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Abstract

Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites
export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the
disease and parasite survival in the blood. Unfortunately, most are ‘hypothetical’ proteins of unknown function, and those
that are essential for parasitization of the erythrocyte cannot be ‘knocked out’. Here, we combined bioinformatics and
genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria
parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and
characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the
erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite
and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import
at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein
appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen
in the host cell. Our approach may be generalized to the analysis of hundreds of ‘hypothetical’ P. falciparum proteins to
understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen
export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host–microbial
interactions for prophylaxis against this major human pathogen.
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Introduction

Blood stage infection by Plasmodium falciparum causes all of the

disease symptoms and pathologies associated with malaria [1,2]

and begins when the extracellular ‘merozoite’ stage invades the

mature erythrocyte. The newly formed intracellular ‘ring’ stage

parasite is surrounded by a parasitophorous vacuolar membrane

(PVM). As ring parasites mature to the ‘trophozoite’ stage, a

tubovesicular network (TVN) buds as a series of interconnected

vesicles from the PVM into the host erythrocyte to support import

of nutrients as well raft proteins and lipids from the erythrocyte

membrane [3,4]. In addition to creating an import pathway and

modifying permeation properties of the host membrane by a non-

selective ion channel [5], the parasite alters its host in other ways.

Increasing adhesiveness of the infected erythrocyte to endothelial

cells allows the parasite to escape splenic destruction [6].

Stabilizing the erythrocyte cytoskeleton also protects against the

damaging effects of febrile temperatures [7].

Several hundred parasite proteins predicted to be exported to

the erythrocyte [8–10] presumably underlie the molecular basis of

erythrocyte remodeling in order to make this host cell a suitable

environment for intracellular parasite growth. Most are ascribed as

‘hypothetical’ proteins, and since genetic manipulation of this

parasite remains limited, their role in infection is poorly

understood. Nonetheless, non-essential proteins involved in

antigen export to the erythrocyte as well as stabilization/

destabilization of the erythrocyte cytoskeleton [7,11] have been

increasingly amenable to study. Prevalent molecular and genetic

analyses have thus assessed their contribution to antigen export

and/or function at the host membrane [12,13]. In contrast very
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little is understood at the molecular/genetic level about the

biogenesis of the TVN since genes underlying it are expected to be

essential for infection and cannot be knocked out.

At the time of its discovery, the biosynthesis of sphingomyelin was

recognized to be an import feature of the TVN. Inhibiting a parasite

sphingomyelin synthase activity exported to the erythrocyte [14]

with sphingolipid analogues (such as dl-threo-1-phenyl-2-palmitoyl-3-

morpholino-1-propanol; PPMP) [4] blocked formation of TVN

tubules and their import functions. By blocking the TVN, PPMP

does not immediately kill the parasite but rather arrests its

development, an effect that can be completely reversed by washing

out the drug even after 24 h. To facilitate the identification of genes

that regulate the TVN, we examined the global transcriptional

profile of infected erythrocytes in response to PPMP treatment. By

intersecting these genes with those predicted to be exported to the

erythrocyte and conserved across the genus Plasmodium [10,15], we

identify a protein that is apparently necessary for TVN assembly and

stimulates endovesiculation from the erythrocyte membrane. These

data suggest that although transcription by the malaria parasite is

thought to be largely ‘hard-wired’, a block in erythrocyte remodeling

induces a measurable transcriptional response and reveals parasite

proteins that function in novel pathogenic mechanisms of nutrient

acquisition in the host cell.

Results

To identify proteins linked to the TVN, we examined

transcriptional changes induced in P. falciparum genes in response

to treatment of infected erythrocytes with PPMP for 24 h. We

compared PPMP-treated parasites to rings (the starting popula-

tion) and trophozoites (the mock control) (Figure 1A). In the

PPMP-ring comparison, 373 gene transcripts changed (Figure 1Bi),

and in the PPMP-trophozoite comparison 81 transcripts changed

(Figure 1Bii). Since the number of transcripts and the magnitude

of change is greater in the PPMP-ring dataset relative to the

PPMP-trophozoite dataset, the treated parasites have a transcrip-

tional profile more similar to trophozoites and can be considered

‘‘trophozoite-like’’ (as summarized in Figure 1B and C). This is

consistent with our prior data that show PPMP-treated parasites

export parasite proteins and form electron dense knobs at the

infected erythrocyte membrane [4], properties that are character-

istic of trophozoites. Because PPMP-treated parasites are ‘tropho-

zoite-like’, we focused on changes in transcriptional profiles

relative to the trophozoite stage (Figure 1Bii).

Of the 81 genes that changed with PPMP treatment, 39 were

up-regulated and 42 down-regulated. We then limited the list by

focusing on gene products that met two criteria: those that

contained a host-targeting signal and were conserved between

human and rodent malaria parasites (Figure S1, [8,15]). We

reasoned that these proteins were likely to reflect essential

functions of parasite remodeling preserved throughout the genus.

An intersection of these genes with those that show PPMP-induced

changes in transcriptional profiles relative to the trophozoite stage

yielded two conserved genes (PFD0495c and PFC0435w; Figure 1D)

of which one (PFD0495c) was up-regulated (double asterisk

Figure 1Di). A biological replicate of the array experiment confirmed

that these two gene transcripts were consistently modulated by

PPMP treatment (Figure 1Dii). Nine other genes from the Hiller

secretome and eight others from the Sergeant exportome were

unchanged. In van Ooij et al. [15], we show that PFC0435w is a

TVN junction protein, suggesting that our microarray data may be

predictive of TVN function. To further investigate this we examined

PFD0495c. It is one of 31 upregulated genes in PPMP-treated

parasites whose change in expression cannot be due to develop-

mental delay because then the transcript level would be lower than

the mock-treated control (see Figure 1Eii). It is important to note that

PFD0495c was recognized as a conserved protein (Figure S2) by two,

independent secretome predictions, and was confirmed by RT-PCR

to be specifically up-regulated by PPMP (Figure 1E). To the best of

our knowledge this is the first study that has used a microarray

readout from perturbation of malaria parasites to identify a

candidate gene and follow up on its validation.

To establish export of PFD0495c to the erythrocyte we utilized

piggyBac (a type II transposon element from the lepidopteran

Trichoplusia ni, that specifically excises and integrates at TTAA

target sites) to randomly insert a tagged copy of pfd0495c-gfp in the

genome [15,16] (also shown for reference in Figure 2A). Integrants

detected after 11 days of drug selection were cloned. Clone 1,

which was selected for further characterization, showed a single

site of insertion between PFL1425w and PFL1430c (Figure 2B).

