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Abstract
Diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in diabetes. The quest for both prognostic
and surrogate endpoint biomarkers for advanced DKD and end-stage renal disease has received major investment and interest in
recent years. However, at present no novel biomarkers are in routine use in the clinic or in trials. This review focuses on the
current status of prognostic biomarkers. First, we emphasise that albuminuria and eGFR, with other routine clinical data, show at
least modest prediction of future renal status if properly used. Indeed, a major limitation of many current biomarker studies is that
they do not properly evaluate the marginal increase in prediction on top of these routinely available clinical data. Second, we
emphasise that many of the candidate biomarkers for which there are numerous sporadic reports in the literature are tightly
correlated with each other. Despite this, few studies have attempted to evaluate a wide range of biomarkers simultaneously to
define the most useful among these correlated biomarkers. We also review the potential of high-dimensional panels of lipids,
metabolites and proteins to advance the field, and point to some of the analytical and post-analytical challenges of taking initial
studies using these and candidate approaches through to actual clinical biomarker use.
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SYSKID Systems biology towards novel
chronic kidney disease diagnosis
and treatment

TNFR TNF receptor
VEGF Vascular endothelial growth factor

Introduction

Diabetic kidney disease (DKD) and its most severe manifes-
tation, end-stage renal disease (ESRD), remains one of the
leading causes of reduced lifespan in people with diabetes
[1]. Even early stages of DKD confer a substantial increase
in the risk of cardiovascular disease (CVD) [1, 2], so the
therapeutic goal should be to prevent these earlier stages, not
just ESRD. However, there has been an impasse in the devel-
opment of drugs to reverse DKD, with many Phase 3 clinical
trial failures [3]. The current hard endpoints for the licencing
of drugs for chronic kidney disease (CKD) or DKD approved
by most authorities, including the US Food and Drug
Administration, are a doubling of serum creatinine or the onset
of ESRD or renal death. Some of the trial failures are due to
insufficient power, with low overall rates of progression to
these hard endpoints during the typical trial duration of 3–
7 years. As a result, there is increasing interest in the develop-
ment of prognostic or predictive biomarkers to allow for risk
stratification into clinical trials, as well as eventually for
targeting preventive therapy. There is also interest in the de-
velopment of biomarkers of drug response that are surrogates
for these harder endpoints. Here we review some of the larger
studies published in the last 5 years on prognostic or predictive
biomarkers for DKD. Our emphasis is on illustrating some
key aspects of the approaches being used recently and what
further improvements are needed, rather than systematically
reviewing every sporadic biomarker report.

Biomarkers currently in use

It is well established that the best predictor of future ESRD is
the current GFR and past GFR trajectory [4]. Thus, GFR is the
most common prognostic biomarker being used for predicting
ESRD in both clinical practice and in trials. The Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
and Modification of Diet in Renal Disease (MDRD) equa-
tions, both based on serum creatinine, are commonly used to
estimate GFR. The difference in accuracy for staging between
CKD-EPI and MDRD is slight, with 69% vs 65% overall
accuracy for given stages being found in one study [5].
Serum cystatin C-based eGFR has been proposed as advanta-
geous since, unlike creatinine, it is not related to muscle mass.
Equations based on cystatin C overestimated directly mea-
sured GFR, while equations based on serum creatinine

underestimated GFR in a large study [6]. Others have found
that creatinine agrees more closely than cystatin C with direct-
ly measured GFR [7]. In those with and without diabetes,
cystatin C predicts CVD mortality and ESRD better than
eGFR does [8, 9]. However, this may be because factors other
than renal function that affect ESRD risk, including diabetes,
might also affect serum cystatin C levels, rather than because
cystatin C-based eGFR is more accurately measuring GFR
itself [10].

