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Abstract

Background and objectives

Immunoglobulin a nephropathy (IgAN) is the most common primary glomerular disease in

the world, with different clinical manifestations, varying severity of pathological changes,

common complications of crescent formation in different proportions, and great individual

heterogeneous in clinical outcomes. Therefore, we aim to develop a machine learning (ML)

based predictive model for predicting the prognosis of IgAN with focal crescent formation

and without obvious chronic renal lesions (glomerulosclerosis <25%).

Materials

We retrospectively reviewed biopsy-proven IgAN patients in our hospital and cooperative

hospital from 2005 to 2017. The method of feature importance of random forest (RF) was

applied to conduct feature exploration of feature variables to establish the characteristic var-

iables that are closely related to the prognosis of focal crescent IgAN. Multiple ML algo-

rithms were attempted to establish the prediction models. The area under the precision-

recall curve (AUPRC) and the area under the receiver operating characteristic curve

(AUROC) were applied to evaluate the predictive performance via three-fold cross validation

(namely 2 training sets and 1 validation set).

Results

RF was used to screen the important features, the top three of which were baseline esti-

mated glomerular filtration rate (eGFR), serum creatine and triglyceride. Ten important
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features were selected as important predictors for modeling on the basis of data-driven and

medical selection, predictors include: age, baseline eGFR, serum creatine, serum triglycer-

ides, complement 3(C3), proteinuria, mean arterial pressure (MAP) and Hematuria, cres-

cents proportion of glomeruli, Global crescent proportion of glomeruli. In a variety of ML

algorithms, the support vector machine (SVM) algorithm displayed better predictive perfor-

mance, with Precision of 0.77, Recall of 0.77, F1-score of 0.73, accuracy of 0.77, AUROC of

79.57%, and AUPRC of 76.5%.

Conclusions

The SVM model is potentially useful for predicting the prognosis of IgAN patients with focal

crescent shape and without obvious chronic renal lesions.

Introduction

IgA nephropathy (IgAN) is the most common primary glomerular disease in the world, account-

ing for more than 40% of primary glomerular diseases. Its adult incidence rate is more than 2.5/

100,000 / year, which is the main cause of end stage renal disease (ESRD) [1–3]. 20–40% of

patients with IgAN will develop ESRD within 10–20 years [4]. In the latest MEST-C Oxford typ-

ing in 2017 [5], crescent is an independent predictor of prognosis in patients with IgAN, and

there is also a proportional dependence between crescent proportion and prognosis. Therefore,

the prognosis of IgAN with different proportion of partial crescent formation is different, and the

proportion of crescent can be included in the prognosis study. However, the variable of crescent

is not included in the two prediction models recommended by the 2021 KDIGO guidelines, due

to the crescent is highly related to race/ethnicity and the use of immunosuppressants after biopsy

[6]. Of note, this problem could be solved by the importance ranking function of RFs, from which

the importance score of each factor would be applied to reflect its own contribution. According to

importance scores, the predictive value of clinicopathological parameters should be explored to

predict ESRD for a more suitable prective model for Chinese IgAN patients. This indicates that

there is a clear need for a predictive model that includes crescents as an important predictor to

predict disease progression in IgAN.

Many previous prediction models for IgAN have used standard modeling with a small

number of predefined the risk of demographic, clinical, and pathological variables predicting

the progression of IgAN to end-stage renal disease [6–10]. However, previous studies have

mostly used standard statistical methods, such as univariate and multivariate Cox regression

models and proportional hazard models, which only evaluate the relationship between variable

quantum sets and ESRD progress, and potentially ignore the important interactions between

variables and their effects on ESRD progress. Compared with conventional statistical methods,

machine learning (ML) has better ability to identify variables related to clinical outcomes, bet-

ter predictive performance, better complex relationship modeling ability, robustness to data

noise, and the ability to learn from multiple data modules. ML’s application in furthering

nephrology research and practice are myriad [11, 12]. Recently, Random forest and ANN

model have been applied to predict progression to ESRD in IgAN patients [13, 14]. ML algo-

rithms display better predictive performance and lower errors.

In this study, multiple ML algorithms were applied to predict ESRD progression in IgAN

patients. The purpose of this study is to successfully identify patients at high risk of progression

to ESRD to facilitate early and effective treatment. Since the updated Oxford classification
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included crescent, the prediction model has included the crescent into the prediction model of

predictive variables. However, they only simply include C0, C1 and C2, without subdividing

the size, proportion and nature of the crescent. Therefore, this study innovatively incorporated

the crescent index of different size, proportion and nature into the prognosis study of IgAN.

