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Depression is a genetical disease characterized by neuroinflammatory symptoms and is
difficult to diagnose and treat effectively. Recently, modification of N6-methyladenosine
(m6A) at the gene level was shown to be closely related to immune regulation. This study
was conducted to explore the effect of m6Amodifications on the occurrence of depression
and composition of the immune microenvironment. We downloaded gene expression
profile data of healthy and depressed rats from the Gene Expression Omnibus. We
described the overall expression of m6A regulators in animal models of depression and
constructed risk and clinical prediction models using training and validation sets.
Bioinformatics analysis was performed using gene ontology functions, gene set
enrichment analysis, gene set variation analysis, weighted gene co-expression network
analysis, and protein-protein interaction networks. We used CIBERSORT to identify
immune-infiltrating cells in depression and perform correlation analysis. We then
constructed two molecular subtypes of depression and assessed the correlation
between the key genes and molecular subtypes. Through differential gene analysis of
m6A regulators in depressed rats, we identified seven m6A regulators that were
significantly upregulated in depressed rats and successfully constructed a clinical
prediction model. Gene Ontology functional annotation showed that the m6A
regulators enriched differentially expressed genes in biological processes, such as the
regulation of mRNA metabolic processes. Further, 12 hub genes were selected from the
protein-protein interaction network. Immune cell infiltration analysis showed that levels of
inflammatory cells, such as CD4 T cells, were significantly increased in depressed rats and
were significantly correlated with the depression hub genes. Depression was divided into
two subtypes, and the correlation between hub genes and these two subtypes was
clarified. We described the effect of m6A modification on the pathogenesis of depression,
focusing on the role of inflammatory infiltration.
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INTRODUCTION

Depression is a common mental illness that is classified as having
a global disease burden and is the leading cause of suicide (Hasin
et al., 2018). According to the World Health Organization, 5.0%
of adults and 5.7% of adults over the age of 60 years suffer from
depression (World Health Organization, 2021). Depression is
typically diagnosed by psychiatrists based on subjective
identification of symptom clusters, resulting in a high rate of
misdiagnosis (Pan et al., 2018) and suboptimal treatment
strategies (Chen et al., 2008).

At present, many biomarkers, such as thalamic-pituitary-
adrenal axis-related hormones and metabolic indexes, have
little practical clinical applications because of their limited
sensitivity and specificity (Strawbridge et al., 2017). Woo et al.
(2018) examined gene expression in peripheral blood samples
from 38 patients with depression and 14 healthy controls and
identified seven differentially expressed genes between the two
groups. Further, Long et al. (2021) screened three candidate genes
with high auxiliary value in depression diagnosis by analyzing two
datasets (GSE53987 and GSE98793) in a comprehensive database
of gene expression. However, most of these studies only identified
differentially expressed genes but did not further explore their
potential biomolecular mechanisms. Detailed studies of
pathogenesis of depression are needed to help clarify its
diagnosis and treatment. A recent study showed that children
of depressed parents are three times more likely to suffer from
severe depression than those of non-depressed parents,
suggesting the genetic susceptibility of patients to depression
(Weissman et al., 2016). Increasing studies have also indicated
that neuroinflammation increases the risk of depression or
changes the trajectory of depression (Benatti et al., 2016).

Within the emerging field of post-transcriptional gene
regulation research, the N6-methyladenosine (m6A)
modification of mRNA, which widely occurs in eukaryotes,
has attracted attention because of its critical roles in various
biological processes (Shi et al., 2019; He and He, 2021). The m6A
modification exhibits dynamic and reversible characteristics,
including as a “writer” (methyltransferase), “eraser”
(demethylase), and “reader” (methyl binding protein) (Yang
et al., 2018). Many m6A regulators are key factors in RNA
methylation, in stability, translation, degradation, transport,
and splicing (Han et al., 2021). Other studies showed that
m6A is associated with nervous system development and the
pathology of neurodegenerative diseases (Widagdo et al., 2016; Li
et al., 2018). For example, the expression of the obesity-related
gene FTO (an RNA demethylase) is downregulated in the
hippocampus of in a mouse model of depression, whereas
overexpression of FTO has antidepressant effects (Liu et al.,
2021).