Albuminuria strongly predicts progression of DKD but it
lacks specificity and sensitivity for ESRD and progressive
decline in eGFR. In type 2 diabetes a large proportion of those
who have renal disease progression are normoalbuminuric
[11, 12]. It has been shown that the coexistence of albuminuria
makes DKD rather than non-diabetic CKD more likely in
people with type 2 diabetes [13]. However, even in type 1
diabetes, where non-diabetic CKD is much less common, al-
buminuria was reported to have a poor positive predictive
value for DKD as only about a third of those with
microalbuminuria had progressive renal function decline
[14]. Albumin excretion also had low sensitivity, as only about
half of those with progressive renal function decline were
albuminuric [14]. Clearly, in evaluating the predictive perfor-
mance of novel biomarkers, investigators should adjust for
baseline eGFR and albuminuria. Historical eGFR data are
not always routinely available. Nonetheless, it is important
where possible to evaluate whether biomarkers improve pre-
diction on top of historical eGFR.

Clinical predictors of DKD in type 1 and type 2
diabetes

Apart from albuminuria and eGFR, other risk factors routinely
captured in clinical records can predict GFR decline. These
have been systematically well reviewed elsewhere [15]. In
brief, established clinical risk factors include age, diabetes
duration, HbA1c, systolic BP (SBP), albuminuria, prior
eGFR and retinopathy status. However, there have been rela-
tively few attempts to build and validate predictive equations
using clinical data that would form the basis for evaluating the
marginal improvement in prediction with biomarkers
[16–18]. Those that have attempted this reported C statistics
for ESRD or renal failure death or prediction of incident albu-
minuria in the range 0.85–0.90 in type 2 diabetes [17, 18]. In
the Joslin cohorts with type 1 diabetes, eGFR slope, albumin
to creatinine ratio (ACR) and HbA1c had a C statistic (not
cross-validated) for ESRD of 0.80 [19–21]. In the FinnDiane
cohort the best model had a C statistic of 0.67 for ESRD [22].
In the Steno Diabetes Center cohort, HbA1c, albuminuria,
haemoglobin, SBP, baseline eGFR, smoking, and low-
density lipoprotein/high-density lipoprotein ratio explained
18–25% of the variability in decline [23]. In the
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EURODIAB cohort predictivemodels for albuminuria includ-
ed HbA1c, AER, waist-to-hip ratio, BMI and ever smoking
with a non-cross-validated C statistic of 0.71 [24].

In summary, most studies have reported at least modest C
statistics for models that contain clinical risk factors beyond
eGFR, albuminuria status and age for renal outcomes in type 1
and 2 diabetes. However, despite this, very few biomarker
studies have evaluated the marginal improvement in predic-
tion beyond such factors. In the SUrrogate markers for Micro-
and Macro-vascular hard endpoints for Innovative diabetes
Tools (SUMMIT) study, for example, while forward selection
of biomarkers on top of a limited set of clinical covariates
selected a panel of 14 biomarkers as predictive, increasing
the C statistic from 0.71 to 0.89, a more extensive clinical risk
factor model already had a C statistic of 0.79 and a panel of
only seven biomarkers showed an improvement in prediction
beyond this [25].

Novel biomarker studies

Ideally, we seek predictive or prognostic biomarkers of the
hard endpoint demanded by drug regulatory agencies (i.e.
doubling of serum creatinine or the onset of ESRD or renal
death). In practice, since many cohorts do not have the neces-
sary length of follow-up or numbers of incident hard end-
points, many studies have sought biomarkers of intermediate
phenotypes such as incident albuminuria, DKD stage 3 or
eGFR slopes above a certain threshold (Table 1).

Studies testing single biomarkers or small sets
of biomarkers

Most biomarker reports in the literature are of single candidate
biomarkers or small sets of candidate biomarkers that may be
assayed in single assays, usually ELISAs, or on multiplexed
platforms, such as the Myriad RBM KidneyMAP panel
(https://myriadrbm.com/, accessed 17 October 2017). Until
recently, most of these studies have taken as their starting
point molecules identified from in vitro studies, cell-based
studies or animal models. For example, animal models identi-
fied kidney injury molecule-1 (KIM-1) [26] and neutrophil
gelatinase-associated lipocalin (NGAL) [27]. Candidates stud-
ied to date probe pathways thought causal in DKD, such as
inflammation, glycation or glycosylation, or endothelial dys-
function. Others focus on glomerular features, such as glyco-
calyx abnormalities, extracellular matrix deposition, podocyte
damage or glomerular fibrosis. Others focus on acute or chron-
ic proximal or distal tubular dysfunction (Fig. 1).