Materials and methods

Study population

In this study, the 662 biopsy-proven IgAN patients were collected from Guangdong Provincial

Hospital of Chinese Medicine and Shanxi Traditional Chinese Medicine Hospital between May

2005 and November 2017. The inclusion criteria were as follows: (1) Age> 18 years old;(2)

Patients with biopsy-proven primary IgAN;(3) glomerulosclerosis proportion< 25%;(4) Patients

were followed for more than 12 months unless ESRD occurred within 12 months. Patients who

met any of the following criteria were excluded: (1) insufficient clinical and pathological data;(2)

Patients with secondary causes of mesangial IgA deposits, such as IgA vasculitis and systemic

lupus erythematosus, or those with comorbid conditions, such as diabetes mellitus, were

excluded;(3) atypical IgAN, such as crescentic IgAN;(4) tubulointerstitial fibrosis caused by drugs

and ischemia;(5) a biopsy specimen with less than 8 total glomeruli. This study was approved by

the research ethics committee of Guangdong Provincial Hospital of Chinese Medicine, IRB num-

ber: B2016-155-01. This study was a retrospective study, all data were completely anonymized,

and the ethics committee waived the requirement for informed consent.

Dataset collection and definitions of variables

In this study, baseline demographics, clinical and pathology data were collected for all patients

during renal biopsies, including age, gender, mean arterial pressure (MAP) defined as diastolic

pressure plus one-third of the pulse pressure, 24-hour protein excretion and estimated glomer-

ular filtration rate (eGFR) calculated by the Chronic Kidney Disease Epidemiology (CKD-EPI)

Collaboration equation. Regardless of the duration and dose, the type of immunosuppression

or renin-angiotensin-aldosterone system (RAAS) blockades therapy that the patient received

was recorded. Immunosuppression was defined as treatment with corticosteroids and/or corti-

costeroid-sparing agents (including cyclophosphamide, azathioprine, mycophenolate, cyclo-

sporine or tacrolimus). RAAS blockades included any exposure to angiotensin-converting

enzyme inhibitor and/or angiotensin receptor blocker after biopsy. The updated Oxford Clas-

sification (MEST-C) for IgAN was applied in this study [5]. Renal biopsy samples from all

patients were examined by pathologist and nephrologist. The crescent is subdivided according

to the volume, composition and proportion of the crescent. The volume of the crescent body is

defined as the large crescent body accounting for 50% or more of the renal sac volume and the

small crescent body accounting for 50% or less of the renal sac volume. The components of

crescent body can be divided into cellular crescent, cellular fibrous crescent and fibrous cres-

cent. The cellular crescent consists of> 75% cells and< 25% fibrous matrix. The fibrous cellu-

lar crescent consists of 25%-75% of the cells and the remaining fibrous matrix. Extracapillary

fibrosis of fibrous crescents consists of> 75% matrix and< 25% cells. The crescent ratio is

defined as the proportion of the number of glomeruli with crescents in the total number of glo-

meruli, and the cell / fibrous cell / fibrous crescent is evaluated according to the relative ratio.

ESRD was defined as eGFR<15 mL/min/1.73 m2 for more than 3 months or initiation of dial-

ysis or transplantation. In this study, we defined clinical outcome: the combined event (Dou-

bling of serum creatinine, 50% reduction in eGFR, 15% reduction in eGFR within 1 year, 30%

reduction in eGFR within 2 year, ESRD or death) after diagnostic kidney biopsy.
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ML algorithms

In the study, a variety of representative supervised classification ML algorithms were applied

to build models. Three prediction models, Support Vector Machine (SVM) model, Random

Forest (RF) Model and Naïve Bayes (NB) Model were used to build a prediction model based

on the variables selected above. SVM, RF and NB are “black box”models, where the function

connecting the predictor variables with response is unclear to the user. The receiver operating

characteristic (ROC) curve, precision-recall curve (PRC) and lift curve were used to assess the

predictive performance as previously described.