This insertion site is not expected to influence export. Further

clone 1 showed no significant defect on in vitro parasite growth

compared to either the uncloned population or parent 3D7

parasites (Figure 2C, Figure S3, and Protocol S1).

Examination of pfd0495c-gfp parasites by fluorescence microscopy

revealed fluorescence at the erythrocyte membrane (Figure 2Aiii and

Aiv, arrow) and in a few intraerythrocytic structures (arrowhead)

indicating that the protein was exported. However a high level of

fluorescence was also detected in the parasite. To investigate whether

this was a consequence of transgene expression, we used antibodies

to the C-terminus of PFD0495c to examine the distribution of the

native protein. As shown in Figure 3A, the antibodies recognized a

single band of ,130 kDa in infected (the predicted size of the protein

is ,100 kDa, but its apparent decrease in mobility could be due to

the fact that it is transmembrane protein) but not uninfected

erythrocytes. Indirect immunofluorescence microscopy revealed a

high level of fluorescence associated with largely vesicular elements

(Figure 3Bi, small arrowhead) localized in the intraerythrocytic

space. A few tubular elements were also detected in the periphery of

the erythrocyte (Figure 3Bi, arrow). A significant amount of the

green fluorescence exported to the erythrocyte was distinct from the

Maurer’s clefts, although some was located adjacent to clefts

(Figure 3Bii and Biii). Finally a significant amount of fluorescence

was detected within the parasite. The precise significance of high

levels of protein localization in both the parasite as well as the

erythrocyte is unknown. However, the major consequence of

Author Summary

Plasmodium falciparum, the most virulent form of human
malaria, causes disease when it invades a red blood cell. It
sends proteins beyond its borders into the host, changing
the red cell to make it a suitable environment to live in and
to interact with the host immune system. Recent findings
have predicted that hundreds of parasite proteins are
released into the host red cell. However, most of these
proteins have no known function. One major challenge is
to understand what role these proteins play in parasite
growth in order to design drugs or vaccines that block
protein function. In this study, we designed a strategy to
characterize ‘hypothetical’ proteins and use one as an
example to illustrate the principle. We show that this
protein resides within a novel compartment within the red
cell and changes lipid transport at the host surface to
stabilize a major nutrient pathway formed within the
human cell. In principle, this strategy is applicable in
determining the functions of other parasite genes involved
in pathogen–host interactions.

EVP1 Promotes Lipid Import
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Figure 1. Identification of PFD0495c as a candidate gene linked to sphingolipid synthesis. (A) Schematic of P. falciparum maturation from
rings at 12 hours post-invasion (hpi) to trophozoites at 36 hpi. dl-threo-PPMP inhibits parasite sphingomyelin synthase in the TVN and blocks
development of TVN-tubules. For the microarray experiments both the rings and trophozoites served as controls for comparison to the PPMP-treated
parasites. (B) Log odds ratio plots [32,33] of changes in PPMP-treated parasites relative to (i) rings (starting population) or (ii) trophozoites (obtained
by mock treatment). Transcriptional response of treated set is closer to the profile of trophozoite stage parasites, thus PPMP-parasites are
trophozoite-like. Blue indicates genes with log odds ratios greater than zero (373 genes for rings, and 81 for trophozoites). Since the number of genes
that change is greater for rings than trophozoites, the PPMP-treated parasites are more similar to trophozoites and quite distinct from rings. (C)
Summary of transcriptional response suggesting PPMP-parasites are trophozoite-like. (D) (i) Log odds ratio plot of transcriptional changes in PPMP-
treated parasites relative to control trophozoites. Squares indicate genes with a host-targeting (HT) motif that are conserved and syntenic across
species as predicted by Hiller [8]; diamonds indicate genes with a PEXEL motif that are conserved across species as predicted by Sargeant [10], using
an independent algorithm distinct from [8]. Blue squares and red diamonds represent data from experiment 1, cyan squares and brown diamonds
from a biological replicate, experiment 2. Red line delineates genes with log odds ratios greater than zero. **PFD0495c is reproducibly shown to be
upregulated ,3 fold in both experiments 1 and 2 and is recognized by both Hiller and Sargeant to be exported and conserved across species. (ii)
Dendrogram of microarray data sets from two biological replicates showing that of the five conserved genes of the Hiller secretome validated to be
exported [15], only two are regulated by PPMP: 3-fold increase in PFD0495c(**), 2-fold decrease in PFC0435w(*). (E) qRT-PCR confirms that pfd0495c
transcript is up-regulated by PPMP treatment. (i) Ring-stage parasites (12 hpi) were treated with 5 mM PPMP for times indicated. By 12 and 24 hr of
treatment (24 and 36 hpi, respectively) pfd0495c transcript is significantly up-regulated compared to vehicle control. (ii) Transcriptional profile over 48
hr life cycle provided by PlasmoDB. Peak of transcription occurs at 42 hpi. Yellow diamond indicates upregulation in PPMP-treated cells after 24 h
compared to corresponding normal parasites at 36h. The black and red lines indicate transcription levels of the controls used for the array: ring
starting population and mock-treated trophozoite, respectively. Since PPMP-treated parasites are slightly immature compared to mock treated
control, up-regulation of PFD0495c cannot be a result of growth retardation of the treated parasites.
doi:10.1371/journal.ppat.1000118.g001
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transgene expression appears to be displacement of the tagged

protein from the intraerythrocytic vesicles to the erythrocyte

membrane, suggesting it may influence the dynamics of protein

distribution between intraerythrocytic compartments and the

erythrocyte membrane.

Transcription of pfd0495c-gfp is driven by the cam promoter,

which is largely constitutive with peak transcription at the

trophozoite and schizont stages [17,18]. In contrast endogenous

pfd0495c shows peak transcription at the schizont and early ring

stages, although transcriptional activity remains detectable in late

rings and trophozoites [17,18] albeit at lower levels. We examined

protein levels of PFD0495c in both 3D7 wildtype and transgenic

parasites to determine how these lines differed in protein

expression and their response to PPMP treatment. Although

antibodies developed to the C-terminus of PFD0495c were clearly

specific, they were not of sufficient titer to detect varying levels of

protein throughout the asexual life cycle (not shown). We therefore

developed high titer antibodies to the N-terminal repeat region of

PFD0495c which also recognized one major protein band of the

expected size of ,130 kDa in 3D7 late stage schizonts (Figure 3C).

Notably, this band is not detected in ring stage parasites. In the

transgenic line antibodies to GFP and PFD0495c detect a protein

of ,180 kDa, which presumably corresponds to the fusion

protein, in both late trophozoites and schizonts (Figure 3D and

E). This is consistent with the major timing of transcript

production driven by the cam promoter [17,18]. Endogenous

PFD0495c is also detected in the transgenic line at the schizont

stage (Figure 3E). These data suggest expression of endogenous

PFD0495c remains the same in transgenic and wild type parasites.

