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Abstract Protein–RNA interaction networks are essential to understand gene regulation control.

Identifying binding sites of RNA-binding proteins (RBPs) by the UV-crosslinking and immunopre-

cipitation (CLIP) represents one of the most powerful methods to map protein–RNA interactions

in vivo. However, the traditional CLIP protocol is technically challenging, which requires radioac-

tive labeling and suffers from material loss during PAGE-membrane transfer procedures. Here we

introduce a super-efficient CLIP method (GoldCLIP) that omits all gel purification steps. This non-

isotopic method allows us to perform highly reproducible CLIP experiments with polypyrimidine

tract-binding protein (PTB), a classical RBP in human cell lines. In principle, our method guaran-

tees sequencing library constructions, providing the protein of interest can be successfully cross-

linked to RNAs in living cells. GoldCLIP is readily applicable to diverse proteins to uncover

their endogenous RNA targets.
(Yu Y).
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Introduction

RNAs, both coding and non-coding, play essential roles in
diverse biological processes [1]. In most cases, they function

through numerous interactions with RNA-binding proteins
(RBPs) [2]. Identifying in vivo binding sites of these RBPs is
critical to understand protein–RNA interaction networks in

gene regulation control [2]. UV crosslinking and immunopre-
cipitation (CLIP) represents one of the most powerful methods
to detect direct protein–RNA interactions [3]. Various CLIP
methods, such as high-throughput sequencing of RNA isolated

by CLIP (HITS-CLIP) [4], photoactivatable ribonucleoside-
enhanced CLIP (PAR-CLIP) [5], individual-nucleotide resolu-
tion CLIP (iCLIP) [6], and their derivatives [7–9], have been

developed to profile transcriptome-wide protein–RNA interac-
tions. However, one major limitation for current CLIP meth-
ods is the material loss during the gel purification process

when enriching UV-crosslinked protein–RNA complexes [2].
In addition, another limitation is that most CLIP methods rely
on radioisotopes to visualize purified protein–RNA complexes,

with the exception of the infrared-CLIP (irCLIP) [8] and UV
crosslinking and analysis of cDNAs (CRAC) [10].

Purification of UV-crosslinked protein–RNA complexes
is one of the key steps to ensure the specificity of the CLIP

experiment. In most CLIP protocols, purification of these
complexes is processed via sodium dodecyl sulfate–polyacry-
lamide gel electrophoresis (SDS–PAGE) separation followed

by nitrocellulose membrane transfer [3]. In brief, immunopuri-
fied covalent protein–RNA complexes are first separated from
non-specific RNAs through a denaturing SDS–PAGE process

[3]. Next, the size-resolved complexes are transferred to nitro-
cellulose membranes. Since the nitrocellulose only binds to
proteins, but not to nucleic acids, RNAs that remain bound
to the membranes must be attached to proteins through

covalent bonds formed by UV crosslinking [3]. In addition
to the material loss during various purification steps, there
are also experimental variations likely due to the imprecise size

selection on nitrocellulose membranes.
To overcome these issues and minimize the purification

steps, we set out to explore alternative approaches to achieve

equally stringent purification by leaving out the gel steps. Here,
we developed a method named gel-omitted ligation-dependent
CLIP (GoldCLIP) that omits all gel purification steps. Gold-

CLIP allows us to perform highly reproducible CLIP experi-
ments that are compatible with diverse crosslinking conditions.
Materials and methods

Construction of HaloTag fusion protein plasmids

The coding sequence of human PTBP1 with stop codon, which
encodes polypyrimidine-tract binding protein (PTB), was

cloned into the pENTR4 vector using Gibson Assembly (cata-
log No. E2611; New England Biolabs). Then LR recombina-
tion reaction (Invitrogen, Catalog No. 11791020) was
applied to transfer the entry sequence into a destination vector,

which is engineered in house from a pMSCV-puro (Clontech,
PT3303-5) plasmid with inserted N-terminal HaloTag, fol-
lowed by 3� TEV cleavage sites, 2� StrepII, and a GatewayTM

recombination cassette. The sequence of pMSCV-Halo-3�
TEV-2� StrepII-PTB-puro was confirmed by sequencing.
Halo-YFP was constructed similarly.

