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Mathematical modeling of behavior during a psychophysical task, referred to as

“computational psychiatry,” could greatly improve our understanding of mental disorders.

One barrier to the broader adoption of computational methods, is that they often

require advanced statistical modeling and mathematical skills. Biological and behavioral

signals often show skewed or non-Gaussian distributions, and very few toolboxes and

analytical platforms are capable of processing such signal categories. We developed the

Computational Psychiatry Adaptive State-Space (COMPASS) toolbox, an open-source

MATLAB-based software package. This toolbox is easy to use and capable of integrating

signals with a variety of distributions. COMPASS has the tools to process signals with

continuous-valued and binary measurements, or signals with incomplete—missing or

censored—measurements, which makes it well-suited for processing those signals

captured during a psychophysical task. After specifying a few parameters in a small

set of user-friendly functions, COMPASS allows users to efficiently apply a wide range of

computational behavioral models. The model output can be analyzed as an experimental

outcome or used as a regressor for neural data and can also be tested using the

goodness-of-fit measurement. Here, we demonstrate that COMPASS can replicate

two computational behavioral analyses from different groups. COMPASS replicates and

can slightly improve on the original modeling results. We also demonstrate the use of

COMPASS application in a censored-data problem and compare its performance result

with naïve estimation methods. This flexible, general-purpose toolkit should accelerate

the use of computational modeling in psychiatric neuroscience.

Keywords: computational psychiatry, mathematical behavioral analysis, computational methods, state-space

modeling, open source software, cognitive neuroscience

INTRODUCTION

There is a growing need for advanced computational methods within psychiatric neuroscience
(Wang and Krystal, 2014; Paulus et al., 2016; Redish and Gordon, 2016). Existing investigational
techniques have not revealed the neural mechanisms of complex behavioral disorders. This may in
part be because behavior is difficult to measure objectively. Newer work seeks to explain complex
behaviors in terms of relatively low-dimensional parametric models, where each parameter maps
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to a psychological or brain circuit construct (Wang and Krystal,
2014; Paulus et al., 2016; Widge et al., 2017). Such models
have been used to quantify measurements of psychiatric disease
processes, relative to healthy subjects, or to design experiments
based on theoretical predictions (Voon and Fox, 2007; Gold et al.,
2012; Anticevic et al., 2015; Widge et al., 2017). Computational
models are also expected to improve the reliability, utility,
and predictability of human behavior in specific cognitive
tasks. For example, investigations in psychiatric neuroscience
usually classify subjects through categorical diagnoses and a
subjective rating scale. This, in turn, leads to poor signal-to-
noise ratios (SNR) and difficulty in identifying reliable neural
biomarkers of psychiatric illness (Insel et al., 2010; Widge
et al., 2016, 2017). A more reliable approach may be to
classify patients based on models of (ab)normal functioning.
For instance, both patients and controls could perform the
same standard psychophysical task, and patients’ degree of
abnormality could be quantified based on the parameters of a
model fitted to their task behavior. Such models’ output(s) can
become independent (regressor) variables in neuro-imaging or
electrophysiologic analyses (O’Doherty et al., 2007; Cavanagh,
2015; Webb et al., 2016), potentially reducing inter-subject
variability and improving the SNR. Computational modeling
also provides a framework for another major goal of psychiatric
neuroscience: the identification of cross-diagnostic phenotypes
and the circuits sub-serving those phenotypes (Insel et al., 2010;
Anticevic et al., 2012; Huys et al., 2016; Redish and Gordon, 2016;
Sweis et al., 2018).

A significant challenge is that modeling the analyses of
psychophysical task behavior is often performed using custom
written programming packages, often in the framework of a
specific underlying theoretical construct. The behavior is then
formalized as a function, in a system of parameterized equations,
finally identifying those parameters consistent with each
experimental subject’s observed data. Because each laboratory
does this differently, often using custom-developed computer
programs optimized for the modeling approach at hand, not
only could the resulting programs be inappropriate to analyze
slightly different datasets but comparing models and their
parameter development is nearly impossible across laboratories.
Peer reviewers who are not modeling/programming experts
themselves are not necessarily able to assess whether models have
been correctly implemented, particularly if the code, the data,
and all parameters are not openly shared (Blackford, 2017). Many
researchers also do not have the mathematical/computational
expertise to design such modeling systems de novo. Similar
problems arose in the early days of neuro-imaging and have been
ameliorated at least in part by the development of freely available
analysis packages that make it easier to apply best practices
(Oostenveld et al., 2011; Ashburner, 2012; Cox, 2012; Fischl,
2012; Gramfort et al., 2014; Ahn et al., 2017; Blackford, 2017;
Poldrack et al., 2017).

