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Abstract: This study aimed to determine the mechanism of ketamine-induced cystitis without
metabolism. A total of 24 adult male Sprague-Dawley rats were separated into control, ketamine,
and norketamine groups. To induce cystitis, rats in the ketamine and norketamine groups were
treated with intravesical instillation of ketamine and norketamine by mini-osmotic pump, which was
placed in subcutaneous space, daily for 24 h for 4 weeks. After 4 weeks, all rats were subjected to
bladder functional tests. The bladders were collected for histological and pathological evaluation.
Compared to control, ketamine treatment demonstrated an increase in the bladder weight, high
bladder/body coefficient, contractive pressure, voiding volume, collagen deposition, reduced smooth
muscle content, damaged glycosaminoglycan layer, and low bladder compliance. Compared to
ketamine, norketamine treatment showed more severe collagen deposition, smooth muscle loss,
damaged glycosaminoglycan layer, and increased residual urine. Intravesical administration of
ketamine and norketamine induced cystitis with different urodynamic characteristics. Norketamine
treatment caused more severe bladder dysfunction than ketamine treatment. Direct treatment of
the bladder with norketamine induced symptoms more consistent with those of bladder outlet
obstruction than ketamine cystitis. Detailed studies of cellular mechanisms are required to determine
the pathogenesis of ketamine cystitis.

Keywords: intravesical instillation; ketamine cystitis; norketamine; bladder dysfunction

1. Introduction

Ketamine is a derivative of phencyclidine (PCP) and easily absorbed in humans. It is
characterized as an N-methyl-D-aspartic acid receptor (NMDAR) antagonist and is a useful
analgesic and anesthetic discovered in 1956 and approved by the FDA in 1970 for the use
in humans as an anesthetic [1–5]. Lately, ketamine has also been used as an anti-depressant
and for the treatment of refractory status epilepticus [4,6]. Recently, ketamine has been used

Toxics 2021, 9, 154. https://doi.org/10.3390/toxics9070154 https://www.mdpi.com/journal/toxics

https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-6114-5989
https://doi.org/10.3390/toxics9070154
https://doi.org/10.3390/toxics9070154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9070154
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9070154?type=check_update&version=2


Toxics 2021, 9, 154 2 of 10

as a recreational and dissociative drug in places including the USA, Europe, and Asia [4,7].
Ketamine abuse can induce ulcerative cystitis without bacterial infection. Clinical side
effects involve lower urinary tract dysfunction, including high urination frequency and
urgency, bladder pain, and occasional hematuria. In addition, other side effects include low
bladder capacity, decreased bladder compliance, higher contractive pressure, and bladder
overactivity, as determined in previous studies via urodynamic tests [8–13]. The severity of
urinary symptoms depends on the frequency and dose of ketamine [14,15]. Because the
pathogenesis of ketamine-induced cystitis is still unclear, medical treatment is based on
resolving or reducing the symptoms of pain or inflammation, including oral medication,
hyperbaric-oxygen therapy, cystoscopic hydrodistention, intravesical medicine injection,
or instillation (such as hyaluronic acid, anticholinergic agents, non-steroid or steroid anti-
inflammatory drugs, and botulinum toxin A) [11,12,15–18]. To cure ketamine-induced
cystitis, determining the pathophysiology and etiology of the disease is important.

Ketamine and its metabolites are eliminated via the kidney, and the known metabo-
lites include norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorke-
tamine [19]. Among these, the focused metabolite of ketamine in urine is norketamine,
which retains an approximately 1/3 to 1/2 anesthetization efficacy of ketamine [10,20–24].
In clinical settings, the concentrations of ketamine and norketamine vary, and the ke-
tamine/norketamine ratio ranges from 0.15 to 2.55 [19,21]. To summarize, the norketamine
content in urine is significantly higher than that in ketamine. Thus, several hypotheses
underlying the pathogenesis of ketamine-induced cystitis are known which are based
on ketamine and norketamine that induce urinary tract dysfunction through different
pathways [8,16,25–28]. One possible mechanism suggests that ketamine and norketamine
in urine may directly break the mucosa of the lower urinary tract. During the bladder
filling period, severe irritation of the bladder may be observed due to the simultaneous
accumulation of ketamine and norketamine [8,16]. Furthermore, ketamine and norke-
tamine penetrate the bladder wall [9,29]. These symptoms were observed in a mouse
model of ketamine-induced cystitis. A previous study performed in mice demonstrated the
degeneration of muscles and epithelium, increased fibrosis in the lamina propria, fibrosis in
the muscular layer, and ketamine-induced cystitis [8,26,30]. However, contradictory results
have been reported. In some studies, the results did not demonstrate the symptoms of
bladder ulceration or a damaged epithelial layer following ketamine cystitis in humans or
mice models [8,31]. These observations indicate that the exact cause of ketamine-induced
cystitis remains elusive.