Expression and detection of the HaloTag fusion protein

pMSCV-Halo-3� TEV-2� StrepII-PTB-puro and VSVg were
co-transfected into the Ecotropic Phoenix HEK293T cells

using Lipofectamine� 2000 Transfection Reagent (catalog
No.11668019; Invitrogen) according to the manufacturer’s
instruction. 48–72 h post transfection, media containing

viruses were collected and filtered before infecting a HEK
293T cell line. 72 h after infection, puromycin (1 lg/ml) was
added for the selection of stable cell lines. To check HaloTag

fusion protein expression, approximately one million cells were
collected and lyzed in 100 ll lysis buffer containing 50 mM
Tris–HCl (pH 7.4), 100 mM NaCl, 1 mM DTT, 1% Triton
X-100, 10% glycerol, and 1� protease inhibitor cocktail (cat-

alog No. G6521; Promega) on ice for 15 min. The insoluble
fractions were removed by centrifugation at maximum speed
at 4 �C for 10 min using Centrifuge 5424R (Eppendorf) and

the supernatant was incubated with HaloTag� Alexa Fluor�
660 Ligand at 1 lM final concentration (catalog No. G8471;
Promega) at room temperature for 15 min. Then samples were

heated with 4� SDS gel loading buffer at 70 �C for 10 min and
loaded onto SDS–PAGE gels. After electrophoresis, the SDS–
PAGE gels were directly scanned using the Odyssey� CLx
Imaging System at 700 nm.

GoldCLIP-seq library preparation

In a typical GoldCLIP experiment, �1 � 107 HEK 293T cells

expressing the Halo-PTB fusion protein were crosslinked using
UVP crosslinker at either UVC (254 nm, 400 mJ/cm2) or UVA
(365 nm, 400 mJ/cm2, pre-incubated for 16 h with media con-

taining 100 lM 4-thiouridine). Crosslinked cells were then
scraped off the plates and mixed with �5 � 105 of Drosophila
S2 cells expressing a Halo-CG7544 fusion protein (serving as

an internal normalizing control), dounced with type B pestle
in lysis buffer (see above) and digested using micrococcal
nuclease (1:1000; catalog No. M0247S; New England Biolabs)
for 3 min at 37 �C. Magne� HaloTag� Beads (catalog No.

G7281; Promega) were incubated with the lysates with rotation
at 4 �C for about 10–16 h. Beads associated with Halo-PTB
complexes were first washed with PBST (PBS + 0.1% Triton

X-100), dephosphorylated with calf intestinal phosphatase
(catalog No. M0290S; New England Biolabs) at 37 �C for
30 min. Then the beads were washed with Trizol LS reagent

and equilibrated with 8 M urea. The beads were then washed
five times with PNK buffer containing 50 mM Tris–HCl (pH
8.0), 10 mM MgCl2, and 1% Triton X-100. The RNAs cross-

linked with the PTB proteins were ligated with an RNA adap-
ter (/50P/AGGTCGGAAGAGCGGTTCAG/3ddC/) at 30 end
using T4 RNA Ligase I (catalog No. AM2141; Ambion) on
beads at 16 �C overnight. Then, further denaturing washes

using the buffers containing either 8 M guanidine, 8 M urea
or 10% SDS were applied to the beads to completely remove
non-covalent contaminants. Finally, PTB–RNA complexes

were cleaved off the beads by TEV protease and digested with
protease K (catalog No. P8102S; New England Biolabs) at
37 �C for 30 min. The RNA–peptide adducts were cloned

following the iCLIP library cloning protocol [11].
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The detailed protocol for GoldCLIP-seq is provided in
File S1.