Researchers have shown that regulation of the CaMKII/CREB
signaling pathway involved in m6A plays a key role in
hippocampal synaptic plasticity, thus improving depression-
like symptoms induced by chronic restraint stress (Shen et al.,
2021). Huang et al. (2020) explored the functional relationship
between circSTAG1 and m6A methylation in depression models;
their findings suggested that circSTAG1 is a new therapeutic

target for treating depression. Further evidence confirmed that
m6A is involved in innate and acquired immune responses
(Zheng et al., 2017). For example, the cytokine signal
transduction inhibitor protein family is strongly affected by
m6A modification (Li H.-B. et al., 2017) and plays an
important role in T cell proliferation and differentiation
(Palmer and Restifo, 2009). Previous studies suggested a
fundamental role for m6A modifications in the tumor
immune microenvironment (Han et al., 2019; Zhang et al.,
2020). More recent studies revealed that m6A plays a similarly
crucial role in the immune microenvironment of periodontitis
(Zhang et al., 2021) and severe asthma (Sun et al., 2021). For
multifaceted diseases such as depression, which is influenced by
multiple factors such as genetic susceptibility and the
inflammatory response, early diagnosis and treatment are critical.

In this study, we systematically explored the relationship
between m6A and the pathogenesis and immune infiltration of
depression using bioinformatics analysis, including differential
expression, prediction model construction, functional
enrichment analysis, protein-protein interaction (PPI), and
other methods, to identify biomarkers and potential
therapeutic applications.

MATERIALS AND METHODS

Data Sources
Gene expression profile data of the animal models of depression
were downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The first dataset GSE63377 (Yamamoto et al.,
2015), which was obtained from the GPL15084 sequencing
platform, included two cases of depression-associated
inflammation in the cerebellum and prefrontal cortex and two
cases of depression with normal tissue. The second dataset,
GSE124387 (Zheng et al., 2019), which was obtained from the
GPL1355 sequencing platform, included three cases of depression
characterized by inflammation in the postfrontal cortex and three
cases with normal tissue. The third dataset, GSE86392 (Wang
et al., 2017), which was obtained from the GPL20084 sequencing

TABLE 1 | GO enrichment analysis (TOP5).

Category ID Description p Value

BP GO:1903311 Regulation of mRNA metabolic process 5.99E-25
BP GO:0043488 Regulation of mRNA stability 6.53E-17
BP GO:0061013 Regulation of mRNA catabolic process 1.10E-16
BP GO:0043487 Regulation of RNA stability 1.50E-16
BP GO:0006401 RNA catabolic process 1.81E-16
MF GO:0003729 mRNA binding 4.21E-19
MF GO:0003730 mRNA 3′-UTR binding 6.51E-08
MF GO:0048027 mRNA 5′-UTR binding 3.89E-06
MF GO:0043021 Ribonucleoprotein complex binding 2.56E-05
MF GO:0043022 Ribosome binding 5.67E-05
CC GO:0010494 Cytoplasmic stress granule 9.10E-09
CC GO:0034708 Methyltransferase complex 2.82E-08
CC GO:0016607 Nuclear speck 3.75E-08
CC GO:0036464 Cytoplasmic ribonucleoprotein granule 6.38E-08
CC GO:0035770 Ribonucleoprotein granule 1.02E-07
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platform, included three cases of depression characterized by
inflammation of the hippocampus, frontal cortex, and pituitary
tissue and three cases that exhibited normal tissue after recovery
from depression (Figure 1).

Data Preprocessing
To increase the breadth and accuracy of the analysis, the datasets
GSE63377 and GSE124387 were merged into the training set and
the dataset GSE86392 was used as the validation set. The R
package edgeR (Robinson et al., 2010) was used to remove batch
effects and perform background correction for these three
datasets. The correction effect was visualized using the R
package ggplot2 (Villanueva and Chen, 2019). The intersection
of the GSE63377 and GSE124387 gene datasets was used to
generate the training set.

Expression Profiling of m6A Methylation
Regulators
To analyze the expression of m6A regulator expression in
depression, the R package RCircos was used to analyze the
chromosomal location of the m6A regulator. Next, the
p-values of m6A-related genes in the experimental and
control groups were determined using Wilcoxon test and

visualized in the ggplot2 package. Differentially expressed
genes of m6A methylation regulators were analyzed using
the R package limma (Robinson et al., 2010) and visualized
using the R package EnhancedVolcano. To analyze the
correlation and interaction of the m6A regulators, the
Spearman algorithm was used to perform correlation
analysis of the m6A regulator, which was visualized using
the R package ggcorrplot.