A literature review of ketamine-induced cystitis indicated that all previous studies
examined the effects of metabolic ketamine in organisms, however, evidence of the direct
effects of ketamine or norketamine on the bladder without considering metabolism is
still lacking. In addition, there is no evidence of the individual effects of ketamine or
norketamine on the bladder. In this study, we first established a novel rat model with the
intravesical instillation of drugs. We aimed to determine the histological and the bladder
functional changes induced by the intravesical instillation of ketamine or norketamine. This
is the first study to investigate the response of the bladder to ketamine and norketamine
without considering metabolism and to determine the individual effects of ketamine-
induced cystitis.

2. Materials and Methods
2.1. Study Design

The experiment was performed on 8-week-old adult Sprague-Dawley (SD) rats. A
total of 24 SD rats were randomly divided into control, ketamine, and norketamine groups.
Rats in the ketamine group were treated with the intravesical instillation of ketamine
hydrochloride (100 mg/mL) 24 h daily for 4 weeks; the norketamine group was treated
with the intravesical instillation of norketamine hydrochloride (10 mg/mL) for 24 h daily for
4 weeks, and the control group was not administered with any treatments. After 4 weeks
of treatment, bladder function was detected in all rats using the cystometrogram (or
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cystometry, CMG) test, and then the rats’ bladders were collected and embedded in paraffin
blocks for histological and pathophysiological analysis. Body weight and bladder weight
were recorded.

2.2. Experimental Animal

In this study, male SD rats (8 weeks old) (BioLasco Taiwan Co., Ltd., Taipei, Tai-
wan) were used, and the study protocols and methods were conducted according to the
guidelines of the Declaration of Helsinki, and approved by the Fu Jen Catholic University
Institutional Animal Care and Use Committee (approval No.: A10817) on 3 September
2019. All rats were housed in a standard cage at 25 ◦C under a 12-h light/12-h dark cycle
with sufficient food and water.

2.3. Intravesical Instillation of Ketamine and Norketamine

Ketamine and norketamine were administered via intravesical instillation. The instil-
lator, Alzet mini-osmotic pump (Alzet, Cupertino, CA, USA), was placed into the rat via
surgery according to a previously described procedure [32]. Briefly, Zoletil-50 (1 mL/kg)
(Virbac, Carros, France) was intraperitoneally injected for the anesthetization of the rats. A
midline abdominal incision was made, and the rat bladder was exposed. A small incision
was made in the bladder dome, and a polyethylene micro-tubing 50 (PE50) with a small
cuff at the end was placed into the bladder. Then, the catheter and bladder were tied
together with a 6–0 polypropylene suture (non-absorbable) (Prolene, Cornelia, GA, USA).
The other end of the PE50 catheter was connected to the instillator, which was filled with ke-
tamine hydrochloride (Imalgene 1000, Merial, Lyon, France) (100 mg/mL) or norketamine
hydrochloride (Tocris Bioscience, Bristol, UK) (10 mg/mL), and subsequently placed in
the subcutaneous space. The abdominal incision was closed with a 6–0 non-absorbable
polypropylene suture (Prolene, Cornelia, GA, USA). The rats were then transferred back to
the cage. Ketamine and norketamine were administered at a rate of 0.25 µL/h for 4 weeks.
The dosages of ketamine hydrochloride and norketamine hydrochloride were based on
our previous study, which determined the concentration of ketamine and norketamine in
urine after the intraperitoneal injection of ketamine for 4 weeks.