Feature selection and model construction

In this study, 39 clinical, pathological and demographic parameters were applied to predict the

progression status of IgAN. To explore the better models, random forest algorithm which can

assess the importance of all variables was adopted to evaluate the importance rankings of cor-

related predictive factors related to the prognosis of IgAN. In order to compute the importance

of each predictive feature, all the features were used in the RF method. It is not enough to use

the rank of important features of random forest for feature selection, but also to consider the

characteristics of clinical specialty. Thus, in this study, we established and further evaluated the

performance of 2 kind of models without and with crescent in a cohort of IgAN patients from

China. Additionally, ML models (random forest classifier, support vector machine, Naïve

Bayes, etc.) were cross-verified with 3 fold cross-validation (namely 2 training sets and 1 vali-

dation set). The detailed process of model cross-validation is shown in Fig 1. The ML algo-

rithms were implemented using Python 3.8.5 (https://www.python.org) with scikit-learn

(https://scikit-learn.org/stable/).

Statistical analysis

Continuous variables were presented as the means and standard deviations for normal distri-

butions and as medians and interquartile ranges for non-normal distributions. The categorical

Fig 1. All ML models were cross-verified with 3 fold cross-validation.

https://doi.org/10.1371/journal.pone.0265017.g001
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variables were presented as the number and percentages. The independent sample t test was

used for normally distributed continuous variables, Mann-Whitney U test for Non-normally

distributed continuous variables and Pearson Chi-Square test or Fisher’ s exact probability test

for categorical variables. The P value<0.05 was considered statistically significant. Statistical

analyses were performed using IBM SPSS Statistics software (Version 25.0. IBM Corporation,

NY, USA).

Results

Clinical and pathological characteristics of the population

From May 2005 and November 2017, 374 biopsy-proven IgAN patients were recruited eventu-

ally (Fig 2), whose characteristics are shown in Table 1. In our cohort, 17.6% of the 374 IgAN

patients reached the combined event within a median follow-up time of 32.99 (25.86–54.68)

months.

The demographic, clinical, pathologic and treatment characteristics of patients at the time

of biopsy with and without progression to the combined event were retrospectively compared.

The median age of the enrolled patients in this cohort at IgAN diagnosis was 31(26–40) years,

of whom 175(46.8%) were male. At the time of renal biopsy, patients had the median urinary

protein excretion of 0.85(0.43–1.57) g/24 h and the mean eGFR was 108.3±39.49 mL/min/1.73

m2. The median MAP was 93.17(84.25–100) mmHg, and 31% (116) of the patients presented

with hypertension history. In total, 119 (31.8%) patients had crescents in glomeruli. Of these

patients, 105 (28.1%) had crescents in less than 1/4 of glomeruli (C1 group), and 14 (3.7%) had

crescents in more than 1/4 of glomeruli (C2 group). Regarding MEST Oxford scores in all

patients, 82.4% were M1, 13.4% were E1, 53.2% were S1, and 14.5% were T1/T2. After diagno-

sis, 247 (66%) patients received RAAS blockade, which include Angiotensin-Converting

Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB). During the course, 140

(37.4%) patients received immunosuppressants including corticosteroids, cyclophosphamide,

ciclosporin, mycophenolate mofetil and tripterygium glycosides, as appropriate. There was no

significant difference in the proportion of patients who were treated with RAAS blockade

Fig 2. Enrollment of IgAN patients in our cohort.

https://doi.org/10.1371/journal.pone.0265017.g002
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between the none-endpoint group and the endpoint group (66.9% vs 62.1%, p = 0.458). The

proportion of Endpoint group who were treated with immunosuppressants was more higher

than the none-endpoint group (48.5% vs 35.1%, p = 0.041). Other demographic, clinical, and

laboratory data of the IgAN patients are shown in Table 1.

Table 1. Baseline cohort characteristics.

Factors Overall (N = 374) None-Endpoint (N = 308) Endpoint (N = 66) P value

Male, n (%) 175(46.8) 153(49.68) 22(33.33) 0.016�

Age(years) 31(26–40) 31(26–38.75) 31.5(25–46) 0.502

Follow up, n (%) 32.99(25.86–54.68) 33.13(26.04–55.71) 31.62(24.73–50.19) 0.288

Disease course, months 7(1–24) 7.5(1–24) 5.5(1–24) 0.821

eGFR, mL/min/1.73m2 108.3±39.49 106.92±35.76 114.75±53.46 0.259

Serum creatine, umol/L 80.7±29.74 81.14±28.47 78.66±35.28 0.54

Proteinuria, g/24h 0.85(0.43–1.57) 0.8(0.43–1.49) 1.03(0.48–2.32) 0.055

Hematuria (red blood cells/high-power field) 51(22.75–146.4) 51(23–145.5) 51(19.95–173.75) 0.998