Risk Model and Clinical Prediction Model
Construction
To analyze the expression of m6A regulators in depression, we
first identified key genes associated with depression using
single-factor logistic regression analysis of the training set and
then used the least absolute shrinkage and selection operator
(LASSO) algorithm for dimensionality reduction analysis and
to validate key genes associated with depression.
Subsequently, depression-related eigengenes were
incorporated into the model, and the R package keras (cite)
was used to build a back-propagation neural network model of
the classifier architecture. The neural network model includes
six layers, namely: input (activation = “relu”), Dense, Dropout
(rate = 0.5), Dense, Dropout (rate = 0.5), Output (activation =
“sigmoid”), combined with the optimizer, and a custom
penalty coefficient. To quantify the discriminative
performance of the model, a receiver operating
characteristic curve was generated by comparing the
predicted values of the neural network with the observed
values to evaluate the performance of the clinical
prediction model.

TABLE 2 | KEGG enrichment analysis.

Category ID Description p Value

KEGG rno03040 Spliceosome 1.32E-03
KEGG rno05206 MicroRNAs in cancer 1.25E-01
KEGG rno05014 Amyotrophic lateral sclerosis 1.56E-01

TABLE 3 | GSEA enrichment analysis.

Category ID ES NES p Value

GSEA GO enrichment analysis

BP Blood circulation 0.37661709 1.54144753 0.00130719
BP Response to metal ion 0.35000789 1.43162905 0.00131406
BP In utero embryonic development 0.33371112 1.35995142 0.00132626
BP Muscle cell differentiation 0.36618632 1.47293194 0.00132979
BP Response to oxygen levels 0.36120132 1.46810233 0.00132979
MF Signaling receptor regulator activity 0.34917598 1.41486991 0.00133511
MF Signaling receptor activator activity 0.36242612 1.46393421 0.00133869
MF Receptor ligand activity 0.36892487 1.48774541 0.00134228
MF Actin binding 0.36858646 1.47337515 0.00136612
MF Cell adhesion molecule binding 0.44053979 1.70847133 0.001443
CC Actin cytoskeleton 0.34962783 1.41170259 0.0013369
CC Receptor complex 0.37117819 1.48901146 0.0013459
CC External encapsulating structure 0.5368778 2.15390376 0.00134771
CC Extracellular matrix 0.53569273 2.14740749 0.00135318
CC Contractile fiber 0.41358761 1.58654453 0.00143885

GSEA KEGG enrichment analysis

KEGG Neuroactive ligand-receptor interaction 0.41074986 1.62854009 0.00137741
KEGG Focal adhesion 0.485989 1.79470041 0.00152439
KEGG Vascular smooth muscle contraction 0.49803859 1.76525 0.0015748
KEGG Protein digestion and absorption 0.57855845 1.96048059 0.00163132
KEGG TGF-beta signaling pathway 0.52845983 1.76961378 0.00164474
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m6A Regulator Functional Enrichment
Analysis
Gene ontology (GO) analysis is commonly used for large-scale
functional enrichment studies, including for evaluation of
biological processes, molecular functions, and cellular
components (Ashburner et al., 2000). Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a widely used database for storing
information on genomes, biological pathways, diseases, and drugs
(Kanehisa and Goto, 2000). GO annotation and KEGG pathway
enrichment analyses of m6A-related genes were performed using
the clusterProfiler package of R (Yu et al., 2012); a false discovery
rate of <0.05 was considered as the cutoff for determining
statistically significant results.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
To investigate the differences in biological processes between the
different groups, gene set enrichment analysis (GSEA) based on
the gene expression profiling dataset of depression in the Rattus
norvegicus model. GSEA is a computational method used to
analyze whether a specific gene set is significantly different
between two biological states (Subramanian et al., 2005) and is
often used to estimate changes in pathways and biological process
activity in samples of expression datasets. Gene set variation
analysis (GSVA) is a GSEA algorithm. Unsupervised
classification of samples can also be performed based on
changes in pathway activity, gene expression levels, and
multiple pathway information. We used the R package
clusterProfiler and species parameter selection, org. Rn.eg.db,
for GSEA. A p-value < 0.05 was considered to indicate statistically
significant results. The R package GSVA (Hänzelmann et al.,
2013) was used to perform GSVA, and the difference in the
related GSVA pathway between the experimental and control
groups was determined using linear fitting and a Bayesian
network algorithm. Statistical significance was set at p < 0.05.