2.4. CMG Test

After treatment for 4 weeks, all of the rats underwent bladder functional tests using
CMG. The rats were first numbed by isoflurane and exposed to a subcutaneous instillator.
The polyethylene micro-tubing 90 (PE90) was substituted for the instillator, and the other
end of PE90 was connected to an injector that could fill the bladder with saline at a rate of
0.1 mL/min. The infusion rate was set based on our pre-experiment results of different
infusion rates in the CMG analysis, which indicated that the infusion rate can increase the
frequency of urination without affecting the normal function of the bladder. The test was
performed on awake rats who were placed in a holder, and real-time voiding responses
were recorded using an MP36 pressure transducer (Biopac Systems Inc., Santa Barbara,
CA, USA) and computer installed recording software, Biopac Student Lab 4.1 (Biopac
Systems Inc., Santa Barbara, CA, USA). The micturition parameters of CMG included ICI,
threshold pressure, peak pressure, MVV, residual urine volume (infused volume minus
voiding volume), and bladder compliance. The threshold pressure is the initial pressure of
micturition, and the peak pressure is the maximum pressure of micturition. ICI represents
the period between two micturitions. Bladder compliance is the accommodated capability
of the bladder (infused volume/delta pressure).

2.5. Hematoxylin and Eosin (H&E) Staining, Masson’s Trichrome Staining, and Evaluation of
Smooth Muscles and Collagen

After euthanization with an overdose of pentobarbital sodium solution by IP injection,
the rat bladders were collected and fixed with 10% formaldehyde (w/v) for 24 h. Then, the
tissues were dehydrated, post-fixed, and embedded in paraffin blocks. Before staining, the
embedded tissues were sliced into 5-µm thick serial sections, and deparaffinized sections
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were subjected to hydration by 100%, 95%, 80%, 70% alcohol, and ddH2O (each for 5 min).
Tissue segments were prepared for H and E staining and Masson’s trichrome staining. In
the results of Masson’s trichrome staining, the smooth muscles and collagen are presented
in red and blue, respectively. The areas of smooth muscle and collagen were analyzed using
the software Scandium 5.2 (Olympus Soft Imaging Solutions GmbH, Muenster, Germany).
The ratio of collagen to smooth muscle was indicated by the fibrosis levels of smooth
muscle, and the ratio of smooth muscle to tissue area was indicated as the muscle content
of the bladder depicted in percentage.

2.6. Statistical Analysis

Data are presented as means ± standard deviations, and the Scheffe post hoc test was
used for statistical analysis. Statistical analyses were performed using SPSS v.18.0 (SPSS
Inc., Chicago, IL, USA), and statistical significance was set at p < 0.05.

3. Results
3.1. Intravesical Instillation of Ketamine or Norketamine for Four Weeks Altered the Body Weight
and Bladder Weight of Rats

The body weight and bladder weight of rats in this study were recorded (Figure 1).
The body weights of the rats did not differ significantly after the intravesical instillation
treatment for 4 weeks between the groups. In contrast, the bladder weight of the rats
in the ketamine group was significantly heavier than that of the rats in the norketamine
group (p = 0.031) and control group (p = 0.002). However, the bladder weight of the rats
in the norketamine group was higher than that of the rats in the control group but the
difference was not statistically significant (p = 0.357). The bladder weight/body weight
ratio, as well as the bladder weight alone, can demonstrate more objective differences. The
results indicated that the intravesical instillation of ketamine can induce severe changes in
bladder ratio compared to that of norketamine.
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Figure 1. The body weight and bladder weight of rats in each group. The body weight (A) was
recorded after administering the treatment for 4 weeks; the bladder weight (B) was recorded after
euthanization; the bladder/body coefficient was calculated (C). * indicates statistical differences in
comparison with the control group, p < 0.05; # indicates statistical differences in comparison with the
norketamine group, p < 0.05.
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3.2. Intravesical Instillation of Ketamine or Norketamine Impaired the Bladder Function