The former express significant levels of fusion protein earlier (in

trophozoite forms) than the endogenous protein. However,

absolute levels of the fusion protein detected are small compared

to amounts of endogenous protein. Further PPMP treatment

appears to decrease protein expression in wild type and transgenic

parasites. Hence, the modest three-fold increase in transcription

from PPMP treatment (Figure 1D) does not result in a detectable

increase in protein. One explanation is that pfd0495c is also post-

transcriptionally regulated.

The lack of a detectable protein product for endogenous pfd0495c

in ring stages (Figure 3C) even while these stages are known to be

transcriptionally active (Figure S4A, B) was surprising. It is possible

that either the RNA is not efficiently translated or there is high

turnover of protein resulting in low levels of endogenous PFD0495c

in both wild type and transgenic parasites at ring stages (Figure S4C).

Hence the transcriptional/translational profile of PFD0495c is

clearly distinct from a gene like RESA that is transcribed and

synthesized in schizonts and carried over by daughter merozoites

into the newly formed ring. The PFD0495c transcriptional profile is

also distinct from MSP1, another schizont stage merozoite protein

internalized upon invasion. Rather it closely mimics pfhrpii, a

bonafide ring stage transcript, suggesting that PFD0495c is indeed

transcribed (but not efficiently translated) in rings. How this

Figure 2. PFD0495c is exported to the erythrocyte. (A) Export of
pfd0495c-gfp expressed as a transgene inserted into the P. falciparum
chromosome using piggyBac. (Ai) C-terminal position of GFP tag and
schematic of PFD0495c (ER type signal sequence (pink); host targeting
motif (blue); variant repeat sequence (black); predicted transmembrane
domain (green); C-terminus (yellow)). (Aii) piggyBac plasmid used for
transfection. (Aiii) fluorescence image of pfd0495c-gfp expressing
parasites (Aiv) fluorescence and DIC image showing export of
PDF0495c chimera to the erythrocyte (e) periphery (arrow) and
intraerythrocytic spots (arrowhead). (B) Site of insertion of pfd0495c-
gfp into P. falciparum chromosome 12. (Bi) Southern analysis of clone 1
shows a single insertion in the genome with no evidence of
episomes. Genomic DNA (2 mg) from two independent clones (1 and
2) and control plasmid DNA were digested with either BglII or EcoRV
and probed with hdhfr coding sequence. (Bii) Insertion of the
expression cassette within the piggyBac Inverted Terminal Repeats
occurred in chromosome 12 between loci PFL1425w (T complex
protein) and PFL1430c (hypothetical protein) as determined by PCR. It is
remains unknown whether this is the preferred insertion site. We do not
expect this site of insertion to influence export. PFL1425w is expressed

in the asexual stages but does not have a predicted ER-type signal
sequence so would remain within the parasite cytosol. PFL1430c is
expressed in the sexual stages and to a lesser extent in asexual stages. It
does have a predicted ER-type signal sequence but no host-targeting
motif, so it would not be exported beyond the PVM. (C) Growth of clone 1,
uncloned population, and 3D7 parasites over 4 days. Percoll purified
schizonts were seeded at 2–4% schizonts in 2% hematocrit. Duplicate
cultures were monitored by Giemsa-stained smears for two cycles of
growth. *At Day 2, all lines were sub-cultured to 3% late rings, which
matured to 3% trophs/schizonts on Day 3 and indicated parasitemia on
Day 4. Counts are from duplicate experiments. Error is 10%.
doi:10.1371/journal.ppat.1000118.g002
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transcription is linked to PPMP responsiveness is not understood.

One explanation is that there are low levels of endogenous protein in

3D7 wild type parasites at almost all stages (visible upon longer

exposures of the blots in Figure S4C).

Western blots in Figure 3 revealed that transgenic parasites

express the fusion protein a little earlier (by the trophozoite stage)

in the life cycle. Further transgenic but not wild type parasites

treated with 5 mM PPMP for 24 h, display two pfd0495c products

(transgene and endogenous) in schizont stages. Since PFD0495c

associates with vesicular structures within the erythrocyte cyto-

plasm and its transcript is upregulated when TVN development is

blocked by PPMP, we examined the TVN of transgenic parasites

expressing pfd0495c-gfp and compared it to 3D7. We found that

while 3D7 displayed characteristic tubules (Figure 4Ai small

arrows), pfd0495c-gfp expressing parasites contained large mem-

brane loops (Figure 4Aii), suggesting the transgene may influence

TVN organization and/or function. The TVN imports lipids and

raft proteins from the infected erythrocyte surface, a function that

can be can be blocked by preventing TVN-tubule development

with PPMP treatment [3]. As shown (Figure 4Bi) infected

erythrocytes expressing the non-specific transgene pfhrpii-gfp (or

3D7 parasites; not shown) internalize a membrane-impermeable

endocytic lipid marker FM4-64 [19] via TVN tubules, and this

import can be blocked by short-term (30 min) treatment with

PPMP (Figure 4Bii). However, clone 1 expressing a second copy of

pfd0495c continues to internalize FM4-64 despite treatment with

PPMP (Figure 4Biv vs. Bii). After long term (24h) treatment with

PPMP labeling of all intraerythrocytic membranes with a

membrane-permeable lipid, BODIPY-TR-ceramide, revealed

elevated accumulation of numerous membrane loops in the

erythrocyte cytoplasm in clone 1-infected cells, compared to

residual intraerythrocytic structures seen in their 3D7 counterparts

(Figure 4Ci versus Cii and see Figure S5). This difference in TVN

organization was not due to changes in parasite sphingomyelin

Figure 3. PFD0495c is found within intraerythrocytic structures, and protein synthesis of the endogenous and transgene product is
in-phase and overlapping. (A) Western blots show that antibodies to the C-terminus of PFD0495c recognize a single ,130 kDa band in infected
(lane 1) but not uninfected (lane 2) erythrocytes. (B) 3D7 early schizonts were fixed and probed with antibodies to PFD0495c (i) and Skeleton Binding
Protein (SBP1; ii) for immunofluorescence. Endogenous PFD0495c is found associated with the parasite and within intraerythrocytic structures,
vesicular (arrowhead) and tubular (arrow) structures, distinct from Maurer’s Clefts (iii). (C–E) Expression of PFD0495c in 3D7 and transgenic parasites,
in presence and absence of 5 mM PPMP. Parasite equivalents of 16107 either untreated or treated with PPMP were analyzed by SDS-PAGE. 3D7
parasites were probed with antibodies to N-terminal PFD0495c (C), and the transgenic line was probed with antibodies to GFP (D) and PFD0495c (E).
Antibodies to N-terminal PFD0495c recognize the endogenous protein at ,130 kDa (of expected size) in 3D7 and transgenic parasites at schizont
stages (black arrowhead). They also recognize a fusion product at ,180 kDa in transgenic trophozoites (red arrowhead). Antibodies to GFP recognize
two major bands, one at ,180 kDa (transgene product, red arrowhead) and the other at ,25 kDa (GFP, green arrowhead). The N-terminal PFD0495c
antibody, a high titer antibody used at dilutions of 1:5000, readily detects two forms of PFD0495c in the transgenic lines when comparing all blots.
The 130 kDa protein and its GFP fusion show low levels of proteolytic processing, the significance of which has yet to be determined.
doi:10.1371/journal.ppat.1000118.g003