As detailed in Table 1, among these studies of single or few
biomarkers, some of the most frequently reported associations
with DKD-relevant phenotypes are for biomarkers of inflamma-
tion and fibrosis pathways, such as soluble TNF receptors 1 and

2 (sTNFR1 and sTNFR2) [28–33], fibroblast growth factors 21
and 23 (FGF21, FGF23) [25, 34–41] and pigment epithelium-
derived factor (PEDF) [42]. Positive associations have also been
found for biomarkers of endothelial dysfunction, including mid-
regional fragment of proadrenomedullin (MR-proADM) [43],
and cardiac injury, including N-terminal pro-B-type natriuretic
peptide (NT-proBNP) [43]. Copeptin, a surrogate marker for
arginine vasopressin, was associated with albuminuria progres-
sion and incident ESRD independently of baseline eGFR in four
studies [44–47]. Proximal tubular proteins, such as urinary
KIM-1, NGAL [48–50] and liver-type fatty acid-binding protein
(L-FABP) [51–53] have been associated with a faster decline in
eGFR [48]. The data are most consistent for KIM-1, a protein
expressed on the apical membrane of renal proximal tubule
cells, with urinary concentrations rising in response to acute
renal injury [49, 54–56]. Urinary and blood levels of KIM-1
increased across CKD stages and were associated with eGFR
slopes and progression to ESRD during follow-up in some stud-
ies [57, 58], but it has not always been a strong independent
predictor of progression [59, 60]. There are reports of its asso-
ciation with regression of microalbuminuria in type 1 diabetes
[61]. That these associations could reflect a causal role for KIM-
1 was suggested by an analysis of the FinnDiane cohort with
type 1 diabetes [62]. In this analysis, KIM-1 did not predict
progression to ESRD independently of AER. However, using
a Mendelian randomisation approach, based on genome-wide
association study data for theKIM-1 gene, an inverse association
of increased KIM-1 levels with lower eGFR emerged, suggest-
ing a causal link with renal function.

Panels of candidate biomarkers

Each of the above biomarkers have some evidence supporting
their prediction of renal function decline or other DKD-related
phenotypes. However, although they have been investigated as
reflecting specific pathways or processes, in reality there are
very strong correlations between these biomarkers, even be-
tween different pathways. Figure 2 shows the correlation ma-
trix for some of these from the SUMMIT study [25]. Yet, rel-
atively few studies have assayed many of these candidates
together to allow the marginal gain in prediction with each
additional biomarker to be evaluated. Of those that have, some
used a hybrid of discovery and candidate approaches
harnessing bioinformatics and systems biology modelling tech-
niques [63]. So, for example, in the SUMMIT study [25], we
conducted both data mining and literature review to arrive at
sets of candidates that several pathophysiological processes
considered relevant for DKD. We assayed these but also a
larger set of biomarkers (207 in total) that were already
multiplexed with these candidates in the most efficient analysis
platforms that were Luminex and mass spectrometry-based.
Altogether, 30 biomarkers had highly significant evidence of
association with renal function decline when examined singly
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and adjusted for historical and baseline eGFR, albuminuria and
other covariates. In forward selection, 14 biomarkers were se-
lected adjusting for this basic set of covariates (Table 1). On top
of a more extensive set of covariates, seven biomarkers were
selected: KIM-1, symmetric dimethylarginine/asymmetric
dimethylarginine (SDMA/ADMA) ratio, β2-microglobulin
(B2M), α1-antitrypsin, C16-acylcarnitine, FGF-21 and uracil.

Other such approaches are detailed in Table 1. Of particular
note, the Systems biology towards novel chronic kidney dis-
ease diagnosis and treatment (SYSKID) consortium used data
mining and de novo omics profiling to construct a molecular
process model representation of CKD in diabetes [64], choos-
ing ultimately to measure 13 candidates that represented the
four largest processes of the model [65]. The panel that gave
an increase in prediction of renal disease progression was then
reported (C statistic increased from 0.835 to 0.896). In a recent
validation study of nine of the biomarkers, the investigators
reported that the panel was useful in prediction based on an
increase in the adjusted r2 for the prediction model for eGFR
progression from 29% and 56% for those with a baseline
eGFR above and below 60 ml min 1.73 m−2, respectively, to
35% and 64%, respectively, for the biomarker panel on top of
clinical variables [66].