Weighted Gene Co-Expression Network
Analysis
To analyze the signature gene set of depression, weighted gene co-
expression network analysis (WGCNA) was performed using the

R package WGCNA (Langfelder and Horvath, 2008). First,
hierarchical clustering was performed on the gene expression
data of the cleaned training to remove outliers. The best soft
threshold was chosen based on the R2 and slope values, after
which the scale-free network was validated. The adjacency matrix
and topological matrix were determined and dissimilarity
analyses were carried out, after which the network module was
identified by dynamic shear tree analysis. Finally, correlation
analysis was carried out in combination with depression
phenotype information.

Construction of Protein-Protein Interaction
Network
The PPI network is composed of individual proteins that interact
with each other to participate in all aspects of life processes, such
as biological signal transmission, gene expression regulation,
energy and material metabolism, and cell cycle regulation.
Systematic analysis of the interaction of a large number of
proteins in biological systems is useful for understanding the
working principle of proteins in biological systems, response
mechanism of biological signals and energy metabolism under
special physiological conditions such as diseases, and functional
connections between proteins. The STRING database (Szklarczyk
et al., 2019) is used to search for interactions between known and
predicted proteins. We used the STRING database to construct a
PPI network of m6A-related genes and Cytoscape (v3.8.2)
(Shannon et al., 2003) to visualize the PPI network model.

Identification and Correlation Analysis of
Immune Infiltration in Depression
The immune microenvironment is mainly composed of immune
cells, inflammatory cells, fibroblasts, interstitial tissue, and
various cytokines and chemokines that are loaded into
comprehensive systems. Analysis of immune cell infiltration in
tissues is important in disease research and for predicting
treatments and prognosis. CIBERSORT is a deconvolution
algorithm used to analyze the expression matrix of immune
cell subtypes based on the principle of linear support vector
regression. CIBERSORT uses RNA-sequencing data to estimate
the abundance of immune cells in tissues (Newman et al., 2019).
We used the CIBERSORT algorithm to estimate the abundance of

TABLE 4 | GSVA enrichment analysis.

ID LogFC p Value adj.p Value

Blanco melo COVID19 bronchial epithelial cells SARS COV 2 infection up −1.133532 0.01738955 0.21481928
Blanco melo beta interferon treated bronchial epithelial cells up −1.133532 0.01738955 0.21481928
Blanco melo bronchial epithelial cells influenza a del NS1 infection up −1.133532 0.01738955 0.21481928
West adrenocortical tumor markers DN −1.133532 0.01738955 0.21481928
Wamunyokoli ovarian cancer grades 1 2 DN −1.133532 0.01738955 0.21481928
Chiaradonna neoplastic transformation KRAS CDC25 DN −1.133532 0.01738955 0.21481928
Chiaradonna neoplastic transformation CDC25 up −1.133532 0.01738955 0.21481928
TSUNODA cisplatin resistance DN −1.133532 0.01738955 0.21481928
Wood EBV EBNA1 targets up −1.133532 0.01738955 0.21481928
Johansson brain cancer early vs. late DN −1.133532 0.01738955 0.21481928

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8656954

Wang et al. Biomarkers and Treatments for Depression

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


24 types of immune cells in high- and low-risk samples in the
dataset, and the immune cell composition of disease samples and
normal samples were visualized using boxplots. All analyses and
visualizations were carried out in R software. Differences in the
proportion of immune cells between the diseased and normal
sample groups were calculated using the Wilcoxon test, and a
p-value < 0.05 was considered to indicate statistically significant
results.

Based on the results of immune infiltration analysis, the R
package corrr was used to calculate the correlation between key
genes and immune signatures to clarify the relationship between
the key genes of depression and immune characteristics of
species. The correlation matrix was visualized using the R
package ggcorrplot.

Construction of the Depression-Related
Molecular Subtype
To analyze the subtypes of depression-related molecules, the
training set raw gene expression data were used; the raw data
was normalized using LASSO regression. Next, the R package
ConsensusClusterPlus (Wilkerson and Hayes, 2010) was used to
perform consistent clustering analysis using the PAM algorithm,
and the optimal number of clusters was determined by principal
coordinate analysis. Finally, the R packages pheatmap and Rtsne
were used for visualization.

Correlation Analysis of Key Genes and
Depression-Related Molecular Subtypes
Based on the analysis results of depression-related molecular
subtypes, the correlation between key genes and depression-related
molecules was calculated using Spearman correlation analysis, and
the results were visualized using the R package ggcorrplot.