Considerable efforts have been made to standardize the
modeling of complex behavior using analysis packages, which can
model underlying features, and both derive and predict behavior
such as hBayesDM (Ahn et al., 2017) and KFAS (Helske, 2016)
using R, VBA (Daunizeau et al., 2014) and TAPAS (Mathys et al.,

2011; Kasper et al., 2017) sing MATLAB and HDDM (Wiecki
et al., 2013) using Python. The available packages, however, do
not work well with multiple behavioral outputs (e.g., reaction
times and choices), or with data that naturally follow a specific
type of non-normal distribution. These packages also do not
fully handle missing and censored information in datasets (Shih,
2002).

Here, we present a general-purpose, open-source toolbox
to apply to a wide variety of computational models and
to an equally wide variety of behavioral data, following the
precept that not only can the data be treated equally, but
the parameter space and pipeline for deriving models of state,
including predictive models of behavior, can be standardized.
COMPASS is based on the state-space formalism, which
assumes that behavior is influenced both by the parameters of
individual task trials and by an underlying “cognitive state”
that varies smoothly from trial to trial. This framework has
successfully modeled behavior and neural activity in many
contexts (Eden et al., 2004; Prerau et al., 2009; Yousefi et al.,
2015; Widge et al., 2017), and applies to the general concept
that psychiatric symptoms arise from the disruption of basic
underlying cognitive processes. Continuous (reaction times,
physiologic measurements), binary (correct/incorrect, yes/no
choices), and multinomial (learning of multiple stimulus-
response contingencies) behavioral outputs can all be integrated
into models, making the toolbox applicable to many laboratory
tasks. To increase the applicability to “real world” data,
COMPASS includes methods we recently developed to more
optimally handle missing observations in these computational
approaches (Yousefi et al., 2017a).

A distinct utility of COMPASS is its capability of processing
data with non-Gaussian and mixed distributions. This
assumption contrasts with the hypothesis of a Gaussian
observation process—or additive Gaussian noise—widely
adopted in the development of the aforementioned analytical
tools (Bono et al., 2017). Though the Gaussian assumption is
usually the first choice in the analysis of almost any neural and
behavioral data, it might present a less accurate hypothesis in
the analysis of many signal categories (Delucchi and Bostrom,
2004; Paninski et al., 2010; Limpert and Stahel, 2011, 2017).
Mis-specifying the distribution will reduce the statistical power
of the analysis and may cause accurate results to be overlooked
(a Type II error) (Ghasemi and Zahediasl, 2012). For instance, a
Gaussian distribution is an improper choice for characterizing
reaction times and decision choice signals commonly recorded in
behavioral experiments (Prerau et al., 2009). Other examples are
survival data or neural spiking signals, which have distributions
that significantly deviate from normality (Perkel et al., 1967;
Mudholkar et al., 1996; Ratcliff and Smith, 2004). COMPASS
provides the function to build distributions for data which
are better described by Bernoulli, Gamma or a mixture of
these distributions. It also has the tools to characterize point-
process observation processes making COMPASS suitable for
analysis of spiking data (Eden et al., 2004; Ratcliff and Van
Dongen, 2011). Besides these functions, COMPASS is capable
of processing incomplete—censored—data in a more optimal
manner. Incomplete data are often obligatory as a function of
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an experiment design, justifying the need for analytical tools
capable of processing these types of data (Yousefi et al., 2017a).
For example, in the continuous-performance test (CPT), which
is widely used to assess sustained and selective attention, the
inter-trial interval is limited to force continuous, rapid decision
making (Riccio et al., 2002). This often leads to missed responses,
only some of which are deliberate omissions. Given these utilities
of COMPASS with its ease of use, we think it aptly fulfills the
need of behavioral experimentalists, computational psychiatrists
as well as neuroscientists, in providing analytical tools with
more versatility and flexible functions to be used in data
analysis.