EVP1 Promotes Lipid Import

PLoS Pathogens | www.plospathogens.org 5 August 2008 | Volume 4 | Issue 8 | e1000118



synthase activity inhibited by PPMP (Figure S3) or transfection per

se (Figure 4Bi–ii; [20]). In addition, the effects of PPMP on

parasite growth in the parent line and multiple transgenic clones

were completely reversible upon washing out drug (Figure S3).

This suggests that membrane accumulation seen in Figure 4Cii is

not due to non-specific degeneration of intraerythrocytic structures

as a consequence of parasite death but due to the presence of a

second copy of pfd0495c in the genome. Together these data

support the idea that PFD0495c changes lipid transport at the

infected erythrocyte membrane. This lipid can be delivered to the

parasite independent of sphingomyelin synthase activity and

modulates tubular assembly in the network (Figure 4Biv, 4Cii).

However, transgenic parasites appear to be less sensitive to the

effects of PPMP compared to 3D7. Although they are decreased in

size compared to untreated counterparts, they are slightly larger

than treated 3D7 and consistently show two nuclei rather than just

one nucleus seen in treated 3D7 (Figure 4Cii versus 4Ci). This may

be explained by the fact that transgenic parasites express higher

levels of PFD0495c protein in presence of PPMP.

Next we were interested in determining whether PFD0495c is

essential for TVN development. It is one of only 11 conserved,

exported proteins encoded by syntenic genes in Plasmodium

genomes. We attempted to delete nine of the 11 genes in P.

berghei but were unsuccessful [15], suggesting that they may be

essential genes. Thus independent evidence that PFD0495c

contributed to the TVN formation/function would likely not be

obtained by undertaking knock out experiments. We therefore

chose an alternate approach of loading cargo into resealed

erythrocytes to monitor for effects on parasite invasion or growth.

The principle is that by loading dominant-negative recombinant

fragments of the protein of interest into ghosted erythrocytes and

infecting, endogenous protein interactions will be disrupted, which

will have effects on parasite fitness. Only proteins that function

within the erythrocyte cytosol may be considered, and the domains

that function within the erythrocyte cytosol must be identified.

This approach has been employed to identify known cytoplasmic

determinants of both host and parasite origin needed for parasite

invasion [7,21] and has recently been optimized to support

parasite invasion and growth to the same degree as normal

erythrocytes [21]. To extend it to investigation of a protein of

unknown function, we needed to identify which domain of the

protein was exposed to the erythrocyte cytoplasm. As shown in

Figure 5, selective permeabilization of the erythrocyte membrane

by tetanolysin, which leaves vacuolar and intraerythrocytic

structures intact, suggested that the C-terminus of PFD0495c is

cytoplasmically oriented in the erythrocyte of a late trophozoite/

schizont-infected cell (Figure 5A and B).

To assess the functional importance of this domain during

infection, we introduced 50 mM of a recombinant form of the C-

terminal region of PFD0495c fused to glutathione S-transferase

(GST-PFD0495cCterm; Figure S6) into the cytoplasm of resealed

erythrocyte ghosts [21] (Figure 5Ci). Introduction of GST-

PFD0495cCterm had no significant effect on invasion (measured

as ring formation), but was clearly inhibitory to trophozoite growth.

GST alone or a recombinant fusion of a parasite protein domain

(PfSBPCterm) known to be exposed to the erythrocyte cytoplasm but

not required for infection [12] had no effect (Figure 5 Cii). In

addition, an N-terminal fragment (GST-Nterm) that is thought to be

lumenal has no effect on parasite growth (Figure 5 Cii), which further

validates the topology. High micromolar concentrations of recom-

binant fragments used in these experiments have been used in other

studies at concentrations of peptides and protein domains (40–80

Figure 4. PFD0495c regulates the TVN in the infected erythrocyte cytoplasm. (A) Early schizonts (3D7 i and clone 1 parasites expressing
PFD0495c-GFP ii) were stained with TR-ceramide (red; to visualize the TVN) and Hoechst 33342 (blue; to visualize DNA) and imaged live. Transgenic
parasites display large TVN loops (arrows, panel ii) rather than tubules prominent in 3D7 (arrows, panel i). (B) Transgenic P. falciparum parasites
expressing pfhrpii-gfp (i–ii) or pfd0495c-gfp (iii–iv) treated in absence (i, iii) or presence (ii, iv) of 5 mM PPMP for 30 min were incubated with
membrane impermeable endocytic lipid marker FM4-64 (red) also for 30 min and imaged live. A second copy of pfd0495c promotes internalization of
FM4-64 probe in the presence of PPMP (iv versus ii). (C) Ring stage parasites (3D7 i, pfd0495c-gfp clone 1 ii) were incubated with 5 mM PPMP for 24
hr, stained with TR-ceramide (red) and Hoechst (blue) and imaged live. Clone 1 accumulates an abundance of small loops and tubovesicular
structures compared to few punctate spots in 3D7. Clone 1 parasites also show two nuclei (blue) and an almost two fold increase in size compared to
3D7 (that contain only one nucleus). Arrows show tubules, loops; arrowheads, vesicular structures; small arrowheads, punctate spots. For all panels
erythrocyte (e), parasite (p) and intraerythrocytic structures (arrow). Scale bar, 2 mm.
doi:10.1371/journal.ppat.1000118.g004
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mM; [7,21]) that inhibit functions of known host and parasite

proteins in resealed ghosts. Further the cytoplasmic C-terminus of

both SBP and PFD0495c are highly polar, a feature which is also

shared by predicted cytoplasmic regions of many intraerythrocytic

parasite proteins [22]. Thus inhibition of parasite growth seen by

GST-PFD0495cCterm appears to be a sequence-specific effect,

likely due to its interference with the actions of the endogenous

protein and not due to non-specific effects of charge.