BUN, mmol/L 4.77(4–5.78) 4.8(4.04–5.77) 4.57(3.69–5.8) 0.455

Uric Acid, mmol/L 341.5(280–414.25) 343.5(280–416) 335(278–406) 0.752

Cholesterol, mmol/L 4.6(4–5.39) 4.6(4–5.38) 4.69(4.11–5.46) 0.562

Triglyceride, mmol/L 1.2(0.9–1.76) 1.2(0.89–1.7) 1.33(0.88–2.31) 0.224

HDL-C, mmol/L 1.27(1.05–1.53) 1.24(1.03–1.55) 1.35(1.09–1.53) 0.338

LDL-C, mmol/L 2.82(2.32–3.5) 2.89(2.34–3.48) 2.76(2.22–3.51) 0.752

Blood glucose 4.85(4.42–5.1) 4.85(4.4–5.1) 4.79(4.44–5.11) 0.731

TP, g/L 67(62–71.53) 67.3(62.98–71.98) 65.5(59.38–70.35) 0.031�

Serum albumin, g/L 40.9(37.18–43.9) 41.1(37.7–44.15) 38.8(34.28–42.7) 0.005�

Serum IgA, g/L 3.05(2.46–3.5) 3.05(2.45–3.54) 3.05(2.47–3.49) 0.959

Serum C3, g/L 1.02(0.9–1.11) 1.02(0.9–1.1) 1.02(0.93–1.14) 0.585

SBP, mmHg 120(110–130) 120(110–130) 121.5(112.75–134) 0.149

DBP, mmHg 79.5(70–86) 80(70–85) 78.5(70–89.25) 0.419

MAP, mmHg 93.17(84.25–100) 92.84(83.67–100) 93.67(86.5–102.84) 0.239

Hypertension (%) 116(31) 93(30.19) 23(34.85) 0.458

Diabetes (%) 6(1.6) 4(1.3) 2(3.03) 0.287

Hepatitis (%) 28(7.5) 26(8.44) 2(3.03) 0.195

CVD (%) 1(0.3) 1(0.32) 0(0) 1

Smoke (%) 15(4) 12(3.9) 3(4.55) 0.735

Alcohol (%) 10(2.7) 9(2.92) 1(1.52) 1

M1 (%) 308(82.4) 249(80.84) 59(89.39) 0.098

E1 (%) 50(13.4) 39(12.66) 11(16.67) 0.386

S1 (%) 199(53.2) 157(50.97) 42(63.63) 0.061

T1 (%) 46(12.3) 35(11.36) 11(16.67) 0.209

T2 (%) 5(1.3) 3(0.97) 2(3.03) 0.197

C1 (%) 105(28.1) 85(27.6) 20(30.3) 0.556

C2 (%) 14(3.7) 10(3.25) 4(6.06) 0.42

RAAS blockade (%) 247(66) 206(66.9) 41(62.1) 0.458

Immunosuppressant (%) 140(37.4) 108(35.1) 32(48.5) 0.041�

The demographic, clinical, laboratory data and treatment of the IgAN patients. C3, complement 3; TP, total protein; MAP, mean arterial pressure; eGFR, estimated

glomerular filtration rate; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; BUN, blood urea nitrogen; SBP, Systolic blood

pressure; DBP, Diastolic blood pressure; CVD, cardiovascular disease, RAAS, renin-angiotensin-aldosterone system. Immunosuppressants include Steroids,

cyclophosphamide, ciclosporin, mycophenolate mofetil and others.

� P < 0.05

https://doi.org/10.1371/journal.pone.0265017.t001
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Feature importance and selection

To identify crucial predictors of the combined event, we employed the Random Forest (RF)

method to calculate the feature scores of all features (S1 Table shows all features). The feature

selection method of our modeling considers the following principles to select the features that

participate in the modeling: (1) The top features found by the feature selection algorithm. (2)

