initialize the ODEs with the

current training data, and simulate the gene levels at the next

time point using the Gear’s method. Values of the parameters

are obtained via minimizing the (squared) deviation between

the simulation and training data by a trust-region method.

This step corresponds to the ‘Maximization Step’ of EM

algorithm.

N Step 5: Simulate the ODEs at all later time points initiating

with the gene levels at the beginning time point.

N Step 6: After Step 5, calculate and normalize the weights (qij)

of the TFs of the ith gene using PLS. The simulated levels of

the ith gene’s TFs are the input; and the ith gene is the

output.

N Step 7: Optimize the weights of TFs. The weights are

calculated by adding the values of the previous loop with the

(normalized) output vectors of PLS obtained in Step (6), which

need to be multiplied by certain scalars. The scalars are

derived from optimization. The ODEs are initialized with the

training data of each time point and simulated to the next time

point by the Gear’s method. The scalars are obtained via the

trust-region method by minimizing the (squared) deviation

between the simulation and training data. This step corre-

sponds to the ‘Expectation Step’ of EM algorithm.

Figure 6. Combined weighted-expression levels of TFs target-
ing the three key markers, i.e. CEBPb, CEBPa and PPARc, at the
four stages of adipocyte differentiation.
doi:10.1371/journal.pone.0110563.g006

Table 2. Statistical significance of differences (p-values) between human and mouse in weighted-expressions of TFs targeting
CEBPb, CEBPa and PPARc, at adjacent time points.

Proliferating -. preadipocyte Preadipocyte -. immature adipocyte Immature adipocyte -. mature adipocyte

CEBPb 0.2090 0.9996 0.2090

CEBPa 0.2090 0.2090 0.0361*

PPARc 0.0310* 0.6751 0.0310*

Note: The two-sample Kolmogorov-Smirnov test is used to point out significant differences between human and mouse. Data are treated by z-score normalization.
*Significant p-values.
doi:10.1371/journal.pone.0110563.t002
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N Step 8: Save ki1, ki2, ki3, di and pij derived from the current

loop.

N Step 9: Perform model evaluation based on BIC [19]. After

each loop, substitute in the derived paramters and simulate the

ODEs initiated with the training data at each consecutive time

point. The (squared) residual error of the simulation data

(comparing with training data) are computed and substituted

in the BIC formula. For sets of parameter values derived in

each loop, the one with the minimum BIC score is selected.

The SSIO algorithm is illustrated in Figure 1 and the

pseudocode is presented in Text S4.

Markov Chain Monte Carlo sampling for global sensitivity
analysis

The Markov Chain Monte Carlo (MCMC) method is widely

used for sampling from certain posterior distributions following a

given probabilistic background in a high -dimensional space [25].

The key step in MCMC is to construct a Markov chain whose

equilibrium distribution equals the target probability distribution.

For global sensitivity analysis of our gene regulatory model,

MCMC works as follows:

(1) Construct a transition kernel of an ergodic Markov chain. In

this study, the prior distribution for each of the parameters is the

uniform distribution;

(2) Simulate the chain until it reaches equilibrium. The

Metropolis-Hastings sampling method is used to determine

whether the new sample (h*) is acceptable based on the a value:

a~
P(h�DX )q(hn?h�)

P(hnDX )q(h�?hn)
ð17Þ

where P h�DXð Þ and P hnDXð Þ are the posterior probabilities of the

n th accepted sample and the new sample, q hn?h�ð Þ is the

transition probability from the n th accepted sample to the new

sample, and q h�?hnð Þ is the transition probability from the new

sample to the n th accepted sample. In the ODE gene regulatory

model, the residual error is considered to be reciprocal to the

posterior probability and the transition probability is unchanged

because of the uniform prior distribution [26]. Hence, a is re-

formed as:

a~
Dresidual error of hnD
Dresidual error of h�D

ð18Þ

A random number is generated from the uniform distribution

on (0, 1). If it is smaller than a, the new sample h� is accepted,

otherwise the sample is unaccepted.

(3) Perform global sensitivity analysis. In this study, the

Kolmogorov-Smirnov (K–S) statistic is used to calculate the

sensitivity of each parameter [26]:

K{S~ sup DF1{F2D ð19Þ

where F1 is the cumulative distribution of samples which

responded to external signals properly, whereas F2 is the

cumulative distribution of samples which responded to external

signals improperly. The interval for the K–S statistic is set to 10.

In this work, degradation constants were sampled within the

range of 60.1 around their values since if the value was too small,

expression levels might increase unboundedly; while if it was too

high, system function would be abnormal. Regulatory coefficients

of TFs were sampled from the uniform distribution in interval [0,

1]. Other parameters were uniformly sampled from the interval

between 0 and twice of their values, if they were greater than 0.25,

or sampled from [0, 0.5] otherwise.

