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Abstract: Assembled structures of dyes have great influence on their coloring function. For example,
metal ions added in the dyeing process are known to prevent fading of color. Thus, we have
investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized
indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of
indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the
complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore,
2D chirality was observed.
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1. Introduction

Dyes are colored substances capable of absorbing certain wavelengths of light intensively. Many
of the dyes have a large π-conjugated system, and the color of dyes is highly influenced by the
electronic state of the system. In consequence, assembled structural changes often induce the change
in the electronic state of the π-conjugated system and result in color variations. Color changes via
polymorphism, phase transition, etc. have been reported elsewhere [1–3]. Thus, an understanding
of how molecular assembly of dyes is constructed is necessary for the design of a coloring function.
Dyes often have a planar structure due to the large π-conjugated system, resulting in an affinity to
the substrate onto which they adsorb. This is why the assembled structures formed by the dyes
on substrates have been analyzed in detail [4–6]. A scanning tunneling microscope (STM) [7] is an
instrument suitable for imaging the surface structures on a substrate, because STM is capable of
resolving the surface structures at the atomic level, and the ordered molecular images of self-assembled
structure of dyes can be observed [8–12].

Indigo dye is an organic dye exhibiting a distinct blue color, used for dyeing jeans blue. The indigo
molecule has a planar structure due to the presence of a π-conjugated system and thus tends to assemble
on a HOPG or metallic substrate. In our previous study, the surface structures of alkyl-derivatized
indigo (CnIND, n = alkyl chains length) shown in Figure 1a were analyzed via STM, which revealed
that CnIND formed characteristic monolayer structures on HOPG [13]. In this study, we synthesized
[Cu(CnIND)2], the copper(II) complex of CnIND, shown in Figure 1b and observed the surface
structures formed by [Cu(CnIND)2] using STM. This investigation was carried out to understand the
influence of the addition of metal ions, which often stabilizes the adsorption of dyes on the substrate.
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This phenomenon is known as mordanting. Mordanting [14,15] is the process of adding metal ions
(Cu, Fe, etc.) in a dyeing process, so as to prevent the color loss of a dyeing object. The role of metal
ions is estimated as filling the possible space between dye molecules and to stabilize the adsorption
of the dye molecules onto a dyeing object. By comparing the surface structures of CnIND and
those of [Cu(CnIND)2], the mechanism of stabilization via mordanting may be found. In addition,
[Cu(CnIND)2] exhibited a unique structure exhibiting 2D and 3D chirality, which is described later.
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2.2. Comparison between [Cu(C16IND)2] and C16IND 

In the previous study, the self-assembled structures on HOPG of C16IND were analyzed via 
STM [13]. C16IND molecules formed a dimer via hydrogen bonds, and alkyl chains were 
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Figure 1. Chemical structures of (a) CnIND and (b) [Cu(CnIND)2].

2. Results and Discussion

2.1. STM Images of [Cu(C16IND)2] on HOPG

We successfully observed the structures of a self-assembled monolayer formed by [Cu(C16IND)2]
on a HOPG surface using STM. The obtained STM image and structural model of the monolayer
are shown in Figure 2a,b, respectively. [Cu(C16IND)2] molecules formed a lamellar structure, with
complex moieties imaged as bright spots in the STM image, since π-conjugation is generally more
conductive than aliphatic alkyl chains. Alkyl chains are assumed to align in the darker regions between
the bright spots of an STM image and are interdigitated as shown in Figure 2b. Interdigitated alkyl
chains are known to have large van der Waals interactions between alkyl chains and the HOPG
substrate, seeming to play a great role in controlling the surface structures of [Cu(C16IND)2].
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Figure 2. (a) Scanning tunneling microscope (STM) image of self-assembled [Cu(C16IND)2] at a
HOPG/o-dichlorobenzene interface. Image area: 10 × 10 nm2; Vset = 1.02 V, Iset = 981 pA; (b) structural
model for [Cu(C16IND)2]; unit cell parameters: a = 1.5 nm, b = 3.6 nm, θ = 48◦. The unit cell is taken so
as to include the alkyl chains of a C16IND.

2.2. Comparison between [Cu(C16IND)2] and C16IND

In the previous study, the self-assembled structures on HOPG of C16IND were analyzed via
STM [13]. C16IND molecules formed a dimer via hydrogen bonds, and alkyl chains were interdigitated
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via van der Waals interactions. In addition, C16IND molecules formed a dislocation structure at every
three molecules, as shown in Figure A1. This dislocation along the molecular lamella axis derives from
the matching between the alkyl chains and the HOPG substrate lattice [16,17].

Compared with C16IND, the copper complex [Cu(C16IND)2] formed an orderly structure, and
the dislocation was not observed (Figure 3). The ordered structure of [Cu(C16IND)2] indicates that
adding copper ions to C16IND results in a stabilization of the adsorbed structures. The result may
suggest the effect of mordanting, which is to add metal ions in a dyeing process.
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2.3. 2D Chirality of [Cu(C16IND)2]

“2D chirality” of the adsorbed molecules on the substrate has been intensively studied [18–20].
When a prochiral molecule adsorbs onto a substrate, the molecular inversion is restricted and the
adsorbed molecules can be distinguished as enantiomers (λ and δ in Figure 4).