In a study exploring 17 candidate urinary and seven plasma
biomarkers in 67 participants with type 2 diabetes, Agarwal et al
[67] found that urinary C-terminal FGF-2 showed the strongest
association with ESRD, whereas plasma vascular endothelial
growth factor (VEGF) was associated with the composite out-
come of death and ESRD. The analysis was adjusted for baseline
eGFR only and ACR. Of a panel of seven candidates, Verhave
et al found that urinary monocyte chemoattractant protein-1
(MCP-1) and TGF-β1 predicted renal function decline indepen-
dently of albuminuria. Adjustment for baseline eGFR was not
made as it surprisingly did not predict decline in univariate test-
ing [68]. In the Coronary Artery Calcification in Type 1Diabetes
(CACTI) study usingKidney Injury Panels 3 and 5, (Meso Scale
Diagnostics, www.mesoscale.com/en/products/kidney-injury-
panel-3-human-kit-k15189d/ accessed 08 January 2018)
containing seven biomarkers, component 2 of a principal
component analysis containing B2M, cystatin C, NGAL and
osteopontin predicted incident impaired eGFR [69]. Recently,
of eight candidate biomarkers studied after adjustment for
clinical predictors, apolipoprotein A4 (ApoA4), CD5 antigen-
like (CD5L), and complement C1q subcomponent subunit B
(C1QB) independently predicted rapid decline in eGFR in 345
people with type 2 diabetes. A notable feature of this study was
the adjustment for extensive clinical covariates [70].

Thus, there is some, but not complete, overlap in the ex-
plored and selected biomarkers in these panel studies so that
further optimisation of a panel of the best reported biomarkers
could be considered, especially if it focused on including bio-
markers with low correlation with each other. It is also the case
that all of the studies, including our own, are too small and there
is a need for a large-scale collaboration to increase power,
quantify prediction and to demonstrate generalisability [25].

Discovery ‘omic’ approaches

Apart from candidate biomarkers onmultiplexed panels, glob-
al discovery or ‘hypothesis-free’ approaches measuring large

Fig. 2 Correlation matrix of biomarker measures in the SUMMIT project
(www.imi-summit.eu/) showing there is high correlation between
biomarkers that are of interest because of different pathway
involvement. ADM, adrenomedullin; FABP, fatty acid-binding protein;
LAP TGF-β1, latency-associated-peptide; OPN, osteopontin; THP,
Tamm–Horsfall urinary protein; VWF, von Willebrand factor. This
figure is available as part of a downloadable slideset
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Fig. 1 Presumed site of origin of commonly associated biomarkers pre-
dictive of DKD. MMPs, matrix metalloproteases. This figure is available
as part of a downloadable slideset
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sets of lipids, metabolites and amino acids, peptides and pro-
teins are increasingly used [71]. The assay methods have most
commonly used mass spectrometry-based approaches, but
other proteomic methods are now also used [72, 73]. Here
we describe some of the main ‘omic’ studies, focusing on
whether associations are prospective and whether they have
adjusted for baseline eGFR and other relevant covariates.

CKD273 This mass spectrometry-based method combines data
on 273 urinary peptides into a score that has high accuracy in
the cross-sectional classification of eGFR status [74] and has
been developed as a commercial test byMosaiqueDiagnostics
(http://mosaiques-diagnostics.de/mosaiques-diagnostics/,
accessed 18 October 2017). Most (74%) of the peptides are
collagen fragments, with polymeric-immunoglobulin recep-
tor, uromodulin (Tamm–Horsfall protein), clusterin, CD99 an-
tigen, albumin, B2M, α1-antitrypsin and others comprising
the remainder. The collagens, polymeric-immunoglobulin re-
ceptor, clusterin, CD99 antigen and uromodulin were lower
with worse renal function, whereas the others were higher.