To investigate whether inhibition of trophozoite maturation

could be specifically linked to intraerythrocytic transport functions,

Figure 5. The C-terminus of PFD0495c functions within the erythrocyte cytoplasm and mediates interactions important for
intraerythrocytic development. (A) Topology of PFD0495c in transgenic clone 1 parasites. C-terminus of PFD0495c-GFP is localized to erythrocyte
cytoplasmic face. Anti-GFP signal is detected after tetanolysin permeabilization. Control signal to PPM (aMSP-1) is detected only with saponin treatment.
p, parasite; e, erythrocyte; arrow, erythrocyte membrane; arrowhead, intraerythrocytic vesicle/tubule. Asterisk marks neighboring cell. (B) Schematic of
selective permeabilization experiment. Tetanolysin selectively permeabilizes only the erythrocyte plasma membrane, leaving the PVM intact. Only in
combination with saponin will the PVM be permeabilized and control MSP1 antibodies gain access to epitope. If anti-GFP signal can be detected with
tetanolysin alone, then the C-terminus is present on the cytoplasmic face of the erythrocyte. (Ci) Strategy designed to target PFD0495c cytoplasmic
interactions in 3D7 infected erythrocyte ghosts to identify whether this blocks either parasite invasion or intraerythrocytic growth. GST-fusions of
PFD0495c C-terminus loaded into re-sealed erythrocyte ghosts block interactions of the endogenous protein on the cytoplasmic face of the developing
PVM-TVN. The strategy does not require any prior information about the function of a protein and thus provides a powerful tool to annotate functions of
‘hypothetical’ genes in the P. falciparum genome. (Cii) Resealed erythrocyte ghosts were loaded with 50 mM GST-PFD0495cCterm (Cterm), GST-
PFD0495cNterm (Nterm), GST-SBPCterm (SBP) or GST alone (GST), infected with 3D7 P. falciparum at 2% schizonts and ring (R), trophozoite (T), schizonts
(S) were monitored after 24 h (Ring), 48h (Trophozoite). Giemsa-stained smears indicate parasite morphology shown below.
doi:10.1371/journal.ppat.1000118.g005
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we reduced the concentration of GST-PFD0495cCterm in the

erythrocyte cytoplasm to 10 mM. This allowed growth of enlarged

trophozoites (see Figure 6 Ai–ii) and had no deleterious effect on

parasite protein export (Figure 6Bi and iv; ii and v). However,

GST-PFD0495cCterm clearly disrupted tubular-TVN develop-

ment (compare Figure 6Biii and vi) as well as the next cycle of

parasite growth (Figure 6A), consistent with a defect in maturation

of trophozoites to the schizont stage (not shown). Together these

data suggest that introduction of PFD0495c C-terminus disrupted

TVN assembly. This was not a consequence of non-specifically

blocking parasite protein export to the erythrocyte. Rather it is

likely to specifically block cytoplasmic interactions of PFD0495c,

which mediates important interactions required for stable

maintenance of the TVN. These data reveal that PFD0495c

marks a unique vesicular compartment in the infected erythrocyte

cytoplasm and that its function is linked to the TVN (Figure 7,

where PFD0495c is delineated as Erythrocyte Vesicle Protein 1).

Discussion

The first parasite determinant (a sphingolipid synthase activity)

known to be important to the TVN was identified in the mid-

nineties concomitant with the identification of this organelle [23].

Despite steady progress on characterizing the function of the TVN

in the import of nutrients, lipids and host raft proteins [3,4,24], the

contribution of additional parasite proteins to the network has

remained elusive. Almost fifteen years after the discovery of the

synthase we identified two candidate genes PFC0435w and

PFD0495c that may be linked to the TVN. PFC0435w is shown

to be a TVN junction protein [15] while PFD0495c defines a

novel vesicular membrane compartment in the infected host cell

(and we therefore name it erythrocyte vesicle protein 1 or EVP1)

that shifts lipid dynamics within the host cell. The discoveries of

EVP1 as well as TVN Junction Protein 1 (TVN-JP1; [15]) well

over a decade after the identification of the sphingolipid synthase

was achieved by integrating expression profiling with additional

rapid genetic and functional assays.

The finding that microarray outputs of malaria parasites may be

predictive for function is somewhat contrary to the idea that has

emerged from prior work that the parasite is hard-wired and does not

respond to environmental cues [25]. One reason for the discrepancy

may be that most studies investigate transcriptional change in

response to drugs that kill the parasite. The secondary effects of death

may confound analysis by generating noise that is difficult to filter

out. In contrast PPMP treatments for periods used in these studies

(24 h) arrest parasites at the early trophozoite stage but do not kill

them. Additionally, because secretome gene products are at the host-

pathogen interface and function between the intracellular parasite

and the blood, they may be more sensitive to environmental cues.

The fact that PFD0495c protein levels did not increase concomitantly

with PPMP up-regulation of transcription may be due to several

reasons. One explanation for this discrepancy is that the increase in

transcript levels is too modest to be able to detect an increase in

protein. A second possibility is that the high molecular weight

oligomeric forms inhibit detection of protein at the correct molecular

weight. A third alternative is that pfd0495c messenger RNA is

degraded faster than protein can be made. In fact, transcription of

EVP-1 is detected throughout the lifecycle, dipping during the late

trophozoite stage and peaking at late schizogony (Figure 1Eii;

[17,18]). Shock and colleagues recently undertook global analysis of

steady-state mRNA levels and determined that the half-life of a

transcript is shortest in ring stages and longest in schizont stages [26].

Figure 6. PFD0495c is important for proper development of the TVN. (Ai) Erythrocyte ghosts were resealed with 10 mM GST-
PFD0495cCterm (pink bars) or 50 mM GST alone (black bars) and infected with P. falciparum to achieve ring parasitemias of 2–3% on Day 0 (D0). On
Day 2 in ghosts loaded with 50 mM GST, trophozoites, schizonts and a few new rings were observed. However in D2 ghosts loaded with 10 mM GST-
PFD0495cCterm, only trophozoites were seen (see Aii). On Day 3 (D3), parasitemia in ghosts loaded with GST alone was 12–14% rings, while in ghosts
with 10 mM GST-PFD0495cCterm it went up to only 6–7%. (B) Trophozoite stage parasites in ghosts resealed with 50 mM GST (Bi, ii, iii), or 10 mM GST-
PFD0495cCterm (Biv, v, vi), were infected with: (Bi, iv) 3D7 P. falciparum and probed with anti-HRPII (red), anti-MSP1 (green, to mark the parasite)
and Hoechst 33342 (blue to stain parasite DNA); (Bii, v) clone 1 expressing PFD0495c-GFP and visualized live for green fluorescence; (Biii, vi) 3D7 P.
falciparum stained with the membrane permeable probe TR-ceramide and visualized live.
doi:10.1371/journal.ppat.1000118.g006
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The half-life of EVP-1 is 7 min in rings and 92 min in schizonts [26].