[Cu(C16IND)2] on the HOPG surface exhibits distinguishable 2D chirality, as shown in Figure 4.
In the λ-structure shown in Figure 4a, molecular columns aligned counter-clockwise (CCW) versus the
HOPG substrate lattice. The angle between them is approximately 10◦. On the other hand, Figure 4b
shows a δ-structure, and the molecules were aligned by the same angle but in a clockwise (CW)
orientation versus the HOPG lattice.
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2.4. STM Images of [Cu(C18IND)2] and [Cu(C20IND)2] on HOPG

Alkyl chains lengths are known to influence the self-assembled structures of alkyl-derivatives [21–26].
Varying the chain lengths results in changing the intermolecular and molecule-substrate interactions,
leading to a surface structural variation. Thus, we investigated surface structures formed by
[Cu(C18IND)2] and [Cu(C20IND)2] with longer alkyl chains than [Cu(C16IND)2]. As a result,
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[Cu(C18IND)2] and [Cu(C20IND)2] molecules were found to form basically similar structures
to [Cu(C16IND)2]. These molecules formed a similar lamellar structure, and alkyl chains were
interdigitated as shown in Figure 5a,b. The alkyl chains of [Cu(C18IND)2] seem to be aligned along
the HOPG substrate lattice, suggesting that the surface structure matches well with the HOPG lattice
and becomes stable.
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Figure 5. (a) STM image and structural model of self-assembled [Cu(C18IND)2] at a
HOPG/o-dichlorobenzene interface. Image area: 10 × 10 nm2; Vset = 1.41 V, Iset = 697 pA; unit
cell parameters: a = 1.5 nm, b = 3.7 nm, θ = 41◦; (b) STM image and structural model of [Cu(C20IND)2].
Image area: 10 × 10 nm2; Vset = 1.41 V, Iset = 697 pA; unit cell parameters: a = 1.4 nm, b = 4.0 nm,
θ = 40◦.

2.5. The Effect of 3D Chirality of [Cu(C20IND)2] to 2D Self-Assembly

[Cu(C20IND)2] also exhibited a different surface structure (namely type 2 structure shown in
Figure 6a) from that described in Figure 5b (type 1 structure). The 3D chirality of [Cu(IND)2] shown in
Figure 6c seems to cause the molecules to form these different structures. The coordination structure of
[Cu(IND)2] was calculated using Materials Studio 7.0 software [27] (Accelrys Inc., San Diego, CA, USA),
in which the density functional theory (DFT) calculations were performed to optimize the structure
using generalized gradient approximation (GGA) proposed by Perdew et al. (PBE) [28]. Figure 6b
shows the calculated structure, and it revealed that [Cu(IND)2] adopts the twisted square planar
geometry due to the steric repulsion between coordinated indigo moieties in a complex. Owing to the
twisted structure, 3D chirality of [Cu(IND)2] appears as shown in Figure 6c. As a result, Λ-structure
and ∆-structure can be distinguished.
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Compared with the type 1 structure of [Cu(C20IND)2] shown in Figure 5b, the type 2 structure
shown in Figure 6a has a longer b-axis. Since the b-axis is taken along the orientation of alkyl chains,
the difference in the b-axis length suggests a variation in the assembled structure of alkyl chains.
When the twisted complex adsorbs onto the HOPG substrate, a space between the complex and the
substrate appears due to the non-planarity. Thus, the end group of alkyl chains can enter into the space
depending on the situation. In the type 1 structure, the short length of the b-axis indicates that the
end group of alkyl chains is inserted into the space. On the other hand, this insertion is blocked by
the phenyl groups of the indigo in the type 2 structure. Hence, the steric structure of [Cu(C20IND)2]
molecules in the type 1 structure is different from that in the type 2 structure. In other words, the 3D
chirality of [Cu(C20IND)2] induced a structural difference.

3. Materials and Methods

3.1. Materials and Identification

All chemicals including indigo were purchased from Tokyo Chemical Industry, Aldrich or
Kanto Chemicals, and used without further purification. Elemental analyses were performed
on a Perkin-Elmer 2400II CHN analyzer. IR spectra were measured on a JASCO FT/IR-4200
spectrophotometer using KBr pellets. UV-vis absorption spectra were measured on a JASCO V-750
spectrophotometer using chloroform as a solvent. The concentration of the sample for UV-vis
absorption spectra was 1.0 × 10−5 mol·L−1.