We first provide a general overview of COMPASS, then
demonstrate its application on two examples of associative
learning behavior from previously published literature. Besides
these examples, we also demonstrate the application of
COMPASS in a censored-data problem. In prior work, we showed
how an early version of this toolbox could model reaction times
in conflict tasks (Widge et al., 2017; Yousefi et al., 2017a). These
examples illustrate the flexibility and generality of our approach.
As a further illustration, the Supplementary Material shows the
process of building a new model for a hypothetical decision
task and provides further discuss the toolbox’s model selection
and parameter estimation. Finally, a detailed user manual
and code are available at https://github.com/Eden-Kramer-Lab/
COMPASS. In the toolbox manual and its GitHub repository, we
also provide further modeling examples to describe its utilities in
the analysis of diverse forms of behavioral and neural data. In the
toolbox manual, we also discuss how to interpret and compare
modeling results and more importantly, we provide multiple
examples to help researchers to easily build their own analytical
modeling using COMPASS.

OVERVIEW OF THE STATE-SPACE
TOOLBOX APPROACH

Each step of COMPASS analysis pipeline is implemented as
a high-level function in MATLAB (MathWorks, Natick, MA;
Figure 1). Because these steps are separated, they can be
configured to explore multiple models on a pilot dataset and
determine which fits best before proceeding to a hypothesis-
driven analyses. The core assumption is that behavior is driven by
a multivariate cognitive state X, which varies over time according
to its inherent dynamics and exogenous inputs:

fXk+1|Xk
∼ N (AXk + BUk,Q) (1)

where, N represents multivariate normal distribution with mean
AXk + BUk and covariance Q. That is, at time/trial k, the
state Xk will evolve to its next value Xk+1 based on innate
transition dynamics A and its responsiveness B to an “input” Uk.
That evolution is driven by Gaussian noise with a covariance
equal to Q. The parameters for this model (A, B, Q) can be
assigned by the investigator or inferred from the behavioral
data. For instance, by assigning Q to have small diagonal
elements and A to be a diagonal matrix with elements close
to 1, we would obtain a state with components independent

of each other and which will change very little trial-to-trial
unless acted upon by Uk. This might model a more “trait-
like” process. Making Q elements larger would favor a process
that changes substantially during an experiment and would be
more “state-like.” The input Uk may represent anything that
would impact a subject’s performance, including features of
the current trial, the outcomes of past trials (e.g., a running
total of rewards earned, or punishments delivered), or the
presence/absence of an external manipulation such as a drug or
neural stimulation.

We cannot directly observe Xk, but we observe its effects on
the set of task-related behaviors Yk, which again may include
non-conscious “behaviors” such as a physiologic response. This
“observation process” follows a parametric distribution g:

fYk|Xk
∼ g (Xk,Hk, Ik, θ) (2)

where, g defines the conditional distribution of Yk as a function
of Xk, Hk, Ik, and θ . Hk represents the past history of the
observations up to time k, and Ik, like Uk, may encode any other
variables that can influence the behavior Yk without having a
persistent effect on the internal cognitive state Xk. An example
might be a conflict decision-making task, where trials with higher
conflict/difficulty increase reaction times Y, but do not change
the patient’s underlying decisional bias X (Yousefi et al., 2015).
Many possible Y are not normally distributed. Binary choices
usually follow a Bernoulli distribution, and both reaction times
and physiologic outputs often follow a gamma or log-normal
distribution (Prerau et al., 2009; Palmer et al., 2011; Yousefi
et al., 2015). Thus, g builds the relationship between Y and
other covariates, (Xk,Hk, Ik), using these distribution functions.
COMPASS observation model thus allows us to model Y using a
wide range of parametric distributions g, with parameters given
by θ . We assume that g and θ do not vary trial-to-trial, and
thus θ can be estimated directly from the data as with A, B, and
Q. Further, Y may be multivariate, as in decision-making tasks
where both the decision and the time needed to reach it may
be experimentally relevant. In that situation, each element of the
vector Yk may have its own distribution, described by a g/θ pair.