The selected features cover different aspects as far as possible, such as patient pathological

characteristics, clinical characteristics, epidemiological characteristics, and so on. (3) The

selected features are as independent as possible, that is, to minimize the strong correlation

between multiple variables. (4) Generally speaking, the amount of data of a mathematical

model should be at least 10 times the number of independent variables of the model, on the

other hand, the number of features involved in modeling should not be too much. The mathe-

matical model established by too many variables can be poorly explained. (5) Focus on the

principles and practical experience of the medical profession. Therefore, based on the above

principles, we selected the top ten features including: baseline estimated GFR, serum creatine,

serum triglycerides, proteinuria, MAP and Hematuria, C3, age, crescents proportion of glo-

meruli, Global crescent proportion of glomeruli. All of these features displayed a strong corre-

lation with the combined event (Fig 3 shows the feature importance). A total of 10 prioritized

features were selected as important predictors for modeling on the basis of the ranking of

important features and medical selection, as shown in Table 2. The establishment of prediction

models of predictors can be roughly divided into three aspects: patient epidemiological charac-

teristics: age; clinical features: baseline estimated GFR, serum creatine, serum triglycerides, C3,

proteinuria, MAP and Hematuria (red blood cells/high-power field); pathological findings:

crescents proportion of glomeruli, Global crescent proportion of glomeruli.

ML models establishment and evaluation

In the study, above ten important features were applied to IgAN with crescent models, however,

the first eight important features were applied to IgAN without crescent models. For the selection

of a better predictive model, several widely applied ML algorithms were compared, including sup-

port vector machine (SVM), Random Forest (RF), and Naïve Bayes (NB), by using the receiver

operating characteristic curve and precision-recall curve. In IgAN with crescent models, the

AUROCs of the SVM model, RF model and NB model are 0.7957, 0.6443 and 0.7078, respectively

(Fig 4). The AUPRCs of the SVM model, RF model and NB model are 0.765, 0.472 and 0.637,

respectively (Fig 5). In IgAN without crescent models, the AUROCs of the SVM model, RF

model and NB model are 0.831, 0.7041 and 0.5959, respectively (Fig 6). The AUPRCs of the SVM

model, RF model and NB model are 0.716, 0.567 and 0.567, respectively (Fig 7). Receiver operat-

ing characteristic curves and precision-recall curves both show the superiority of the SVM model.

Table 3 summarizes the IgAN with crescent model metrics, including precision, recall,

F1-score (higher is better), AUROC, and AUPRC (higher is better). The Support Vector

Machine model exhibited the highest Precision (0.77), Recall (0.77), F1-score (0.73), Accuracy

(0.77), AUROC (0.7957) and AUPRC (0.765). Table 4 summarizes the IgAN without crescent

model metrics. The Support Vector Machine model exhibited the highest Precision (0.78),

Recall (0.68), F1-score (0.56), Accuracy (0.68), AUROC (0.831) and AUPRC (0.716).

Performance evaluation of excellent models with Lift

The Lift curve is one of the most commonly used methods for ML classification. Lift reflects

how many times the accuracy of prediction is improved compared with random selection

without prediction model. Lift reveals the effect of the prediction model, it should be as steep

as possible. To obtain a more reliable evaluation of the performance of the prediction model,
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this study will comprehensively apply ROC curves and Lift curves to verify the performance of

the model based on different algorithms. In IgAN with crescent models, the larger the Lift

value of the SVM prediction model is, the better the model effect. As shown in Fig 8, the SVM

model predicted the conbined endpoint event of IgAN, Lift = 3.65, which is 3.65 times more

accurate than random prediction, and none conbined endpoint event of IgAN, Lift = 1.38,

which is 1.38 times more accurate than random prediction. The Lift curve basically shows a

downward trend, also suggesting that the SVM model has good prediction performance.

Models calibration

The Calibration of the prediction model is an important index to evaluate the accuracy of a

disease risk model in predicting the probability of an individual outcome event in the future. It

Fig 3. Contribution of the included features of the combined event in IgAN patients. HDL-C, High density

lipoprotein cholesterol, LDL-C, Low density Lipoprotein cholesterol, TP, Total serum protein.

https://doi.org/10.1371/journal.pone.0265017.g003
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reflects the consistency between the predicted risk and the actual occurrence risk of the model,

so it can also be called consistency. Good calibration indicates that the prediction model has

high accuracy; poor calibration indicates that the model may overestimate or underestimate

the risk of disease. As shown in Figs 9 and 10, relatively speaking, the blue Random Forest

model and the black Support Vector Machine Model calibration curve are better.