Results and Discussion

Algorithm verification and model evaluation
We first optimized the parameters (Tables S1, S2, S3 and S4) of

the nonlinear gene regulatory model of adipogenesis (Model 1;

Figure 2a) [8,9,10], using the experimental time-series gene

expression profiles during adipogenesis as the reference data.

Some basic biology constraints are used as evaluating criteria for

the parameter estimation: 1) The simulated dynamic-expression

pattern of all the genes during adipogenesis should be consistent

with the real experimental results; 2) Moreover, the model

complied with the essential fact that the three key markers of

adipogenesis, i.e. CEBPb, CEBPa and PPARc, are differentially

expressed during the adipocyte differentiation induced by external

stimuli (e.g. cAMP, GR or IR) [8,27]. The second criterion is vital

to the simulation’s effectiveness because it determines the nature of

the simulation result.

We approximated the parameter values that guaranteed the

consistency of model simulations with the experimental data. As

shown, the derived model simulated gene expressions accurately

(Figure 3). In fact, Figure 3 shows that in the absence of external

signals (i.e. stimuli = 0), the levels of all three key markers are

reasonably simulated to be low (close to the levels before adipocyte

differentiation); meanwhile, in the presence of stimuli, simulated

levels of the three TFs are high accordingly (near the levels after

differentiation). The data indicate that our method reaches

appropriate results on the proper regulatory model.

Positive feedbacks in gene regulatory networks play important

roles in generating bistability or binary responses (i.e. bifurcation

of the steady-states of gene expressions) [23,28], thus producing

robust developmental switches. A recent study reported that three

consecutive positive feedback loops, i.e. loop between CEBPa and

PPARc, loop between PPARc and CEBPb, and loop between

PPARc and the insulin receptor, drove a sequence of robust

irreversible events in adipocyte differentiation [27]. To better

reveal the regulatory mechanisms, we thereby explored whether

there might exist any other unidentified feedback regulations in

adipocyte differentiation.

To investigate potential feedbacks, we focused on the key

adipogenic markers [27,29], i.e. CEBPb, CEBPa and PPARc, and

other adipogenic genes with significant differential expressions

(more than two-fold) [30,31], which included two down-regulated

genes KLF4 and GATA2 and three up-regulated genes STAT5a,

STAT5b and KLF15 (Figure 2b). The adipogenic gene network

was thus modified to cover five possible feedbacks from the key

markers to the differentially-expressed genes. Parameters of the

modified network model (Model 2) were optimized using SSIO.

The simulation results based on the modified model with the

five additional feedbacks (Model 2) were more rational, especially

for the gene expressions during the mouse adipocyte differentia-

tion, as the high-level steady-states of the three key markers were

observed [27] (Figure 3). Nonetheless, the simulations of the

human gene expressions did not differ very much by either Model
1 or Model 2, indicating that the steady-states of human adipocyte

differentiation could be achieved even without the feedbacks. Such
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observation in turn implied that the TFs in human and mouse

adipocytes differed in the regulatory efficiencies.

Some of the additional regulations are supported by experi-

mental evidence. Researches have reported that PPARc regulates

STAT5a, and CEBPa or CEBPb regulates STAT5b during

adipogenesis [32]; KLF4 is down-regulated by CEBPb after

adipocyte differentiation [33]; and CEBPb or CEBPa induces

KLF15 expression [34]. In the meantime, studies have shown the

PPARc-independent down-regulation of GATA2 during differen-

tiation [35], which makes it reasonable to test the possibility of

whether CEBPb and/or CEBPa regulate GATA2.

To further evaluate SSIO, we compared its performance to two

other commonly-used methods, i.e. PCA and Linear-PLS.

Generally, SSIO produced lower residual errors in computation

(Table 1) and the results satisfied biological rationality (e.g.

responses to stimuli, steady-states). The data herein indicated that

our method inferred gene regulations more appropriately com-

pared with the other methods. In fact, the procedure of log-

penalized regression (in PLS, earlier contexts) and the step of

model evaluation (BIC, Step 9) in the pipeline of SSIO is vital to

the success of simulation. To further demonstrate this, we

inspected the effects on model inference that over-fitting or

under-fitting might cause. Without a penalized method, the over-

fitting of the data showed that the system responded to external

signals incorrectly, which did not satisfy criterion 2. And without

appropriate evaluation (i.e. inadequate iteration before conver-

gence to proper criteria), the result of under-fitting incorrectly

reflected the expression levels of the key adipocyte genes during

differentiation (Figure S1).