Perhaps a longer half-life is required for efficient translation of evp-1

message. Lastly, higher protein turn-over could offer another

explanation. Since Westerns measure steady-state levels, it is possible

that more protein is synthesized but also rapidly degraded.

Notably, although pfd0495c is up-regulated with PPMP

treatment, schizont stage genes, such as MSP-1, are not. This

suggests that our treated parasite population is well synchronized

and not contaminated with parasites that are beyond the PPMP

block. In fact, MSP-1 is down-regulated with PPMP treatment

indicating that the parasites do not progress through schizogony.

Although PPMP-induced changes are relatively modest, they were

predictive for TVN function of our candidate genes. The use of

microarrays as predictive tools is enormously beneficial in human

malaria parasites that are difficult to manipulate genetically.

Our studies provide a road map to rapidly move from in silico

predictions to initial annotation of these proteins in infection

(Figure S7). piggyBac provides a rapid system to produce transgenic

parasites with which to examine changes in intraerythrocytic

transport functions in antigen export and lipid/nutrient import.

Producing these parasites with such speed enables detailed

characterization of sites of integration as well as other character-

istics to ensure that they are suitable for analysis of a given

transport phenotype. Finally for genes likely to be essential, our

study provides an alternative approach to assessing functional

importance of their gene products for invasion or intracellular

parasite growth. This method relies on the ability to disrupt

endogenous protein interactions by loading dominant-negative

recombinant forms into resealed erythrocyte ghosts. The use of

small peptide domains (of 30–90 amino acids) in GST fusions

circumvents difficulties in expressing recombinant forms of P.

falciparum proteins without codon optimization and is consistent

with published data that small protein domains of P. falciparum are

efficiently expressed as soluble protein in E. coli [27]. Larger, more

insoluble domains can be truncated into smaller domains to

identify specific inhibitory portions. Truncations in conjunction

with secondary structure prediction and production of overlapping

fragments can assist in production of optimal fragments (Murphy

and Haldar, unpublished). In principle this strategy may be

applicable to over 50% of parasite genes involved in pathogen-host

interactions where over half have unknown functions [28].

Our studies of EVP1 suggest that its associated vesicles are distinct

from Maurer’s clefts known to function in protein export to the

erythrocyte. The distribution of EVP1 is also distinct from PVM

proteins such as PfEXP1 and ETRAMPs that are seen in membrane

extensions off the PVM. In this context the intraerythrocytic

compartment to which EVP1 localizes may define a hitherto poorly

defined membrane intermediate in the infected erythrocyte. Our

initial localization studies suggest the bulk of these vesicles are not at

the erythrocyte periphery, although the gene has an elevated rate of

polymorphisms [29–31], suggesting it is under host pressure. Further

expression of a second copy of the gene can change the dynamics of

localization, suggesting function in a novel endovesiculation pathway

or transbilayer lipid movement at the infected erythrocyte

membrane. We speculate that the physiological substrate of EVP-1

could be a variety of lipids, including sphingolipids, although a

definitive substrate remains to be identified. Nevertheless changing

lipid import properties at the infected erythrocyte membrane does

not circumvent the block induced by PPMP (although the parasites

are arrested at a state of two rather than one nucleus), suggesting

additional factors also contribute to proper TVN and membrane

import. We can begin to piece together the sequence of events that

build and maintain the TVN. Sphingomyelin synthesis is a critical

early event. If its activity is inhibited early in the asexual cycle, then

Figure 7. Proposed model for involvement of erythrocyte and parasite rafts, sphingolipid synthesis in the PVM-TVN and EVP1.
Rings (A) bud nascent TVN vesicles (blue) that, in the presence of sphingomyelin synthesis, stabilize into tubules (blue) at the trophozoite stage (B).
dl-threo-PPMP inhibits sphingomyelin synthesis in the TVN and blocks development of TVN-tubules (C). Expression of EVP1-GFP stimulates large
loops (not tubules) in TVN of trophozoites and schizonts (D). Treatment of transgenic cells with dl-threo-PPMP induces many small loops and vesicles
in the erythrocyte (E). These vesicles are stained by a membrane impermeable dye applied to the surface of infected erythrocytes that is usually
excluded from uptake in PPMP-treated cells. EVP1 localizes to these vesicles within the erythrocyte shown in red in panels B, E and F. We suggest that
EVP1 drives vesicular lipid uptake at the infected erythrocyte membrane, and sphingomyelin synthase drives tubule formation and lipid uptake via
tubules possibly to increase the efficiency of uptake. PSAC, Parasite surface anion channel (PSAC) for solute import [5]. TVN/erythrocyte (TVN/e)
junction used by host raft proteins and lipids use to directly access the TVN.
doi:10.1371/journal.ppat.1000118.g007
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the TVN is not properly assembled and nutrients are not imported.

Several pieces of evidence support the idea that EVP1 is required

later in the cycle. The predominant form of the protein is detected in

later stages and not in ring stages. The resealed ghosted erythrocyte

experiments demonstrate that the dominant-negative GST recom-

binant form of the C-terminus inhibits parasite maturation not

invasion. Finally the transgenic line retains sensitivity to PPMP but

has altered TVN properties. Since the TVN is assembled from the

late ring stage to early schizogony, the data unexpectedly reveal that

vesicular import from the erythrocyte membrane at its later stages of

assembly may be important for the maintenance of this network.

Hence the TVN remains a dynamic structure even though its tubules

appear as relatively immobile structures in the erythrocyte

cytoplasm.

The facts that EVP1 is important for the development of the

TVN and is also a member of a conserved set of exported proteins

suggest that the encoding gene pfd0495c is essential for blood stage

infection. Finally, although essential genes cannot yet be knocked

out in blood stage Plasmodium, we nonetheless show that this does

not preclude insight into the complexity of vesicular intermediates

and membrane dynamics utilized by a pathogen to develop an

essential nutrient transport pathway in its mammalian host.

Materials and Methods

Transcriptional response of Plasmodium falciparum-
infected erythrocytes to PPMP treatment

Ring stage parasites were treated with either 5 mM dl-threo-

PPMP or vehicle ([ethanol]f = 0.01%) for 24 hr and were harvested

for RNA isolation. Untreated ring stage parasites were also

harvested. The experimental design served to compare PPMP- to

either mock-treated or ring stage transcripts. This first biological

replicate compared treated to control directly, whereas the second

biological experiment compared each sample (treated or control)

to a reference sample, pooled RNA. RNA was isolated according

to Invitrogen (Carlsbad, CA) protocols using Trizol. First strand

cDNA synthesis and hybridizations were performed according to

previous protocols [18]. Microarray slides were scanned using

GenePix 4000B Scanner and analyzed with GenePix Pro 4.1. The

statistical program R with the add-in package SMA (from Terry

Speed’s group at http://www.stat.berkeley.edu/%7Eterry/zarray/

Software/smacode.html) was used to normalize data [32,33] for

the first biological experiment. Features with a log odds ratio

above zero were considered. Only high quality features and

those with signal two standard deviations above background

were analyzed for both biological replicates, leaving 4580

elements from a total of 8088 oligos for the first and 6221

elements from a total of 7283 oligos for the second experiment.