The results of the bladder functional test are shown in Figure 2A, which captured
a one-hour period of the cystometrogram (CMG) test. The results observed the hyper-
active contraction of the treatment groups. At the same time, the other parameters of
CMG are also presented in Figure 2B. In the ketamine group, CMG test results showed
significantly increased intercontraction intervals (ICI), threshold pressure, peak pressure,
and significantly decreased bladder compliance compared to the control group. These
findings indicate that the major effects of ketamine include strong voiding pressure and
low bladder compliance. In contrast, the norketamine group showed the longest ICI and
the highest mean voiding volume (MVV) of all groups, however, no significant differ-
ences were observed in voiding pressure compared to that of the control group (p = 0.934).
In summary, the major characteristic of the norketamine group involved the absence of
enough pressure to empty the bladder. We observed that the residual urine was approxi-
mately 0.91 mL. Specifically, the norketamine showed detrusor underactivity. Based on
the aforementioned results, both the intravesical instillations of ketamine and norketamine
impaired bladder function.
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Figure 2. The cystometric analysis (CMG) of control, ketamine-treated, and norketamine-treated rats.
(A) A one-hour period of CMG in each group observed with the recording software, Biopac Student
Lab 4.1 (Biopac Systems Inc., Santa Barbara, CA, USA); (B) Statistical analysis of the intercontraction
intervals (ICI), threshold pressure, peak pressure, residual urine volume (RV), mean voiding volume
(MVV), and bladder compliance. * indicates statistical differences in comparison with the control
group, p < 0.05; # indicates statistical differences in comparison with the norketamine group, p < 0.05.
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3.3. Histological Changes Corresponding to Ketamine and Norketamine-Induced Damage
in Bladder

The histological characteristics of the bladder were evaluated by hematoxylin and
eosin (H and E) staining and Masson’s trichrome staining. The results of H and E staining
(Figure 3) demonstrated a thicker epithelial layer and lamina propria in the bladder tissues
of the rats of the ketamine and norketamine groups compared to those of the rats in the
control group. Meanwhile, the glycosaminoglycan (GAG) layer was damaged, and an
unusual proliferation of epithelium was observed in the treatment groups.
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Figure 3. Haematoxylin and eosin staining of the bladder from each group. The images of the
upper row (A) were taken at 40× magnification and images of the lower row (B) were taken at 200×
magnification. The star marks indicate the edema sites in the lamina propria, and the damaged
glycosaminoglycan (GAG) layer shows in the edge of the epithelial layer (arrows).

Simultaneously, the edema of the lamina propria was observed in the treatment
groups, especially in the norketamine group. The results of Masson’s trichrome staining
(Figure 4) demonstrated increased collagen deposition (blue color) in the bladder tissue
of the treatment groups along with a thicker epithelial layer. In the statistical analysis,
the collagen/smooth muscle ratio was significantly increased for the treatment groups.
The highest value was observed in the norketamine group, indicating severe fibrosis of
the bladder. Simultaneously, the smooth muscle content was significantly decreased after
treatment with ketamine (p = 0.000) or norketamine (p = 0.012) in comparison with that
observed in the control group.
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in comparison with the norketamine group, p < 0.05.

4. Discussion

In clinical practice, a reduction in the body weight of ketamine abusers is a common
symptom [28,33,34]. However, in this study, following four weeks of treatment, the body
weights of the rats administered with ketamine were not significantly different from
those belonging to the control. This is similar to a previous study in which ketamine
was administered to the rats via an intraperitoneal injection for 12 weeks. The results
demonstrated that the body weight reduced significantly until the 12th week [34]. The
differences in the weight between the control and the ketamine-treated mice increased with
longer periods of treatment and higher dosage [14]. Weight loss is based on the side effects
of ketamine, such as appetite loss and vomiting [24,35]. In contrast, body weight, bladder
weight, and bladder/body coefficient of rats in the ketamine group were increased. This is
a characteristic of ketamine cystitis in rats, as demonstrated in previous studies [18,34]. We
suggest that the size and weight of the bladder increase with ketamine intake but not with
norketamine.