Sensitivity analysis and kinetic analysis
MCMC simulations were combined with the Kolmogorov-

Smirnov (K–S) statistical test to examine and compare the

parameter sensitivities of the human and mouse gene regulatory

models. All parameters were sampled for perturbations at first and

the Markov Chain reached equilibrium as the number of samples

got large. The results turned out that very low percentage of

samples responded to external signals properly, with less than 1%

in human and about 13% in mouse (Table S5). Thus it indicated

that the parameters in the models were generally sensitive (i.e.

important for maintaining the functional normality), as overall

random perturbations of parameters ruined the system functions.

However, based on the generic results as above, it was difficult

to compare the differences in gene regulations between human

and mouse or rank the importances of regulatory factors in the

respective species. Therefore, we focused on the regulatory

coefficients of the TFs and sampled them by MCMC to specifically

assess their sensitivities. The Markov Chain quickly reached the

equilibrium when the sampling process was progressed near 9000

samples, as the difference of frequency distribution was smaller

than 0.0001. The percentage of samples properly responding to

external signals was quite high, with more than 50% for human

and 17% for mouse (Table S5). Thus it indicated that the TF-

associated parameters were relatively robust, coinciding with the

fact that gene regulations generally have robustness in biology

[36]. Table S6 shows the results for the K–S statistical test after

removing the first 10000 samples (i.e. meaningless samples, which

were generated before the Markov Chain converged). The results

suggested that there were several differences in the regulatory

strengths/efficiencies of the key markers’ TFs in human and

mouse adipocytes; and such differences might be responsible for

the more sensitive adipogenesis regulatory system of human,

compared with mouse (Table S6, signed with asterisk ‘*’).

In a gene regulatory network, fluctuations in gene expressions

(e.g. increasing in the transcription rates) may result in different

cell fates, e.g. bistability, in which more than one possible stable

states are exhibited in response to cellular signals [37]. To examine

the dependences of the dynamics of the system on the regulatory

parameters, local sensitivity analysis was performed to assess the

extents that individual parameters affected the states of the

regulatory system [38]. The results showed that all the parameters

corresponding to bistability were more sensitive in human than

mouse; besides, alterations of some parameters eliminated the

bifurcations in the human system but identical alterations on the

same parameters in the mouse system did not change the

bifurcations (Figure 4 and Figure S2).

Based on the optimized adipogenesis network, we implemented

a series of dynamic simulations to analyze how the three key

adipogenic genes affected each other during adipocyte differenti-

ation. The external signals, ie. cAMP, GR and IR, were set to

zero. An increase in the transcription rate was introduced to one of

the three key adipogenic genes, and the extent of its influence on

the stable states of the other two genes’ expressions was examined.

Bistability, characterized by the existence of two stable states, was

observed (Figure 5). Specifically, simulations demonstrated that

high expression of one gene (i.e. increased transcription rate)

would trigger the other two genes to elevate the expression

equilibriums from low levels to high levels (Figure 5). The trigger

levels were about 600 (a.u.) in mouse, which were much higher

than those found in human (around 300 a.u.), indicating that

human adipocyte differentiate more easily in response to external

signals.

Comparison of gene regulations in human and mouse
adipogenesis

Many genes and proteins are functionally homologous between

human and mouse [39]. It is suggested that the genetic basis of the

morphological differences lies, at least in part, in alterations of the

molecular regulations between the species during evolution rather

than changes in the molecular functions [40]. Under the basic

framework of the common regulations, differential regulations of

gene expressions are informative in understanding the gene

regulatory mechanisms within or between the species. Fortunately,

with a quantitative model of the gene network, the regulatory

effects of the TFs can be quantified and compared.

To assess the regulatory effects, we combined the expression

levels of the TFs (i.e. [Xi]) with their respective regulatory

coefficients (i.e. qi) as the weighted-expression levels (i.e. qi?[Xi]).
For both human and mouse, the weighted-expression levels of the

TFs regulating PPARc varied with respect to time during

adipocyte differentiation (Table S7). However, no significant

time-dependent differences were observed in the weighted-

expression levels of the TFs targeting CEBPb or CEBPa (data

not shown). The data indicated that the PPARc-associated

regulatory factors might be the essential part in the control of

adipogenesis [41]. Taking altogether the stages of adipogenesis (i.e.

proliferating, pre-, immature-, and mature- adipocyte), the

differences in the dynamic profiles of the key marker-associated

TFs (i.e. the levels of the TFs at the different stages) between

human and mouse were not quite large in overall, as the K–S test

did not show significant differences. Nonetheless, an exception was

CEBPa, whose TFs exhibited differences between human and

mouse at the beginning of differentiation (Figure 6).
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Nevertheless, although the overall levels of the TFs were not

significantly different, the changes in the levels of the CEBPa and

PPARc-associated TFs between two adjacent stages (i.e. prolifer-

ating R preadipocyte, preadipocyte R immature, immature R
mature) differed significantly in human and mouse (Table 2). It

indicated that although the overall regulatory effects that the TFs

exerted on the key adipocyte genes were similar in each stage, the

individual TFs might undergo different changes to achieve the

(differential) regulations of adipogenesis in human and mouse

respectively.