Quantitative RT-PCR
Quantitative PCR [34] was used to confirm the array results.

Parasites were synchronized by successive rounds of percoll and

sorbitol. Ring stage parasites were treated with either 5 mM dl-

threo-PPMP or vehicle (ethanol = 0.01%) for 3, 6, 12, and 24 h.

RNA was isolated using Trizol (Invitrogen) and treated with

DNAse (Promega) according to manufacturer’s recommendations.

Integrity of the RNA was confirmed with the 2100 Bioanalyzer

(Agilent). First strand cDNA synthesis was initiated by priming 5

mg RNA with 40 mg/mL oligo(dT)12–18 at 65uC for 5 min then

incubating reaction with 0.5 mM dNTPs and 200 U SuperScript

reverse transcriptase (Invitrogen) for 60 min at 42uC. The reaction

was inactivated by heating to 70uC for 15 min. Each qRT-PCR

reaction, done in triplicate, contained 1 ng cDNA, 2 mM primers

(forward 59-GCTCTTTCCATAAATACTGTATT-39, reverse

59-ATGGCCAAACAACATCA-39) and SYBR green chemistry

(Applied Biosystems) and was done using the 7900HT ABI system

according to ABI protocols. Amplification of P. falciparum 18S

ribosomal RNA (gi 160642), an endogenous control, was done in

parallel (forward 59-ACAATTGGAGGGCAAGT-39, reverse 59-

TTGGAGCTGGAATTACC-39) to standardize the amount of

sample in each well. A control reaction that did not receive reverse

transcriptase was included to account for non-specific amplifica-

tion due to contaminating DNA. Relative quantification was

performed using the comparative method, whereby the amount of

pfd0495c was normalized to the endogenous control 18S rRNA.

Control samples receiving only vehicle were used to calibrate each

PPMP sample at that time point.

Transfection using PiggyBac type II transposable element
Full length pfd0495c (gi 23510091) was amplified from gDNA

using the oligos 59-aaaaagcaggcttcgaaggagatagaaccatgATGTATA-

AGAAATGTTTCATTTTATATCCTATCTTTTTTC-39 and

59-agaaagctgggtcTCATCTGTCGTCGGAACGGAAGGAATC-39

(partial attB sites in lower case). Cloning with the Gateway

system was according to Invitrogen protocols. To make the

destination vector, the dhfr gene with control regions and pfcam

promoter and pfhsp86 39 UTR was ligated to pXL-BAC-HH

[16], which contained OriC, the ampicilin resistance gene and

the IR and TR sequences. The transposase plasmid was

described previously [16].

Both integration and transposase plasmids (100 mg each) were

simultaneously electroporated into erythrocytes. Forty-eight hours

after transfection, selection with 2.5 nM WR99210 was initiated.

After 11 days of selection, GFP-expressing parasites were detected.

GFP-expressing parasites were then cloned by limiting dilution at

0.2 parasites/well in a 96-well plate. Fresh media and 1%

hematocrit were added at days 6 and 13, and at day 17

parasitemia of each well was determined by examining thick

smears stained by Giemsa.

PiggyBac insertion site analysis
To confirm integration into the genome, Southern analysis was

performed, digesting 2 mg DNA (either gDNA or plasmid) with 10

units of either BglII or EcoRV. The coding sequence of hdhfr

labeled with 32P was used as a probe. No episomes were

maintained, and only one insertion was detected for both clones

1 and 2 of PFD0495c-GFP. piggyBac insertion sites in the genome

were identified by using an adaptor-ligation-mediated PCR

method (Balu and Adams, unpublished data). Briefly, Rsa I

digested genomic DNA was ligated to compatible adaptors and

used in a PCR reaction with an internal piggyBac primer and a

primer in the adaptor. The PCR products obtained were then

directly sequenced to identify the insertion sites. Insertion of the

expression cassette within the piggyBac Inverted Terminal Repeats

occurred in chromosome 12 between loci PFL1425w (T complex

protein) and PFL1430c (hypothetical protein).

Growth of PFD0495c-GFP transgenic line and 3D7
To compare growth of pfd0495c-gfp expressing parasites to 3D7,

Giemsa-stained blood smears were counted to determine numbers

of rings, trophozoites and schizonts. Percoll-purified schizonts

were mixed with erythrocytes at ,2% parasitemia in 2%

hematocrit. Blood smears were made every 24 hr from day 0 to

4, and medium was changed daily. At day 2 ring stage parasites

were subcultured to 3% parasitemia. The experiment was

conducted in duplicate, and the counter was blinded to sample

identity. There were no detectable differences in growth among
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the uncloned population, clone 1 PFD0495c-GFP, and 3D7

parasites.

Antibodies to PFD0495c
In rabbits, anti-peptide antibodies were raised against the C-

terminus of PFD0495c: peptide LKFQHDQEFLNYFKRYQDFN

(NeoMPS, San Diego, CA). Lysates of 16106 parasite or uninfected

erythrocyte equivalents were analyzed by SDS-PAGE and probed.

Antibodies reacted with a single band only in parasite lysates.

Anti-peptide antibodies were raised against the N-terminal

repeat region of PFD0495c: peptide DDNVNHTNDDKVNHTN

(Affinity Bioreagents, Golden, CO). Infected cell pellets were lysed

in hypotonic buffer (10 mM Tris, 2 mM EDTA, 2 mM EGTA,

pH 7.4) and centrifuged at 100,000 6 g to pellet membranes.

Pellet fractions of 16107 parasite equivalents were separated by

SDS-PAGE and probed with indicated antibodies.

Immunofluorescence
To determine localization of endogenous PFD0495c, 3D7

trophozoites were harvested and probed with antibodies to

PFD0495c and Skeleton Binding Protein (SBP1) and appropriate

secondary antibodies conjugated to FITC or rhodamine. Nuclei

were stained with 10 mg/mL Hoechst 33342. Images were

captured using DeltaVision Deconvolution microscopy as de-

scribed [3]. A high-resolution 3-D image was captured with an

Olympus IX inverted fluorescence microscope and a Photometrix

cooled CCD camera (CH350/LCCD) driven by DeltaVision

software (softWoRx) from Applied Precision Inc (Seattle, WA).