Statistical Analysis
All data processing and analyses were performed using R software
(version 4.1.2). To compare two groups of continuous variables,
the statistical significance of normally distributed variables was
estimated using the independent Student t-test, and differences
between non-normally distributed variables were analyzed using
Mann-Whitney U test (Wilcoxon rank sum test). The chi-square
test or Fisher’s exact test was used to compare and analyze
statistical significance between the two groups of categorical
variables. Correlation coefficients between different genes were
calculated using Spearman correlation analysis. All statistical
p-values were two-sided, and p < 0.05 was considered to
indicate statistically significant results.

RESULTS

Gene Chip Quality Control
To analyze the overall expression of m6A methylation regulators
in animal models of depression, we comprehensively analyzed
expression in depressed and normal tissues from GEO data using
the de-batch effect and background correction (Figure 2).

Expression Profile of m6A Regulators in
Depression
To analyze the overall expression of m6A regulators in animal
models of depression, we analyzed their chromosomal
localization (Figure 3B). Next, we calculated the p-values
of the m6A-related genes in the experimental and control
groups using the Wilcoxon test. The results showed that
METTLE3, METTLE14, YTHDF3, IGF2BP1, and seven
other genes were significantly differentially expressed (p <
0.05) (Figure 3A). Next, we performed differential gene
analysis of m6A regulators in depression and found that
FTO, RBM15B, METTL3, LRPPRC, HNRNPC, ZC3H13, and
YTHDF2 were significantly upregulated in depressed rats
(Figure 3E). The correlation and interaction of the m6A
regulators were analyzed using the Spearman algorithm
(Figure 3C). Genes with an absolute value of correlation
coefficient ≥0.7 were considered as significantly correlated
(Figure 3D).

Construction of Clinical Prediction Models
To analyze the expression of the m6A regulator in depression,
we first performed training set univariate logistic regression
analysis to identify key genes related to depression, and then
conducted LASSO algorithm analysis to perform
dimensionality reduction analysis and verify the key genes
related to depression (Figures 4A,B). The depression-related
eigengenes were incorporated into the model; the back-
propagation neural network model of the classifier
architecture was constructed, and the area under the test
set receiver operating characteristic curve was 0.855
(Figure 4C). Next, a receiver operating characteristic curve
was generated for the validation set by comparing the
predicted values of the neural network with the actual
depression observed in the validation set (Figure 4D).

Functional Enrichment Analysis
We analyzed the effect of the m6A regulators on the biologically
relevant functions of mice in the experimental and control groups
(Table 1). The results of GO function annotation of the m6A
regulators showed that the differentially expressed genes were
mainly enriched in biological processes, such as regulation of
mRNA metabolic process, regulation of mRNA stability,
regulation of mRNA catabolic process, regulation of RNA
stability, RNA catabolic process, mRNA binding, mRNA 3′-
untranslated region binding, mRNA 5′-untranslated region
binding, ribonucleoprotein complex binding, and ribosome
binding, as well as in the production of cytoplasmic stress
granules, methyltransferase complexes, nuclear specks,
cytoplasmic ribonucleoprotein granules, and ribonucleoprotein
granules (Figure 5A). We analyzed the regulation of the m6A
regulators in the first eight enrichment results of the resulting GO
biological processes (Figure 5C). Simultaneously, these m6A-
related regulators were enriched in the spliceosome KEGG
pathway (Table 2), and we examined the enrichment of the
expression levels of m6A-related regulators in the pathway
rno03040 in detail (Figures 5B,D).
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Gene Set Enrichment Analysis and Gene Set
Variation Analysis

Next, we performedGSEA of all genes between the experimental and
control groups (Table 3). The results showed that the following
biological processes differed between the control and experimental
groups: blood circulation, response tometal ions, in utero embryonic
development, muscle cell differentiation, and response to oxygen
levels (Figure 6A). The first two enrichment results of the biological
process were analyzed (Figures 6B,C). We further identified
significant differences in neuroactive ligand-receptor interaction,

focal adhesion, vascular smooth muscle contraction, protein
digestion and absorption, and the TGF-β signaling pathway
(Figure 6D). The top two results of pathway enrichment were
subjected to further enrichment analysis (Figures 6E,F). Next, we
conducted further interaction analysis of the GO and KEGG
enrichment results from GSEA (Figures 6G,H). To clarify the
specific mechanism of depression, we performed a GSVA of all
genes (Table 4). The results revealed significant differences in
biological processes such as Blanco melo COVID-19 bronchial
epithelial cells SARS-CoV-2 infection up, Blanco melobronchial
epithelial cells influenza a del ns1 infection up, West

FIGURE 1 | Analysis flow chart.
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adrenocortical tumor markers, and Wamunyokoli ovarian cancer
grades 12 (Figure 6I).