For a clear summary, we ranked the molecular regulations in

the order of their importances. The importance was evaluated by

the weighted effect that i th regulator contributed to the changes

of jth gene’s expression level, i.e. the corresponding Jacobian

coefficient of the dynamic equations multiplied by the expression

level of the regulator. The evaluations were carried out at all four

stages of adipocyte differentiation. Several differences were

observed in the regulations associated to the three key adipocyte

genes, CEBPb, CEBPa and PPARc between human and mouse

(Table 3). The results herein showed that different regulatory

efficiencies existed between the homologous human and mouse

genes. In the meantime, the listed regulatory relationships, as

well as the involved homologous genes, might essentially

contribute to the differential regulations of adipogenesis in

human and mouse.

Conclusion

Generally, biological experiments often generate small-sized

samples due to limitations of resources or technological obstacles.

Consequently, the small sample sizes (i.e. number of data points)

impose restrictions on dynamic and quantitative bio-network

modeling, leading to either the difficulty in finding the solution or

the problems of overfitting/underfitting. Therefore, a reliable

method for the modeling of dynamic biological networks is

needed, especially in the case of small-sized datasets. In this study,

we designed the SSIO, a parameter-estimation algorithm solving

the issue of GRN inference with a heuristic strategy.

By verifying the performance of SSIO with biological knowl-

edge (e.g. responses to stimuli, steady-states) and comparing it with

two other widely-used methods (PCA and Linear-PLS), it was

demonstrated that SSIO was an effective approach for quantita-

tive modeling of dynamic GRNs (in the case of small-sized

samples). Using SSIO, regulatory effects of the TFs associated to

key adipocyte genes were quantified; thereby we observed multiple

differences in the gene regulations between human and mouse,

which might bring insights into the gene regulatory programs of

adipogenesis.

Supporting Information

Figure S1 Over-/under-fitting results for adipocyte
differentiation (*.tif). The over-fitting results (without the

penalized method) of CEBPb(a), CEBPa(b), PPARc(c) exhibit

incorrect responses to stimuli; and the under-fitting results (without

adequate BIC evaluation; d), incorrectly simulate the steady-states.

(TIF)

Figure S2 Additional results of local sensitivity analysis
are provided herein (*.tif). Alterations of steady-states are

observed in human (a, c, e, g, i, k) but not in mouse (b, d, f, h, j,
l).

(TIF)

Table S1 Parameters optimized by the SSIO method.

(DOC)

Table S2 Weights of regulatory relationships optimized
using SSIO.

(DOC)

Table S3 Fixed parameters used in the optimization.

(DOC)

Table S4 Time points corresponded to adipocyte dif-
ferentiation stages.

(DOC)

Table S5 Number of MCMC samples.

(DOC)

Table S6 Values for the K–S statistic.

(DOC)

Table S7 Statistics significance (P-value) of time series
differences in weighted expression levels of transcrip-
tion factors targeting PPARc.

(DOC)

Text S1 Ordinary differential equations. The evolution

equations consist of fifteen ordinary differential equations (ODEs),

which are listed below. Eqs. 1–15 describe human and mouse

models without additional feedbacks. As for models with

additional feedbacks, Eqs. 1,8,9,12 and 13 are replaced by Eqs.

16–20 correspondingly.

(DOC)

Text S2 Combination formula.
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Text S3 External signals.

(DOC)

Text S4 Pseudocode of SSIO.
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like Factor 15 (KLF15) in Transcriptional Regulation of Adipogenesis. Journal of

Biological Chemistry 280: 12867–12875.

35. Schupp M, Cristancho AG, Lefterova MI, Hanniman EA, Briggs ER, et al.

(2009) Re-expression of GATA2 Cooperates with Peroxisome Proliferator-

activated Receptor- Depletion to Revert the Adipocyte Phenotype. Journal of

Biological Chemistry 284: 9458–9464.

36. MacNeil LT, Walhout AJM (2011) Gene regulatory networks and the role of

robustness and stochasticity in the control of gene expression. Genome Res.

21(5): 645–657.

37. Gerard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk

network driving the mammalian cell cycle. Proc Natl Acad Sci U S A 106:

21643–21648.

38. Hamby DM (1995) A comparison of sensitivity analysis techniques. Health Phys

68: 195–204.

39. Boguski MS (2002) Comparative genomics: The mouse that roared. Nature 420:

515–516.

40. Tautz D (2000) Evolution of transcriptional regulation. Current Opinion in

Genetics & Development 10: 575–579.

41. Tontonoz P, Spiegelman BM (2008) Fat and Beyond: The Diverse Biology of

PPARc. Annual Review of Biochemistry 77: 289–312.

Dynamic Modelling Adipocyte Network

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e110563