Twelve to fifteen 200 nm optical sections were taken through the

depth of the cell, and DeltaVision software was used to deconvolve

images and reconstruct a 3-D view.

To determine effects on export in resealed erythrocytes, ghosts

that were infected with 3D7 were probed with antibodies to

HRPII (Santa Cruz) and MSP1 (MR4) and appropriate secondary

antibodies conjugated to FITC or rhodamine. Nuclei were stained

with 10 mg/mL Hoechst 33342. Cells were viewed using

DeltaVision Deconvolution microscopy as described [3].

Monitoring endocytic lipid import with the lipid marker
FM4-64

FM4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)-

phenyl)hexatrienyl)pyridinium dibromide) is a fluorescent lipid

marker that has been used to study endocytosis in eukaryotic cells

[19]. To visualize active uptake of FM4-64 from the erythrocyte

plasma membrane during intraerythrocytic growth, trophozoite

stage parasites expressing either PfHRPII-GFP or PFD0495c-GFP

were incubated in the absence or presence of 5 mM dl-threo-PPMP

for 30 min at 37uC. Infected erythrocytes were washed three times

in PBS then stained with 16 mM FM4-64 for 30 min at 37uC.

Nuclei were stained with 10 mg/mL Hoechst 33342, and cells were

washed with PBS three times. Cells were imaged live with

DeltaVision Deconvolution microscopy [3].

Visualization of tubo-vesicular network by BODIPY-Texas
Red C5 Ceramide staining

To visualize TVN membranes, erythrocytes or ghosts infected

with indicated P. falciparum strain were washed free of serum and

stained with 2.5 mM BODIPY-Texas Red C5 ceramide (N-((4-(4,4-

difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene-3-yl)phenoxy)-

acetyl)sphingosine, Invitrogen) for 15 min at 37uC. Nuclei were

stained with 10 mg/mL Hoechst 33342. The cells were washed

in RPMI 1640 three times and viewed live by DeltaVision

Deconvolution microscopy as described [3].

Determination of PFD0495c-GFP topology using
Tetanolysin

Selective permeabilization of the erythrocyte plasma membrane

using tetanolysin was performed according to published protocols

[35]. Erythrocytes infected with PFD0495c-GFP expressing

parasites (38–42-h post-invasion) were probed with antibodies to

GFP (Molecular Probes) or MSP1 (Anthony Holder) and

appropriate secondary antibodies conjugated to rhodamine or

Cy-5. Cells were viewed using DeltaVision Deconvolution

microscopy as described [3].

Expression of GST fusions
To produce recombinant GST-PFD0495c cargo, the C-terminus

(amino acids 795 to 833) was amplified using oligonucleotides 59-

aaaaagcaggcttcGATTTAGATATTGATGATACTTTAAAGTT-

TCAGCATGATCAA-39 and 59-agaaagctgggtcTCATCTGTC-

GTCGGAACGGAAGGAATC-39 (partial attB sites in lower-

case). To produce GST-Repeat cargo, the repeat region was

amplified using oligonucleotides 59- aaaaagcaggcttcGATGATG-

TGGTGAGAAATATTAACGATGATGTG-39 and 59 agaaagc-

tgggtcTCAACTATTATTAGTTTTTATATCACCTGCATTA-

TTCTTTTTATCATTATA-39. To produce GST-SBP cargo,

the C-terminus of SBP (amino acids 239 to 337) was amplified

using oligos 59-aaaaagcaggcttcGGAAAAAGAAAAGGATATT-

ACCTAGCAAAAAAAC-39 and 59-agaaagctgggtcTTAAGGTT-

TCTCTAGCAACTGTTTTTGTTGTGG-39. Cloning into the

Gateway system was performed with pDEST15 (Invitrogen).

Expression of recombinant fusions was induced with 1 mM

Isopropyl-(beta)-D-thiogalactopyranoside (IPTG) (Eppendorf) for

2 h at 37uC. Protein purification was performed with glutathi-

one resin (Clontech) in non-denaturing buffer containing

50 mM Tris, pH 8, 50 mM NaCl, 5 mM EDTA.

Loading GST-fusions into erythrocyte cytoplasm and
subsequent infection by Plasmodium falciparum

Erythrocytes were loaded with GST cargo and resealed

according to previous protocols [21]. Schizonts were percoll-

purified to .95% purity and mixed with loaded ghosts at 2%

parasitemia. Blood smears were made from a hematocrit of 20–

30% and stained with Giemsa for 7 minutes, rather than 2 min, in

order to better visualize ghosts. Numbers of rings, trophozoites

and schizonts were enumerated by a counter who was blinded to

sample identity. Parasite morphology was monitored for any

differences. Images of blood smears were taken by light

microscopy with a Zeiss Axioskop upright microscope and Nuance

spectral camera/un-mixing system (Cambridge Research and

Instrumentation).

Supporting Information

Protocol S1 Supplementary Materials/Methods and References

Found at: doi:10.1371/journal.ppat.1000118.s001 (0.05 MB

DOC)

Figure S1 List of genes containing a host-targeting motif

conserved between P. falciparum and P. berghei [3].

Found at: doi:10.1371/journal.ppat.1000118.s002 (0.38 MB TIF)

Figure S2 Sequence of PFD0495c.

Found at: doi:10.1371/journal.ppat.1000118.s003 (2.13 MB TIF)

Figure S3 Comparative analyses of effects of PPMP on

maturation of parent 3D7 and clones 1 and 2 expressing

PFD0495c-GFP.

Found at: doi:10.1371/journal.ppat.1000118.s004 (2.89 MB TIF)
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Figure S4 Detailed analysis of microarray and protein expres-

sion data of PFD0495c.

Found at: doi:10.1371/journal.ppat.1000118.s005 (4.08 MB TIF)

Figure S5 Quantification of parasite-induced structures within

the erythrocyte cytosol in 3D7 wild-type and PFD0495c-GFP

transgenic parasites treated with 5 mM PPMP for 24 h.

Found at: doi:10.1371/journal.ppat.1000118.s006 (1.33 MB TIF)

Figure S6 Coomassie-stained SDS-PAGE gels of GST-fusions of

C-terminal domains of PFD0495c and SBP, and N-terminal

PFD0495c repeat region expressed in E. coli (.90% purity)

purified under native conditions.

Found at: doi:10.1371/journal.ppat.1000118.s007 (1.46 MB TIF)

Figure S7 Flow diagram of strategy to identify and functionally

characterize P. falciparum proteins exported to the erythrocyte and

required for blood stage parasite infection.

Found at: doi:10.1371/journal.ppat.1000118.s008 (0.99 MB TIF)
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