Discussion

Crescents have been implicated as an important marker of poor prognosis of IgAN. However,

a validation study of crescent failed to validate the increased risk of renal function progression

Table 2. Predictors selected using random forest and the corresponding feature importance score.

Features Importance score

Baseline eGFR, ml/min per 1.73m2 0.066177

Serum creatine, mmol/L 0.059347

Serum triglycerides, mmol/L 0.054830

Proteinuria, g/d 0.049275

MAP, mm Hg 0.043798

Hematuria (red blood cells/high-power field) 0.043790

Serum C3, g/L 0.043743

Age at biopsy, years 0.036900

Crescent proportion of glomeruli, % 0.013346

Global crescent proportion of glomeruli, % 0.006574

eGFR, estimated glomerular filtration rate; MAP, mean arterial pressure; C3, complement 3.

https://doi.org/10.1371/journal.pone.0265017.t002

Fig 4. Receiver operating characteristic (ROC) curves of the three candidate models for the prognosis of IgAN.

AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0265017.g004
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in Chinese IgAN patients in the C1 or C2 groups compared to the C0 group [15]. The discrep-

ant findings may be due to the different definitions of outcomes. In addition, considering the

inherent nature of crescents, some IgAN patients with more crescents may occur in an early or

Fig 5. Precision-recall curves of the three candidate models for the prognosis of IgAN.

https://doi.org/10.1371/journal.pone.0265017.g005

Fig 6. Receiver operating characteristic (ROC) curves of the three candidate models for the prognosis of IgAN

without ’Crescent proportion’ and ’Global crescent proportion’.

https://doi.org/10.1371/journal.pone.0265017.g006
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acute stage of renal damage. Therefore, we defined clinical outcome: the combined event after

diagnostic kidney biopsy. However, it has been reported that the proportion of glomerulo-

sclerosis >25% as chronic pathological lesions which may interfere with crescents as active

lesions on the prognosis of IgAN, which are both associated with a decreased renal survival

rate in IgAN patients [16]. Previous studies have shown that the pathological types of renal

biopsy in IgAN patients are mainly non-obvious chronicity lesions (glomerulosclerosis <25%,

T score<2) [6, 16, 17]. However, in IgAN patients without obvious chronic lesions, few predic-

tion model have studied the effect of crescent index of different size, proportion and nature

into the prognosis study of IgAN. Therefore, 374 patients with IgAN without obvious chronic

Fig 7. Precision-recall curves of the three candidate models for the prognosis of IgAN without ’Crescent

proportion’ and ’Global crescent proportion’.

https://doi.org/10.1371/journal.pone.0265017.g007

Table 3. Summary of the comparison of IgAN with ’Crescent proportion’ and ’Global crescent proportion’ model performance.

Prediction model Precision Recall F1-score Accuracy AUROC AUPRC

Support Vector Machine 0.77 0.77 0.73 0.77 0.7957 0.765

Random Forest 0.69 0.70 0.61 0.70 0.6443 0.472

Naïve Bayes 0.74 0.74 0.69 0.74 0.7078 0.637

https://doi.org/10.1371/journal.pone.0265017.t003

Table 4. Summary of the comparison of IgAN without ’Crescent proportion’ and ’Global crescent proportion’ model performance.

Prediction model Precision Recall F1-score Accuracy AUROC AUPRC

Support Vector Machine 0.78 0.68 0.56 0.68 0.831 0.716

Random Forest 0.65 0.68 0.63 0.68 0.7041 0.567

Naïve Bayes 0.70 0.72 0.70 0.72 0.5959 0.567

https://doi.org/10.1371/journal.pone.0265017.t004
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Fig 8. The Lift curve with Support Vector Machine model. “Class 0” indicates IgAN patients with none conbined

endpoint progression, and “Class 1” indicates IgAN patients with the conbined endpoint progression.

https://doi.org/10.1371/journal.pone.0265017.g008

Fig 9. Calibration plots of the three candidate models for the prognosis of IgAN with ’Crescent proportion’ and

’Global crescent proportion’.

https://doi.org/10.1371/journal.pone.0265017.g009
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lesions were retrospectively analyzed and multiple ML algorithms were applied to explore a

useful and practical predictive model.

Some baseline characteristics of patients at renal biopsy between negative and positive end-

point groups are significantly different so it is possible to use baseline characteristics at renal

biopsy to predict the conbined event of IgAN patients. To date, several clinical and pathologi-

cal parameters have been associated with a high risk of kidney disease progression in IgAN.