COMPASS utilizes maximum likelihood estimation (MLE)
in the model inference and cognitive state estimation. Using
COMPASS, we not only build the model of interest but also
estimate its free parameters and underlying state variable(s).
The model free parameters are generally a subset of (θ ,A,B,Q)
parameters, which characterizes the state transition and
observation processes. COMPASS utilizes an expectation-
maximization algorithm (EM) in its estimation of the model
parameters and provides the posterior estimation of Xk

(Dempster et al., 1977; Smith and Brown, 2003; Widge et al.,
2017). Appendix A in the Supplementary Material discusses
COMPASS inference steps in detail.

Choosing a model and assessing the goodness-of-fit of
that model are critical components of any statistical analysis.
Therefore, the toolbox provides a collection of different
goodness-of-fit methods to help identify and refine models of
the data. These include methods based on the covariance of the
estimated parameters and the model deviance/likelihood. The
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FIGURE 1 | Pipeline of data analysis in COMPASS. The user manual at (https://github.com/Eden-Kramer-Lab/COMPASS/blob/master/

compass_supplement_oct31_2018.pdf) describes each of these functions and how to use them.

online manual includes an example of those assessments for one
of the task examples given below.

Another important analysis issue relates to the common
experimental problem of missing data (Little and Rubin, 2014;
Yousefi et al., 2017a). Some data may be missing at random
(MAR), such that knowing a given datum is missing provides no
new information. For example, response recording devices are
subject to noise that may obscure some trials, such as muscle
artifact in an EEG or sensor failure for skin conductance. In
such cases, trials with missing data are often removed prior to
analysis. In other cases, features of the experiment influence
the probability of data being missed. We do not identify these
data as censored or missing at random. For example, in trial-
based behavioral studies, subjects often fail to respond on
individual trials within some designated time window, and
this may be worse in patients taking psychotropic medications
that can slow processing. In such cases, it is inadvisable to
simply remove trials with missing data since these trials provide
information about behavior. With censored reaction time (RT)
data, we know that the subject’s RT was larger than a specified
threshold, which may affect the probability of a correct decision
(Yousefi et al., 2017a). When fitting a model to COMPASS,
each observation in the vector Y may be marked as observed,
missing at random, or censored. COMPASS then incorporates
this information in its state estimation and model identification
processes, using the algorithms described in Yousefi et al.
(2017a).

EXAMPLE 1: MULTIVARIATE ASSOCIATIVE
LEARNING

Associative learning tasks are one of the most common models
used to assess psychiatric deficits (O’Doherty et al., 2007;
Diwadkar et al., 2008; Limpert and Stahel, 2011; Wang and
Krystal, 2014) and have been well-described using state-space
models. In tasks where subjects must learn multiple associations
simultaneously (Williams and Eskandar, 2006; Katnani et al.,
2016), Prerau and colleagues described a method for inferring
a single “learning state” (Prerau et al., 2009). In this task, a
participant learns the association between four different scenes
and targets; the participant is expected to learn this association
and pick the correct target within a specific time window. The
learning state variable estimates how well the overall set of
associations has been learned, optimally integrating performance
over all available stimuli (Prerau et al., 2009). The Prerau method
also infers learning from both correct and incorrect choices
and reaction times (RT), maximizing the information extracted
from the available data (Prerau et al., 2009; Coleman et al.,
2011).

We analyzed a sample learning dataset from Williams and
Eskandar (2006) with both the original Prerau et al. code and
an equivalent model set up in COMPASS (Figure 2). Here,
we show an example from one behavioral session, comprising
of 61 trials. On each trial, the subject (a rhesus macaque)
attempted to learn/perform an arbitrary association between
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FIGURE 2 | Sample learning behavior and learning state estimation using the

method of Prerau et al. (2009) and COMPASS toolbox. (A) Correct (green) and

incorrect (red) trial outcomes and reaction times (blue) over the course of a

single task block. The behavior shows an abrupt change after 20 trials, with

the subject beginning to match most stimuli correctly. The animal learns the

task with an accuracy above 90% by the end of the trial block; the decision

accuracy at the beginning of the block is <30%. (B) The estimated learning

curve using the Prerau code (red) and COMPASS toolbox (blue). The slight

difference between the toolbox and Prerau et al. result relates to the different

stopping criterion used in these methods. Prerau’s method sets a preset

threshold on the likelihood growth and stops when the likelihood growth falls

below the threshold. In COMPASS, compass_em stops after a user-specified

number of iterations.