Western blotting

PVDF or nitrocellulose membranes were blocked by 5% skim
milk at room temperature for 1 h. Then the membranes were

incubated at 4 �C overnight with the primary antibodies,
including anti-HaloTag (1:2000; catalog No. G9211, Pro-
mega), anti-tubulin (1:2000; catalog No.9099; Cell Signaling

Technology), anti-StrepII (1:2500; catalog No. B1195; Bio-
dragon Beijing, China), and anti-PTB (1:2000; mAb BB7,
ATCC� CRL-2501) [12]. After a brief wash, secondary anti-

bodies (1:2000) were incubated with the membrane at room
temperature for 1 h and washed with TBST (TBS + 0.1%
Tween) three times. The immunoblots were developed using
Pierce ECL reagent (catalog No. 35050, Thermo Scientific)

and imaged with Tanon 5200 (Tanon, Shanghai, China).

Immunofluorescence microscopy

Cells were fixed in 4% paraformaldehyde diluted in PBS for
30 min. After three PBS washes, cells were permeabilized with
PBS containing 0.5% Triton X-100 for 1 h at 4 �C. The cells

were blocked with 1% bovine serum albumin in PBST
(PBS + 0.1% Triton) for 1 h. HaloTag� TMR Ligand
(1:2000; catalog No. G8251; Promega) and anti-PTB [12]
(1:2500) were applied for 1 h at 4 �C in blocking solution,

respectively. Then secondary antibody conjugated with Alexa
Fluor 488 (catalog No A11034; Thermo Fisher Scientific)
was incubated with cells for 1 h at room temperature. After

three washes, cells were counterstained with DAPI (catalog
No P36931; Thermo Fisher Scientific) at room temperature
for 5 min. After three washes, the cells were imaged with

confocal laser scanning microscope (Olympus FV1000).

Radioisotope labeling

To demonstrate the purity of UV crosslinked PTB–RNA
complexes, Halo-PTB/RNA complexes (with or without UV
crosslinking) bound to Magne� HaloTag� Beads were
dephosphorylated by calf intestinal phosphatase (New

England Biolabs). The complexes were washed on beads fol-
lowing GoldCLIP denaturing conditions and labeled with
[c-32P] ATP using T4 polynucleotide kinase (catalog No.

M0201; New England Biolabs). The PTB–RNA complexes
were cleaved off the beads using TEV protease and separated
with 10% SDS–PAGE gels. The 32P-labeled RNA was visual-

ized by Typhoon FLA 7000 (GE Healthcare).

Reads pre-processing

RNA samples were sequenced on either Illumina HiSeq X Ten
or HiSeq 2500 platform. Sequencing data were pre-processed
using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_
toolkit). GoldCLIP libraries were de-multiplexed using the

sample barcodes located at positions 4–7 and potential PCR
duplicates were removed using the random barcodes at the
positions 1–3 and 8–9. The 30 adapter sequence and low-

quality bases at 30 end of reads were trimmed using Cutadapt
(v1.10) [13] with command ‘cutadapt --adapter = AGATCG
GAAGAGCGGTTCAG --error-rate = 0.2 --quality-cutoff
= 20 --minimum-length = 240 and the reads shorter than 24

bp were discarded. Next, reads with identical sequences were
collapsed to remove potential PCR duplicates. Afterward,
the random barcode and experimental barcode (positions

1–9) were removed.

Reads mapping

The processed reads (read 1 for paired-end reads) were first
mapped to the spike-in fly genome (dm3, download from
UCSC) using Bowtie [14] (v1.1.2; bowtie -v 2 -k 1 --best --un

-S -p 8 -f). Reads mapped in this step were discarded. The
remaining unmapped reads were then mapped against a library
of mature tRNAs and rRNAs, as well as the mitochondrial
genome (tRNA sequences were retrieved from Genomic

tRNA Database (http://gtrnadb.ucsc.edu/genomes/eukaryota/
Hsapi19/) and CCA was appended to the 30 end of the
sequences; rRNA sequences were retrieved from RefSeq id,

NR_023363.1, NR_003285.2, NR_003287.2, and
NR_003286.2). Mapping was performed using Bowtie [14]
(v1.1.2; bowtie -v 2 -k 1 --best --un -S -p 8 -f) and the reads

mapped were discarded from further analysis. The remaining
unmapped reads were mapped against the human genome
(hg19, UCSC) using Bowtie (options -v 2 -m 1 --best --strata
-S -p 8 -f). The uniquely-mapped reads on human genome were

retained for further analysis.