The symptoms of ketamine-induced dysfunction include increased frequency, urgency,
smaller bladder capacity, decreased bladder compliance, high contractive pressure, and
hyperactive bladder [8–13]. The severity of urinary symptoms is directly related to the
dosage and frequency of ketamine intake [14]. Our results showed that the symptoms
of bladder hyperactivity, high contractive pressure, and decreased bladder compliance
were consistent with the clinical findings. The results were also consistent with those
observed with other rat models that were treated with ketamine by IP injection [10,13,36].
A recent study indicated that strong contractive pressure was correlated with transient
receptor potential cation channel subfamily V (TRPV) proteins in humans. The results
showed that the expression of TRPV4 was significantly increased in the epithelium of
patients with severe ketamine cystitis [12]. When TRPV4 is overexpressed in the bladder,
calcium concentration is increased, which leads to an increase in the frequency of bladder
contraction [12,37]. Nevertheless, the evidence for this is still lacking and needs further
confirmation.

In contrast, some symptoms of rats with direct norketamine-treatment were not con-
sistent with those observed with the other rat models, such as increased residual urine and
voiding volume. These were consistent with the symptoms of bladder outlet obstruction
(BOO), a common lower urological chronic condition. The urodynamic test characterization
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of BOO demonstrates not only increased pressure during urination, but also increased
bladder capacity and incomplete emptying of the bladder [38–41]. Several studies have
shown that BOO is involved in the pathogenesis of bladder dysfunction and results from
numerous diseases, including benign prostatic obstruction, bladder neck obstruction, pos-
terior urethral valves, and urethral strictures [40,42]. In recent decades, a three-stage model
has been proposed as a hypothesis for bladder dysfunction. This hypothesis is based on the
remodeling of the bladder muscle (detrusor), involving the hypertrophy phase, compen-
sation phase, and decompensation phase [40,43,44]. In detail, increased oxidative stress,
inflammatory response, and ischemia result in urinary dysfunction, and detrusor hypertro-
phy results as a consequence of high ureteral resistance. Hypertrophy alters the expression
of muscle proteins. Many studies have proved that smooth muscles are substituted by
collagen in humans, however, the cause has not yet been demonstrated. This condition
involves an increase in the mass, weight, wall thickness of the bladder, and degeneration
of the detrusor [40,45–47]. The characteristics of the compensation phase involve increased
contraction during the voiding phase and over-activation of the detrusor during the fill-
ing phase. The decompensation phase is present during detrusor underactivity, which is
characterized by low detrusor wall thickness, large bladder capacity, and muscle fibrosis.
Interestingly, patients with detrusor underactivity show low expression of inducible nitric
oxide synthase and E-cadherin than patients with detrusor over-activation [40,41]. A clini-
cal study demonstrated that the collagen content of the bladder in diabetes patients was
remarkably higher than that of non-diabetic patients. However, diabetes is also related to
detrusor underactivity [47]. According to this hypothesis, the rats in the ketamine group
could be at the compensation phase of bladder dysfunction, based on higher voiding
pressure, and the rats in the norketamine group could be at the decompensation phase
of bladder dysfunction, based on the indistinguishable voiding pressure compared to the
control rats, incomplete emptying of the bladder, and increased bladder capacity.

Compared with normal humans in terms of histological symptoms, denudation of the
epithelium is often observed in cystoscopy under clinical settings, however, only about 50%
of patients demonstrate the symptoms [8,16,48]. In our results, a thinner GAG layer and
increased epithelial proliferation, but without denudation, were observed in both treatment
groups. The identification is consistent with a previous study, which confirmed the intact
umbrella cell apical membranes by electron microscopy analysis. At the same time, the
results of immunofluorescence staining also demonstrated a high expression of uroplakin
(a specific protein of urothelium) in umbrella cells [31]. The observation combined with the
results of CMG indicated that the damaged epithelium was not the only or direct influence
of urinary dysfunction.

5. Conclusions

The study demonstrated that the intravesical administration of ketamine and norke-
tamine induced cystitis with different urodynamic characteristics and pathological changes.
Norketamine treatment seemed to result in more severe bladder dysfunction than ketamine
treatment. However, these results need more research evidence to prove the potential
mechanism of occurrence. We also demonstrated that a direct treatment of the bladder with
norketamine induced complex symptoms, more consistent with those observed following
the obstruction of the bladder outlet than ketamine cystitis. However, detailed studies of
cellular mechanisms are still imperative to elucidate the pathogenesis of ketamine cystitis
in the future.
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