one of four stimulus pictures and four joystick directions.
In 39 of the 61 trials, the subject indicated a choice within
the required response window. For this example, the 22 non-
response trials are excluded from the analysis. Appendix B

in the Supplementary Material describes the learning model,
and how the model can be replicated using COMPASS.
In COMPASS user manual (see Supplementary Material) we
show how to impute responses on non-observed trials. Thus,
the behavioral signal processed in the toolbox includes the
reaction time and decisions over the 39 trials (Figure 2A). The
complete model is specified in only 10 lines of code, takes
<20 s to run, and shows almost a complete overlap with the
output of the original authors’ custom code. We observe an
inflection point around trial 15, where the subject’s learning
state climbs rapidly as associations begin to be performed
correctly (Figure 2B). The time to reach this or any other
criterion point, or the slope of the learning curve around
that point, could be used as a subject-level measurement of
learning.

EXAMPLE 2: NEGATIVE SYMPTOMS AND
REWARD MOTIVATION IN
SCHIZOPHRENIA

Another major use of computational modeling is to tease out

a differential sensitivity to reward and loss, as in learning,
gambling, and approach-avoidance tasks (Bogacz et al., 2006;

Anticevic et al., 2015; Veit et al., 2015). In one compelling
example, Gold et al. (2012) demonstrated this approach in

schizophrenia, showing that patients with prominent negative
symptoms were impaired at learning from gains, but not from

losses. This was reflected in behavioral modeling, where high-
negative-symptom patients specifically showed lower values of a

model parameter reflecting how well they could compare gain-

seeking to loss-avoiding options. The resulting analysis blended
two common reinforcement-learning models, “actor-critic” and
“Q-learning,” with the key parameter being how much each

model drove or reflected behavior.
Appendix C in the Supplementary Material shows how each

term of the Gold et al. hybrid model can be captured in the

state-space framework. In brief, the Gold et al. (2012) task
involves learning the correct option in four stimulus-action
contingencies. A participant is presented with four pairs of

landscape items; two pairs involve potential gain and the other
two pairs involve loss. For the gain items, the correct response is
reinforced by a probabilistic gain—more than 80%—represented
by a nickel coupled with the word “Win,” and the phrase “Not
a winner” for the incorrect response. For the loss trial, the

correct response is reinforced by “Keep your money” with a
high probability chance, and “Lose” feedback on the incorrect
response. To examine the participants’ learning, 160 trials were
administered with all pair types presented in a randomized order.
Using COMPASS, we represent that learning progression by nine

state variables; two state variables per contingency to represent
the actor-critic learning process and one global state variable
that represents the Q-learning process. The overall progress of
learning for a given stimulus is given by a weighted combination

of the state variables representing the actor-critic and Q-learning
processes.

We analyzed a shared dataset, a subset of the original
Gold et al. (2012) dataset which was graciously provided by

the authors. On those data, using the Appendix C model

in Supplementary Material, COMPASS replicated the original
paper’s result. The data comprised of 63 study subjects: 26 were

healthy controls (HC) and the remaining 37 were clinically stable
patients with schizophrenia or schizoaffective disorder. The latter
were divided into a high negative symptom (HNS, 19 patients)
group and a low negative symptom (LNS, 18 patients) group.

Each subject performed 160 task trials, divided into four learning
blocks of 40 trials. Behavioral outcomes included response
accuracy (correct/incorrect), reaction time, money gained per
trial, and trial type (Gain vs. Loss Avoidance).

Gold et al. (2012) reported that HC and LNS subjects
learned more from gains than from losses, while HNS subjects’
learning was more influenced by loss. This was reflected
empirically in a greater accuracy on Gain than on Loss
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FIGURE 3 | Observed (A,C) and simulated (B,D) end acquisition performance across patient (LNS, HNS) and healthy control (HC) groups. The HC group prefers

learning from Gains (reward) rather than learning from avoided losses. This preference is reduced in the LNS group and inverted in the HNS group. The performance

(% Gain accuracy—Loss Avoidance accuracy) is defined as the difference between the probability of picking the correct response on Gain trials and the probability of

picking the correct response on the Loss Avoidance trials. (A) Observed performance and (B) simulated end of acquisition performance originally reported in Figures

4A,B of Gold et al. (2012). Simulated performance is generated from individual patients’ estimated model parameters, as described in the original paper. (C) Observed

performance in the dataset shared by Gold et al. and (D) simulated result using an equivalent behavior analysis conducted in COMPASS. For (D), we run the

equivalent hybrid model—described in Appendix C in Supplementary Material—per each patient. This gives, for each patient, an estimate (logistic regression

coefficient) of the probability of making the correct choice on Gain vs. Loss Avoidance trials. The plot shows the average of these differences for each patient group.