CKD273 was cross-sectionally associated with having al-
buminuria or/and eGFR <45 ml min−1 1.73 m−2 in individuals
with type 2 diabetes [75]. In a small study (n = 35) of people
with type 1 and type 2 diabetes the CKD273 score improved
the C statistic for progression to albuminuria to 0.93 compared
with 0.67 when using AER, but these data were not fully
adjusted for baseline eGFR [76]. In 2672 participants from
nine different cohorts, 76.3% with diabetes, CKD273 predict-
ed rapid progression of eGFR better than AER [77]. In a
nested case–control analysis, Roscioni et al reported a signif-
icant but smaller increase in C statistic for albuminuria inci-
dence that was robust to adjustment for eGFR [78]. The most
convincing data to date on the utility of CKD273 come from a
subset of 737 samples obtained at baseline in the Diabetic
Retinopathy Candesartan Trials (DIRECT)-Protect 2. The
CKD273 score was strongly associated with incident
microalbuminuria independently of baseline AER, eGFR
and other variables. In this study, higher baseline eGFR was
associated with incident microalbuminuria, an unusual find-
ing, and CKD273 did not show the expected cross-sectional
association with baseline eGFR [79]. Higher CKD273 score at
baseline was associated with a larger reduction in ACR in the
spironolactone group vs placebo (p = 0.026 for interaction)
[80]. However, after adjustment for baseline ACR, the inter-
action between treatment and CKD273 was not statistically
significant (p = 0.12). The concept that CKD273 will be use-
ful in determining risk of disease progression and may also
stratify treatment response to spironolactone is being more
definitively tested in the ongoing Proteomic Prediction and
Renin Angiotensin Aldosterone System Inhibition
Prevention Of Early Diabetic nephRopathy In TYpe 2
Diabetic Patients With Normoalbuminuria (PRIORITY) trial,
of 3280 participants with type 2 diabetes [81].

Other proteomics A nested case–control plasma proteomics
study yielded kininogen and kininogen fragments as predic-
tors of renal function decline. No adjustment was made for
baseline eGFR but stratum matching was used [82]. Using a
mass spectrometry approach on 252 urine peptides followed
by ELISA validation in a nested case–control design, a panel
including Tamm–Horsfall protein (also known as
uromodulin), progranulin, clusterin and α-1 acid glycoprotein
improved prediction of early decline in eGFR in a cohort of
465 adults with type 1 diabetes, but no adjustment was made
for baseline eGFR [83]. In another urinary proteomics study
with a very small initial discovery step and then single bio-
marker validation in 204 participants, haptoglobin emerged to
be the best predictor of early renal functional decline but no
adjustment for baseline eGFR was made [84].

Metabolomics Several studies have also assessed the poten-
tial of metabolomics in the context of DKD. A recent sys-
tematic review [85] considered 12 studies (although all
included control groups, most were cross-sectional), where
a metabolomics-based approach was applied to identify
potential biomarkers of DKD. The main metabolites were
products of lipid metabolism (such as esterified and non-
esterified fatty acids, carnitines, phospholipids), branch-
chain amino acid and aromatic amino acid metabolism, carni-
tine and tryptophan metabolism, nucleotide metabolism
(purine, pyrimidine), the tricarboxylic acid cycle or uraemic
solutes. The meta-analysis highlighted differences in the results
from studies included and this might be related to differences in
study population, sample selection, analytical platform.

In the SUMMIT study we used mass spectrometry to mea-
sure low-molecular-weight metabolites, peptide and proteins
(144 in all) as well as 63 proteins by ELISA and Luminex in a
prospective design. Adjusted for extensive covariates, the ar-
ginine methylated derivatives of protein turnover ADMA and
SDMA, and more strongly their ratio, were independently
predictive of rapid progression of eGFR. This ratio, along with
metabolites uracil, α1-antitrypsin and C-16 acylcarnitine,
were included in the final panel of seven biomarkers [25].

In summary, there are too many global discovery studies in
which prediction has not been properly assessed on top of
available clinical data, such that replication of findings with
proper adjustments is warranted.