Peak calling and annotation

Peak calling was performed on uniquely-mapped reads using
CLIPper [15] with options -s hg19 -o --save-pickle --bonferroni
--superlocal --threshold-method binomial. Peaks were

assigned to genic regions based on the following priority
order: TSS>rRNA> pseudo-gene > ncRNA> 30 UTR> 50

UTR > CDS > intron > intergenic region. The software

packages pyBEDTools [16] and BEDtools were used to
enumerate overlap between peaks and different regions.

Overrepresented PTB-binding motifs

Overrepresented hexamers (6-mers) were identified by compar-
ing the counts in peaks to those in random intervals. The his-
togram of Z-scores indicates the enrichment of hexamers

in GoldCLIP peaks, compared to the randomly-selected
similarly-sized regions in the same genes. 100 times random
intervals were generated with a custom Python script.

Z-scores of the top three 6-mers are indicated. De novo motif
finding was performed using HOMER’s findMotifsGenome.
pl (http://homer.salk.edu/homer/) script with options ‘-p 8

-rna -S 10 -len 5,6,70 from the GoldCLIP peak sequences, com-
pared to a set of background ‘peaks’ where three random
identically-sized regions were sampled for each real GoldCLIP
peak in the same genic regions.

Coverage of PTB-binding motifs at the crosslink clusters

To evaluate the enrichment of CU-rich motifs at the crosslink

clusters, the method described in Haberman et al. [17] was

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/
http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/
http://homer.salk.edu/homer/
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adopted to calculate the coverage of PTB-binding motifs at the
crosslink clusters.

Data analysis

Raw files of all libraries generated for this study were submit-
ted to GEO (GEO accession number GSE111406). Data anal-

ysis was performed in the Python (2.7.13) or R (3.3.1)
environment with frequently used R packages (ggplot2
(2.2.1) and dplyr (0.7.0). Pearson’s correlations between bio-

logical replicates were calculated using R.

Results

Characterizing HaloTag for purification of covalent protein–RNA

complexes

In principle, any protein tag that can form a covalent bond
with its binding partner will resist denaturing purification con-

ditions. With the help of such a covalent tag, no gel steps are
necessary to isolate crosslinked protein–RNA complexes. To
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Next, we tested the stability of the covalent bond formed

between the chloroalkane-ligands and the Halo-PTB fusions.
The beads pre-bound with Halo-PTB proteins were rigorously
washed using various denaturing conditions such as SDS with

heat, guanidine, urea, or Trizol. Compared to a native washing
condition (PBST), significant amount of PTB proteins were
retained and cleaved off the beads using TEV proteases after

various denaturing washes (Figure 2B). Therefore, the Halo-
PTB proteins attached to the beads are resistant to the ‘‘hash”
washing conditions that we tested. Remarkably, following
these washes (see the Methods and File S1), T4 polynucleotide

kinase was only able to add radiolabeled phosphate to a single
UV-dependent complex that matches the size of PTB
(Figure 2C). Accordingly, the TEV-released PTB–RNA

complexes are essentially free of any detectable nucleic acid
contaminants. Taking advantage of the reverse transcriptase
(RT) stops generated during reverse transcription of the

RNA–peptide adducts, we produced cDNA libraries for
sequencing following a standard iCLIP protocol [6].
GoldCLIP identifies endogenous PTB targets

We next analyzed the GoldCLIP data adopting the published
bioinformatics tools for iCLIP [6]. The majority of peaks are
located in intronic regions across the human genome

(Figure 3A), similar to the published datasets [20]. As shown
in Figure 3B, comparable number of peaks were obtained

using cells crosslinked with either UVC (254 nm) or UVA
(365 nm, supplemented with photoactivatable 4-thiouridine).
Importantly, the peaks identified by GoldCLIP are dependent

on UV crosslinking (Figure 3B); only trivial number of peaks
can be identified with Halo-YFP, a negative control that does
not bind RNAs (Figure 3B). Consistent with previous data

[20], GoldCLIP successfully identified PTBP1 pre-mRNAs as
one of the PTB targets, suggesting that an autoregulation loop
may be in place to control the posttranscriptional processing
and/or expression of PTBP1 (Figure 3C).