3.2. Synthesis of the Copper(II) Complex of Hexadecyl-Indigo ([Cu(C16IND)2])

N-hexadecyl-indigo (C16IND) was synthesized by the scheme in a previous study [13]. A total of
3.0 mmol (1.5 g) of C16IND in 40 mL of N,N-dimethylformamide was added to a 200 mL recovery flask
equipped with a magnetic stirring bar. After the addition of 1.5 mmol (0.27 g) of copper(II) acetate,
the mixture was stirred and refluxed for 8 h. After the reflux, a blue suspension was obtained. The
suspension was cooled to room temperature, and then filtrated under suction to remove the solvent.
The copper(II) complex of hexadecyl-indigo: [Cu(C16IND)2] was obtained as blue crystals in ca. 25%
yield. Elemental analysis, Calc: C, 74.28; H, 7.99; N, 5.41%, Found: C, 73.92; H, 8.29; N, 5.35%; IR (KBr):
ν 1694 cm−1 (C=C), 1702 (C=O), 2848–2950 (C-H); UV-vis λmax (ε): 299 nm (5.7 × 104 L·mol−1·cm−1),
350 nm (2.1 × 104 L·mol−1·cm−1), 651 nm (2.1 × 104 L·mol−1·cm−1), 752 nm (1.1 × 104 L·mol−1·cm−1,
shoulder peak).

3.3. Synthesis of the Copper(II) Complexes of Octadecyl-Indigo ([Cu(C18IND)2]) and
Icosyl-Indigo ([Cu(C20IND)2])

We synthesized [Cu(C18IND)2] and [Cu(C20IND)2] with the same scheme as that with which
[Cu(C16IND)2] was synthesized described above, using C18IND and C20IND respectively instead
of C16IND. [Cu(C18IND)2]: Elemental analysis, Calc: C, 74.86; H, 8.31; N, 5.14%, Found: C, 74.84;
H, 8.17; N, 5.39%; IR (KBr): ν 1695 cm−1 (C=C), 1702 (C=O), 2847–2960 (C-H); UV-vis λmax (ε): 299
nm (5.5 × 104 L·mol−1·cm−1), 348 nm (2.1 × 104 L·mol−1·cm−1), 650 nm (2.2 × 104 L·mol−1·cm−1),
752 nm (9.5 × 103 L·mol−1·cm−1, shoulder peak). [Cu(C20IND)2]: Elemental analysis, Calc: C, 75.39;
H, 8.61; N, 4.88%, Found: C, 75.58; H, 8.74; N, 4.71%; IR (KBr): ν 1695 cm−1 (C=C), 1702 (C=O),
2847–2948 (C-H); UV-vis λmax (ε): 299 nm (5.7 × 104 L·mol−1·cm−1), 349 nm (2.2 × 104 L·mol−1·cm−1),
650 nm (2.2 × 104 L·mol−1·cm−1), 752 nm (1.1 × 104 L·mol−1·cm−1, shoulder peak).

3.4. Scanning Tunneling Microscope (STM) Measurements

Surface structures formed by [Cu(C16IND)2], [Cu(C18IND)2], and [Cu(C20IND)2] on HOPG
were observed via STM (Digital Instruments Co., Santa Barbara, CA, USA: Nanoscope II/E). STM
scans were performed at the o-dichlorobenzene/HOPG interface, at room temperature and under
ambient pressure. STM tips were prepared via electrochemical etching from Tungsten wire (0.25 mmφ,
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Nilaco, Tokyo, Japan). The details of the measuring conditions are as follows: each solution
of [Cu(C16IND)2], [Cu(C18IND)2], and [Cu(C20IND)2] in o-dichlorobenzene was prepared in a
concentration of 1.0 mmol·L−1. A drop of this o-dichlorobenzene solution was applied onto a freshly
cleaved surface of HOPG (ZYB grade, NT-MDT, Moscow, Russia). Then, STM scans were performed at
the solution/HOPG interface in constant current mode. The STM images were corrected and analyzed
via WSxM 5.0 software [29] (Nanotec, Madrid, Spain), using the HOPG substrate images recorded
for calibration. Structural models fitting in the STM images were made by the Materials Studio 7.0
software (Accelrys Inc., San Diego, CA, USA).

4. Conclusions

We investigated the two-dimensional self-assembled structures formed by copper(II) complexes
of alkyl-derivatized indigo ([Cu(CnIND)2]). STM images revealed that the assembled structures of
the complexes were more stable than those of alkyl-derivatized indigos alone, suggesting the effect of
mordanting. [Cu(CnIND)2] formed orderly lamellar structures on a HOPG substrate, and their alkyl
chains were interdigitated. In the STM study of [Cu(C16IND)2], 2D chirality was observed; λ-structure
and δ-structure were distinguished by molecular orientation. In the STM study of [Cu(C20IND)2],
two types of structures with different lengths of b-axis were observed. The difference between these
structures was found to derive from the 3D chirality of [Cu(C20IND)2]. In summary, [Cu(CnIND)2]
formed orderly surface structures involving 2D chirality, and these surface structures were altered by
3D chirality.

Author Contributions: Akinori Honda, Keisuke Noda, Yoshinori Tamaki and Kazuo Miyamura conceived and
designed the experiments; Akinori Honda and Keisuke Noda performed the experiments; Akinori Honda and
Keisuke Noda analyzed the data; Akinori Honda wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
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STM scanning tunneling microscope
HOPG high orientated pyrolytic graphite
2D two-dimensional
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Appendix A

In the previous study, a dislocated structure of C16IND was observed as shown in Figure A1.
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