Genetic biomarkersDetailed reviews of the literature on genet-
ic biomarkers of DKDhave been recently published and are not
the focus of this review [86]. In brief, a review of genetic
discovery for DKD concluded that “the search for specific var-
iants that confer predisposition to DKD has been relatively
unrewarding” [86]. The effect sizes of the reported loci are very
small in type 1 [87] and type 2 diabetes [88]. While interna-
tional meta-analysis of data from the SUMMIT and other con-
sortia are underway, given the effect sizes, it seems very
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unlikely that genetic risk scores for DKD will contribute use-
fully as biomarkers for use in the clinical prediction of DKD,
even if they may reveal useful insights into pathogenesis.

MicroRNAs (miRNAs) MiRNAs are small non-coding RNA,
that block protein translation and can induce messenger RNA
degradation, thereby acting as regulators of gene expression
[89]. Several studies have assessed urinary and serum
miRNA in participants with type 1 and type 2 diabetes in rela-
tion to different DKD stages [90–97]. These studies are mostly
very small [95] and most have reported simply cross-sectional
associations of urinary miRNAs with albuminuria status [91,
93–96]. Three studies have used a nested case–control within
prospective cohort design, one of which was in pooled samples
[90, 92, 97]. However, there is no overlap in the specific
miRNAs being reported as being relevant to DKD. Taken al-
together there is not convincing evidence as yet for a clinically
useful role for miRNAs in the prediction of DKD progression.

Are any novel biomarkers actually being used
yet?

In reality, despite all the attempts to develop novel prognostic
biomarkers, few current trials use biomarkers other than albu-
minuria or eGFR as stratification variables or entry criteria.
An exception is the PRIORITY trial [81], in which the
CKD273 panel is being used to risk stratify people into a
spironolactone vs placebo arm.

Biomarkers as surrogates of drug response is not the focus of
this review but we note that there are also few trials using surro-
gate biomarkers as endpoints. One ongoing trial is using urinary
proteomic panels as a surrogate outcome measure [98]. Another
study includes urinary NGAL and KIM-1 as secondary outcome
measures [99], and another is using N-acyl-β-D-glucosidase,
B2M and cystatin C [100]. The SYSKID consortium have ar-
gued that past trials have shown that albuminuria/eGFR are in-
sufficient to predict the individual’s response to renoprotective
treatments in DKD, and that biomarkers more closely
representing molecular mechanisms involved in disease progres-
sion and being targeted by therapies are needed [64]. Recently,
Pena et al found that urinary metabolites previously shown to be
at lower levels in those with DKD than without, decreased in the
placebo arm of a trial but remained stable in the arm treated with
the endothelin A receptor blocker atrasentan over a short,
12 week trial [101]. Further such studies of changes in bio-
markers over time and in response to treatment are needed.

Future perspectives

In summary, despite the large number of reports in the litera-
ture, at present there are few validated biomarkers that have

been clearly shown to substantially increase prediction of
DKD-related phenotypes beyond known predictors. Few
studies have attempted to estimate the marginal improvement
in prediction beyond historical eGFR readings that can be
expressed as the within-person slope or weighted average past
eGFR, as we did in the SUMMIT study [25]. This is an im-
portant omission given the increasing availability of electronic
healthcare records and potential for applying algorithms to
such longitudinal clinical data more easily than measuring
biomarkers. Even where some consistency in findings is ob-
served, the extent of publication bias is unknown. Most im-
portantly, biomarkers other than ACR and eGFR are not being
routinely used to risk stratify individuals into trials or in clin-
ical practice, despite considerable research investment into
DKD biomarkers in recent years.

Large discovery panels have the potential to yield novel
biomarkers, but progress has been hampered by small sample
sizes, inadequate data analysis approaches (including failure
to test the marginal increase beyond established risk factors)
and lack of samples for replication. Futhermore, discovery
approaches that yield panels of biomarkers measured on dif-
ferent platforms do not lend themselves to an easily imple-
mented single panel in the clinical setting.

If this field is to be advanced, there is a need for a concerted
effort to (1) generate and share data on the correlation between
existing candidate biomarkers and biomarkers generated from
available discovery platforms; (2) generate replication and vali-
dation sample and data sets that allow the best panel from avail-
able data to be defined; (3) harness the predictive information that
exists in clinical records in the era of electronic health record
data. Future discoveries should then be evaluated for their mar-
ginal prediction on top of clinical data and validated biomarkers.
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