The pattern of HC > LNS > HNS on Gain-Loss Avoidance is replicated. Further, COMPASS modeling simulation (D) matches the empirical behavior pattern (C) more

closely than the original authors’ simulation.

Avoidance trials (Figure 3A). It was also reflected in themodeling
and simulation of patients’ behavior at the end of the task
acquisition. When Gold et al. simulated data based on the
model parameters’ fit to each individual subject’s behavior,
HC and LNS subjects were learned more by obtaining gains
rather than by avoiding losses (Figure 3B). We replicated
this finding using COMPASS. Subjects’ behavior on our
sample dataset showed the same pattern as in the original
paper (Figure 3C). We then fit subject-level models to that
behavior and plotted the individual subjects’ Gain vs. Loss
Avoidance coefficients for accuracy prediction. This replicated

the pattern of HC/LNS showing gain sensitivity and HNS
showing primarily loss sensitivity (Figure 3D; Appendix C in
the Supplementary Material provides a detailed explanation
of the Gold et al. computational model using COMPASS). In
fact, COMPASS modeling result is slightly more faithful to
the empirical behavior pattern than the original Gold et al.
simulation. The modeled performance of the HNS group
(Figure 3D) is below the X-axis (as it is in the original empirical
performance, Figure 3A), whereas the original simulations of
Gold et al. produced a mean Gain-Loss difference close to 0
(Figure 3B).
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EXAMPLE 3: CENSORED-DATA PROBLEM

Censored data occurs commonly in trial-structured behavioral
experiments and many other forms of longitudinal data, e.g.,
survival data (Klein and Moeschberger, 2006; Yousefi et al.,
2017a). There are multiple reasons that may lead to censored data
in behavioral tasks. In many behavioral studies, the experimental
design requires that the time window for each trial be limited,
in which case the behavioral response is missing, or censored,
whenever the response exceeds the time limit. For example, in
the continuous-performance test (CPT), which is widely used to
assess sustained and selective attention, the inter-trial interval
is limited to demand continuous preparation for rapid decision
making. The other cause for censored data is insufficient dynamic
range or resolution of the measuring apparatus which leads to
saturated—or censored—data. Censored data can lead to a severe
bias and a reduction of statistical power in a subsequent analysis
(Graham, 2009; Yousefi et al., 2017a). COMPASS provides the
tools to overcome this issue; using COMPASS, we are not only
able to estimate state variable(s) in the presence of censored data
points but can also reliably estimate the model parameters. In this
example, we simulated a hypothetical experiment where the state
variable represents in-attention state. The behavioral readout is
reaction time, which is defined as a function of in-attention state.
The reaction time is observed when it is below a threshold—e.g.,
trial time period—and it is censored when the reaction time goes
above this threshold. The objective is to estimate in-attention
state and model parameters for different threshold levels.

For this example, we simulated the data to generate in-
attention state and reaction time for 200 trials. We then
used different thresholds to generate censored data points
(Figures 4A,B show the inattention state, reaction time, and
censored data points for a specific threshold), and utilized
COMPASS to estimate the model parameters and state variables
given for the different numbers of censored data points.
COMPASS has the capability of running naïve—e.g., MAR
assumptions, imputations, and full-likelihood techniques on
censored data points, to estimate both the state variable and
the model parameters. Figures 4C–E show the state estimation
result for all three methods. We found that the likelihood
method estimates the state variable even when a sequence of
data points was being censored. We also utilized COMPASS
to estimate the model state and observation process noise
variance. Figures 5A,B show the estimation result using the
three techniques for different threshold levels. Again, the
likelihood method maintains an accurate estimation of the
model parameters even when 50% of data points are being
censored. The simulation result suggests that we may extract
proper information from the behavioral data even if a significant
percentage of the readout is being censored—or dropped—given
the task specification or data recoding issue. Appendix D in
the Supplementary Material describes the in-attention state and
observation process models and how the data is generated in
MATLAB. We also show COMPASS functions can be called for
the state and model parameters estimation. A further discussion
of the model implementation and its performance results can be
found in COMPASS manual.