Weighted Gene Co-Expression Network
Analysis
We performed WGCNA using the whole genome of the
training set. First, we performed a hierarchical clustering
analysis of the samples, removed outlier samples, and

identified network modules using dynamic clipping trees
(Figure 7B). After selecting the optimal soft threshold, the
scale-free network was verified, and the results showed that
the scale-free network was successfully established (R2 = 0.8,
slope < 0) (Figures 7A,C). Next, we performed correlation
analysis using a scale-free network module and an external
module (depression), which revealed a significant
association between the ivory module and depression
(Figure 7D).

FIGURE 2 | Adjusted for depression data. (A,B): GSE63377 chip data before and after background correction. (C,D): GSE124387 chip data before and after
correction. (E,F): GSE86392 gene chip data before and after correction.
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FIGURE 3 | Overall expression of m6A methylation regulators in animal models of depression. (A) Difference in expression of the m6A regulator between the
experimental and control groups. (B) Chromosome localization map of m6A regulators. (C) Correlation network diagram of m6A regulators. (D) Correlation heat map of
m6A regulators. (E) Volcano plot of the results of the differential genetic analysis of m6A regulators.
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m6A Regulator Protein-Protein Interaction
Network Between Experimental and
Control Groups
To explore the differences in PPI networks between the
experimental and control groups, we extracted the protein
interaction network of m6A methylation regulatory factors
from each group. The effects of genes on biological signal
transduction, gene expression regulation, energy and
substance metabolism, cell cycle regulation, and other life
processes were examined. We obtained the PPI of
differentially expressed genes in the high- and low-risk
groups using the STRING database (Figure 8A), which
contained 83 interaction relationships and 18 m6A-related
genes with an average local clustering coefficient of 0.719 and
a PPI enrichment p-value of <1.0e−16. Functional interaction
subnets were extracted using the MCODE plugin (Figure 8B).
The results showed that the hub gene proportion of the m6A
regulators in depression was 66.7% (Figure 8C).

Immune Infiltration and Correlation in
Experimental and Control Animal Models
Next, we assessed the overall immune profile and different levels
of immune cell infiltration in the animal models of depression
(Figures 9A,B). Compared with the control group, the contents
of CD4 T cells in the experimental group were significantly
increased. Additionally, the correlation between key genes of
depression and immune infiltrating cells was significant (r > 0.7)
(Figure 9C).

Construction and Correlation Analysis of
Relevant Molecular Subtypes of Depression
Next, we constructed relevant molecular subtypes of depression.
According to the cumulative distribution function, the optimal
number of subtypes was determined as two (Figures 10A–D). We
then calculated the association of the hub genes with the two
molecular subtypes of depression (Figures 10E,F).

FIGURE 4 | Predictive power analysis of neural network models for depression. (A,B) LASSO regression analysis identified key genes for m6A regulators. (C)
Receiver operating characteristic (ROC) curve of the neural network model test set; the abscissa represents the specificity and ordinate represents the sensitivity. (D)
ROC curve of the validation set of the neural network model; the abscissa represents the specificity and ordinate represents the sensitivity.
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DISCUSSION

Depression is a crippling and highly prevalent emotional disorder
and the leading cause of suicide (Valverde et al., 2021). With an
increase in life stress and social pressure, the prevalence and
incidence of depression is increasing globally (Guo et al., 2020).
The pathogenesis of depression remains unclear; a previous study
showed that nearly 40% of patients administered antidepressants
did not recover, and 20% of patients did not respond to any form
of intervention (Brown et al., 2019). Epigenetic studies
demonstrated a common genetic basis for psychiatric

disorders, but the underlying molecular mechanisms remain
largely unknown (Pineda-Cirera et al., 2022). Recently, m6A
epigenetic modifications have gained attention. To determine
the effect of m6A modification on the pathogenesis and immune
infiltration of depression, we identified differentially expressed
genes and successfully constructed a predictive model by
comparing the experimental (depressed) group with the
normal group. We found that the enriched modules and
pathways were closely related to the immune response in
depression, and 12 hub genes were identified in the PPI
network. Analysis of immune infiltration showed that m6A

FIGURE 5 | Functional enrichment analysis of m6A regulator. (A) First 15 items enriched for biological processes, molecular functions, and cellular components the
abscissa represents the GO term and ordinate is the -log (adj p-value). Band colors: blue represents downregulation and red represents upregulation. (B) Significantly
enriched KEGG pathway; rno03040: spliceosome. (C) m6Aregulation of the first eight items of biological processes; red represents upregulation, and blue represents
downregulation. (D) KEGG enrichment results; the outer circle represents the KEGG pathway and inner circle represents the log fold-change size.
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modification is important in the differentiation of CD4+ T cells.
Two molecular subtypes of depression were constructed, and the
correlation between hub genes and two molecular subtypes of
depression were analyzed.