Since no gel steps were involved, minimum material loss is
expected during the HaloTag purification processes (Fig-
ure 1A). Consequently, there is no need to cut membranes to

isolate covalent protein–RNA complexes. Such membrane-
cutting steps might greatly contribute to experimental variabil-
ities, owing to the ambiguity of size-range selection. As a

result, data generated by GoldCLIP are highly reproducible
between biological replicates (Figure 3D and E).

To determine the accuracy of the GoldCLIP experiments,

we performed a de novo motif search using HOMER [21].
The motifs we identified nicely match the known binding con-
sensus of PTB [20,22] (Figure 3F and I). We also searched for
the significantly-enriched 6-mers in the datasets and obtained

similar results (Figure 3G and J). The sequence features of
the GoldCLIP reads were then compared to the crosslink sites
identified as 30 ends of cDNAs (e.g., RT stops). The most
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(PTB_UVA), iCLIP from endogenous PTB (PTB_iCLIP2), Halo-PTB without UV crosslinking (PTB_No UV) and Halo-YFP crosslinked

with UVC (YFP_UVC).D. and E. show the highly correlated Pearson’s coefficient between the number of reads obtained from two biological

replicates in a 500 bp window across the whole genome for UVC crosslinking (D) and UVA (E), respectively. F. Top HOMER motifs

calculated from the peak reads after UVC crosslinking are shown. G. Over-represented Halo-PTB binding motifs identified by GoldCLIP

after UVC crosslinking. Histogram of Z-scores indicates the enrichment of hexamers in GoldCLIP clusters compared to randomly chosen

regions of similar sizes in the same genes. Z-scores of the top three hexamers are indicated. H. Heatmap showing the coverage of Halo-PTB

binding motifs at crosslink clusters that are defined with a 3-nt clustering window. The clusters are sorted from the shortest to the longest. The

nucleotide preceding the start and the nucleotide following the median end of all clusters are marked by white lines in the plot. A color key for

the coverage per nucleotide of the PTB-binding motifs is shown on the right. I. Similar to F except UVA crosslinking condition was used.

J. Similar to G except UVA crosslinking condition was used. K. Similar to H except UVA crosslinking condition was used.
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enriched pentamers overlap nicely with the RT stops
(Figure 3H and K), further demonstrating that GoldCLIP
can accurately pinpoint RBP binding sites at single-

nucleotide resolutions [20]. Moreover, comparable results were
obtained using either UVC or UVA crosslinking (Figure 3F�H
and I–K), suggesting that GoldCLIP is readily compatible with

various RBP–RNA fixation conditions.
Discussion

The GoldCLIP method described here skips all gel purification
steps and produces highly-reproducible results, which greatly
simplifies the previously challenging CLIP-based technologies.

In principle, our GoldCLIP method ensures successful con-
struction of sequencing libraries, providing the protein of
interest can be crosslinked with its RNA targets in vivo. More-

over, far less amount of materials will certainly be possible
with an optimized library construction strategy (i.e., irCLIP
[8]). With the help of CRISPR/Cas9, HaloTag can be engi-

neered into the endogenous gene loci [23]. Therefore, Gold-
CLIP is readily applicable to diverse factors to reveal their
endogenous RNA targets at physiological levels. When cou-
pled with barcoded 30 ligation linkers [24], our bead-based

methods can be adopted to perform high-throughput profiling
of multiple RBPs simultaneously, facilitating a more compre-
hensive understanding of ‘‘RBP code”.
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