FIGURE 4 | Sample simulated trajectory for inattention state, censored

observation, plus state-estimation using naïve, imputation, and full-likelihood

technique (A) Simulated inattention state. The state starts from a lower value

and grows and then drops afterward. This pattern repeats one more time. The

first peak is around trail 40, and the second peak is about trial 90. The state

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 957

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yousefi et al. COMPASS: A Computational Psychiatry Software Toolkit

FIGURE 4 | grows toward the end of the task, where it reaches its highest

value at the last trial, trail 200. (B) Observed RT. RT is observed when it is

below 1.3 s, and it is censored when it goes above the threshold. Red crosses

show those trials where their corresponding RTs are above the threshold. (C)

State estimation using MAR method. The state estimation fails to follow (true)

inattention state trajectory as the censored data points are assumed to be

dropped at random. (D) State estimation using imputation method. The state

estimation reasonably follows (true) inattention state for most of censored data

points, however its estimation accuracy drops when the number of

consecutive censored points grow (Yousefi et al., 2017a). (E) State estimation

using full-likelihood method. The state estimation follows (true) inattention state

even when the number of censored data points are relatively high. For the

full-likelihood method RMSE has the lowest value (0.0952), and MAR method

RMSE is significantly higher than two other methods (0.1739). RMSE for

imputation method is 0.1223. For this threshold, 49 of 200 trial are censored.

This result suggests that MAR method in state estimation will lead to a large

bias in the state estimation, and it is a less proper choice when number of

censored points are relatively high. Here, we assume variance of the state and

observation processes noise are known.

DISCUSSION

We developed an open-source toolbox for state-space modeling
and demonstrated its utility in analyzing dynamical behavioral
signals relevant to computational psychiatry. In two examples
from relevant literature, we showed that COMPASS replicates
the results of prior modeling studies. In one of those examples,
COMPASS estimated model parameters that more faithfully
reproduced the empirical results. The fact that COMPASS has the
capability to incorporate further characteristics of the observed
behavioral data—like missing or censored data—in its analysis
allows us to run a more versatile inference analysis and derive
an analytical result with a higher statistical significance. In the
third example, we demonstrated the capability of COMPASS in
the state and parameter estimation with censored data points. In
the toolbox manual, we also re-analyzed the same behavioral data
presented in Example 1, considering the missing and censored
data points. COMPASS capability of analyzing missing—or
censored—data has multifold benefits; this not only gives a
better sense about the data, but also addresses other ambiguities
like non-uniform interval sampling being imposed by dropping
missing and censored data. The same statement is valid in the
second example; though most parameters in Gold et al. (2012)
were pre-set, we estimated almost all the model parameters in
COMPASS. Using COMPASS goodness-of-fit function, we were
capable of studying the significance of the model parameters plus
the underlying learning mechanisms utilized in the Gold et al.
model. The utility of COMPASS goes beyond replicating those
models; we can build different models for different hypothesis
in a minimum time and utilize COMPASS goodness-of-fit and
estimation result to reject or validate those hypotheses.

The state-space modeling framework is a core tool in many
research fields, especially engineering (Ogata and Yang, 1970;
Aoki, 2013). It is paving the way into neuroscience, psychiatry,
and other medical research (Barbieri et al., 2004; Chen et al.,
2010; Paninski et al., 2010). COMPASS takes steps toward
providing unified and high-level functions that make a range
of state-space models straightforward to implement and use

FIGURE 5 | RMSE and observation noise parameter estimation in the

censored data problem. (A) RMSE via censored data points. RMSE for naïve,

imputation, and full likelihood method as a function of censored data

points—or, different threshold level. The full likelihood method attains the

lowest RMSE independent of the number of censored data points. Naïve

method has the highest RMSE, which replicates its less accurate estimation of

the state. (B) Observation noise parameter estimation. Full likelihood shows a

more robust and consistent estimation of the observation noise variance.

Naïve method shows a fairly robust estimation of the observation process

noise variance, but its estimation is lower than the full likelihood method.