Analyses of postmortem brain tissue from patients with
depression showed that the pathology of depression involves
abnormalities in specific brain regions, such as in the
hippocampus (Campbell et al., 2004), pituitary (Fitzgerald
et al., 2008), and cortex (Koenigs and Grafman, 2009).
Therefore, the three datasets used in this experiment cover a
wide range of tissues, including those of the hippocampus,
pituitary, and cortex of depressed mice. We next performed

de-batch effect and background correction of the GEO data to
determine the location of the m6A regulators on chromosomes.
Differential gene analysis of m6A regulators showed that
METTL3, FTO, YTHDF2, HNRNPC, and three other genes
were significantly upregulated in depressed rats, and
correlation analysis was performed and the interaction
relationship was described. As an m6A methyltransferase,
METTL3 plays an important role in epigenetics by promoting
m6A methylation modification of RNAs (Liu et al., 2017). It has
been reported that the expression of METTL3 is significantly
increased in patients with rheumatoid arthritis, affecting the
secretion of inflammatory cytokines through the NF-κB

FIGURE 6 |Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of experimental and control groups. (A)Mountain map of the first five items
of the GSEA Gene Ontology (GO) analysis results; the abscissa is normalized enrichment score (NES), ordinate shows the GO terms, size of the mountain represents the
number of genes, and color represents the p-value. (B,C)Clustering of the first two items in GSEAGO. (D)Mountain map of the first five items of the GSEA KEGG results;
the abscissa is NES, ordinate shows the KEGG terms, size of the mountain represents the number of genes, and color represents the p-value. (E,F)GSEA KEGG of
clustering of the first two items. (G) Interaction network diagram of GSEA GO. (H) Interaction network diagram of GSEA KEGG. (I) Heat map of differential expression of
GSVA; red represents upregulation and blue represents downregulation.
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pathway (Wang et al., 2019). FTO modulates the expression of
targets such as ASB2 and RARA by reducing m6A levels in
mRNA transcripts to enhance leukemic oncogene-mediated
cellular transformation and leukemogenesis (Li Z. et al., 2017).
A recent study showed that FTO modulates the expression of
SIRT1 in the hippocampus by modifying adrenergic receptor β2
mRNA and affects the depression-like behavior of mice (Liu et al.,
2021). Our results revealed similar evidence showing that m6a
modification plays a key role in depression. YTHDF2 can
destabilize key gene transcripts and inhibit cancer cell
proliferation (Sheng et al., 2020). Yu et al. (2019) found that
the expression of YTHDF2 in macrophages was upregulated after
lipopolysaccharide stimulation and that knocking out YTHDF2
reduced the levels of pro-inflammatory factors. HNRNPC plays

an important role in various cancers and neurodegenerative
diseases such as Alzheimer’s disease (Geuens et al., 2016).
Studies have suggested that HNRNPC dysfunction causes
Parkinson’s disease through immune inflammation (Quan
et al., 2021).

In the PPI network identified in this study, the hub gene
proportion of the m6A regulator in depression was 66.7%,
confirming it profound impact on the occurrence and
development of depression. By constructing a clinical
prediction model, the effect of the m6A regulator may further
explain its application value in the diagnosis of depression. In
analysis of the functional regulatory effect of m6A on RNA, m6A-
related regulatory factors were enriched in the spliceosome
KEGG pathway, which plays an important role in the

FIGURE 7 |Weighted gene co-expression network analysis (WGCNA). (A) Scale-free network verification graph (R2 > 0.8, slope < 0), conforming to the scale-free
network standard. (B) Dynamic clipping tree clustering diagram; the abscissa is the clustering module and ordinate is the tree height. (C) TOM network clustering
heatmap. (D) Heat map of correlations between WGCNA network modules and depression.
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pathogenesis of various autoimmune diseases (Verma et al.,
2018). The results of GO analysis, GSEA, and GSVA showed
that depression is closely related to the regulation of
inflammatory gene expression and infectious disease pathways.
Our findings support the pivotal role of inflammatory responses
in the regulatory network of depression (Woo et al., 2018).