Generally, the naïve method tends to under-estimates the state noise variance;

the state variable on censored points are generally on the tail of their

distribution and naïve method ignores those points in its estimation of the state

process noise. Estimation of the observation process noise variance turns to

be sensitive using the imputation method. Imputation method tries to replace

those censored data points with a sampled one, and these samples which are

generated from the tail of distribution induces more noise to the observation

process.

for a wide variety of behavioral signals. Users can build a
wide range of models to analyze behavioral data and compare
their results in a principled way. A further explanation and
guideline for building and comparing model forms can be
found in the toolbox manual. The functions compass_deviance
and compass_param_covariance_info enables model comparison.
Further, COMPASS includes “on-line mode” functions that can
continuously update state variables in real time as new data
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are acquired. The toolbox function compass_filtering addresses
this, and examples of its use are given in the toolbox manual.
In on-line operation, one can also call the learning algorithm
periodically to re-update model parameters. Thus, COMPASS
can also be used to construct experiments with adaptive behavior
paradigms, where the stimuli presented to each subject are
adjusted based on its past performance. This approach could
more efficiently sample regions of behavioral interest, e.g., the
equipoise boundary of a choice task as modeled in Amemori
et al. (2015) and Karmali et al. (2016). It could also drive real-
time application of a study intervention, e.g., brain stimulation
or optogenetic (in)activation (Grosenick et al., 2015; Widge et al.,
2017).

The state-space modeling framework is not limited to
normally distributed signals or discrete binary observations.
COMPASS includes methods for highly skewed observation
distributions (gamma and log-normal distributions) and for
optimally imputing missing/censored data (Shih, 2002; Mathys
et al., 2011). The distribution assumption is defined by
arguments to the compass_em function, as are methods for
censored data. These additions make COMPASS a powerful
and versatile package for analysis of many different classes
of dynamical signals. The main limitation of the state-space
modeling framework is that prior to now, development and
debugging of these models has been difficult. Development
requires tedious work and extensive time and involves statistical
and programming skills that are not yet common in the field of
cognitive neuroscience. We hope that by providing this toolbox,
we can help other researchers delve into computational behavior
analysis with a much lower barrier to entry.

COMPASS’ utilities to deal with non-Gaussian and
incomplete data are one of the toolbox’s strengths. Another
strength is its ease of use, and its flexibility to build and compare
different behavioral models—in the toolbox manual, we provide
an example and COMPASS function which enables us to examine
different modeling assumptions on the same dataset. Another
key feature of COMPASS is its capability of analysis of mixed
signals with Normal/Bernoulli, Gamma/Bernoulli, and point
process data which make it a suitable platform for analysis of
a wide variety of neural and behavioral data. However, there
are other functions that can be added to COMPASS to make its
applications broader. Though COMPASS addresses Bernoulli,
Normal, Gamma, and Point-Process observation processes, there
are other modalities of neural and behavioral data which might
be better described by distributions like Beta or multinomial.
For example, in associative learning, when a participant learns
multiple stimuli, we can use a multinomial observation process
to characterize learning with respect to multiple categories of
the task (Yousefi et al., 2017b). We are currently working to
add state-space models capable of processing these types of
observations to COMPASS. COMPASS addresses one category
of censored data—censored from above; however, addressing
other forms of censored data—censored from below or censored
from above-below—might have applications in behavioral and
neural data like fMRI. COMPASS’s addition is a point-process
observation process and a particular class of marked-point
process, where the mark follows a Bernoulli process. Extending
the domain of marking to multivariate observations has received

a lot of recent interest and its addition to COMPASS might
attract more researchers from the neuroscience and BMI
domains (Deng et al., 2015; Truccolo, 2016). We are in the
process of building wrapper functions which make model
comparison easier for individuals with a basic familiarity with
MATLAB programming and scripting, plus an extension of the
observation process dimension which will help researchers in
analyzing behavioral and neural data captured from even more
complex tasks. We are consistently working on the toolbox and
add new functions as we progress and develop new theories and
algorithms for analysis of neural and behavioral data. Indeed,
the point of the foundational features of COMPASS allow for
easy expansion and optimization for use in a wide multivariate
behavioral domain, allowing researchers in a wide array of fields
to apply these approaches to their data.
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