In immune infiltration that, compared to in the control group,
the content of CD4 T cells in the experimental group was
significantly increased. This result is consistent with the
experimental findings of Li H.-B. et al. (2017), indicating that
m6A methylation plays an important role in CD4 T cell
differentiation. Recent findings suggested that METTL3
promotes M1 macrophage polarization and possesses pro-
inflammatory effects (Liu et al., 2019). FTO may affect the
release of inflammatory cytokines and reduce the risk of
inflammatory diseases (Cheng et al., 2021). The role of
YTHDF2 in preventing excessive inflammatory responses is a
potential therapeutic target for inflammatory diseases (Yu et al.,
2019). One study classified severe asthma into three m6A
modification patterns, which can achieve precise treatment
according to the characteristics of the immune

microenvironment (Sun et al., 2021). Lynall et al. (2020)
stratified patients with depression according to their leukocyte
subsets and found that the inflammatory depression subgroup
had more severe depressive symptoms. Therefore, we constructed
two molecular subtypes of depression and calculated the
correlation between the hub genes and two molecular subtypes
of depression. The immune characteristics of different models
can provide a theoretical basis for classifying the immune
subtypes of depression. Clinical trials have focused on the
efficacy of drugs targeting inflammatory molecules in patients
with depression. For example, a meta-analysis confirmed the role
of celecoxib, a nonsteroidal anti-inflammatory drug that inhibits
prostaglandin synthesis, in enhancing antidepressant efficacy (Na
et al., 2014). Given the relationship between inflammatory
cytokines and treatment resistance, a clinical trial was
conducted to test the tumor necrosis factor antagonist
infliximab in patients with treatment-resistant depression
(Raison et al., 2013). As patients with depression have
different inflammatory states, inflammation-based stratification
may help optimize the antidepressant effects of anti-
inflammatory drugs (Köhler-Forsberg et al., 2019).

FIGURE 8 | m6A regulator protein-protein interaction (PPI) network. (A) PPI network of the m6A regulators; the number of edges indicate the credibility of the
evidence. (B) Network diagram of hub genes. (C) Venn diagram of hub genes and m6A regulators.
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Currently, epigenetic studies in the field of depression are
limited and varied. Research on the m6A modification
mechanism and immune microenvironment theory to
explore the pathogenesis and treatment direction of
depression is can make up for the gap in epigenetic
modification and inflammatory infiltration in depression.
However, this study had some limitations. First, this study
was based on bioinformatics analysis, and the results require
verification in animal and human experiments and clinical
settings. Second, the tissue sample size collected was small,
particularly the gene chips of depressed rats. Although the
clinical prediction model constructed in this study showed a
high degree of agreement (test and validation set area under
the receiver operating characteristic curves: 0.855 and 0.75,
respectively), the detection ability of the model must be

improved by integrating multiple volume data in further
studies. Finally, because of the heterogeneity of depression
and lack of clinical data, not all patients with depression have
obvious inflammatory infiltration, and
additional inflammatory response characteristics of patients
with depression must be included in further subgroup
analyses.

We identified 12 candidate genes as potential diagnostic
biomarkers through PPI network analysis and functional
enrichment and further explored the m6A regulatory factor
in the inflammatory infiltration of depression and
inflammation-based stratification studies. Our findings
confirm the positive effect of m6A modification on the
immune properties of depression and provide insight into
the pathogenesis and treatment of depression.

FIGURE 9 | Analysis of immune infiltration in depression. (A) Differential expression of infiltrating immune cells in experimental and control groups. (B) Overall
expression of infiltrating immune cells. (C) Correlation heat map of hub genes and immune-infiltrating cells.
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FIGURE 10 | Relevant molecular subtypes and correlations of depression. (A) Cumulative distribution function (CDF) curve of consensus clustering of depression-
related molecules; the abscissa is the consensus index and the ordinate is the CDF index. (B) Relative change in the area under the CDF curve; the results show that it is
divided into two types, and the change trend is the most stable. (C)Cluster heat map of depression-associatedmolecular subtypes. (D) Principal coordinate analysis plot
of depression-related molecular subtypes. (E) Heat map of the correlation between hub genes and isoform 1. (F) Heat map of the correlation between hub genes
and isoform 2.
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