Previously identified risk parameters for IgAN include gender [13, 18, 19], age [6, 13, 18–20],

baseline serum creatinine concentration [13, 18–20], eGFR [6, 18], SBP [6, 13, 18–20], DBP [6,

13, 18–20], proteinuria [6, 13, 18–20], hematuria [20], serum UA concentration [20], serum

albumin concentration [18], treatment type[6, 13, 18] and histology grading [6, 13, 18–20].

In this study, as the risk factors identified above, the clinical and pathological factors

included baseline eGFR, serum creatine, Serum triglyceride, proteinuria, MAP, hematuria, age

at biopsy, Serum C3, Crescent proportion of glomeruli and Global crescent proportion of glo-

meruli. Based on the random forest algorithm, the top two important features were baseline

eGFR and serum creatine, which are the demonstrated strong predictors for IgAN prognosis.

Hypertriglyceridaemia at the time of diagnosis, which may have a role in tubulointerstitial

lesions, is the important independent risk factor of poor outcome in IgAN [21]. In addition to

the well known risk factors, proteinuria, age and MAP, hematuria was independently associ-

ated with IgAN progression [22]. It is reported that the formation of crescents is related to the

degree of mesangial C3 deposition. Low serum levels of complement C3 is often associated

with poor renal outcomes in IgAN [23]. Consistent with our previous study, global crescent

and Serum C3 are the independent risk factor for IgAN progression and poor renal outcome

in IgAN patients without significant chronic kidney damage [24]. Further more, Latest study

show that crescent is independently associated with higher mortality in IgAN [25]. Thus, all of

Fig 10. Calibration plots of the three candidate models for the prognosis of IgAN without ’Crescent proportion’

and ’Global crescent proportion’.

https://doi.org/10.1371/journal.pone.0265017.g010
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these ten prioritized predictive features described above have clinically reasonable

explanations.

In our study, several prevailing algorithms were applied to identify severe progress or poor

prognosis of IgAN. Our raw dataset showed an obvious imbalance with 66 target events (the com-

bined event) and 308 negative samples. Such imbalance is very common in clinical research.

Therefore, we adopted the method of three-fold cross-validation and over-sample to improve the

stability and generalization of the model and reduce the effect of imbalance. Comparing 3 ML

models, SVM model outperformed the other 2 ML algorithms including Random Forest, and

Naïve Bayes. To evaluate the prediction and accuracy of various ML models, we calculated and

compared areas under the receiver operating characteristic curve (AUROC). Although SVM of

IgAN without crescent model has higher AUROC, SVM of IgAN with crescent model has higher

AUPRC and F1 values. AUROC is a general metric for model selection, however it is not the only

reference. In clinical practice, particularly for our imbalanced dataset, the AUPRC and F1-score

are more practical evaluation indicators for ML. Based on this requirement, we preferred the

SVM of IgAN with crescent model rather than other models. SVM is an algorithm for identifying

a high-dimensional boundary that distinctly classifies data points.

Notable strengths of our study include our choice to select patients who were without obvi-

ous chronic renal lesions (glomerulosclerosis <25%) at the time of biopsy which can clearly

identify the effect of crescents on the prognosis of IgAN. In our study, two-center IgAN

cohort, we excluded crescentic IgAN in order to predict the progress of IgAN with a focal cres-

cent shape. Besides, we identified the important features using a more objective ML approach.

Further more, in addition to the definitive outcome of ESRD or death, we also incorporated a

50% reduction in eGFR, doubling of serum creatinine, 15% reduction in eGFR within 1 year,

30% reduction in eGFR within 2 year, in our combined event to implement variable selection,

which is more appropriate to evaluate the prognosis of patients with IgAN with manifestations

of different severity. Lastly, and perhaps most importantly, we apply ML algorithms, which

can build complex models and make accurate decisions rather than traditional statistical meth-

ods. The strength of our study is that we selected important predictors for modeling on the

basis of feature scores and medical selection to avoid ignoring non-statistically-significant

parameters or non-clinical parameters.

Our study was subject to some limitations. First of all, only Chinese patients were included in

the model, and prediction for other populations was not evaluated. Secondly, our cohort was not

large enough and our data was lost and unbalanced. As such, predictive ability was impaired by

the relatively small numbers of positive events resulting from data imbalance. Thirdly, due to the

limitation of the retrospective study design, the duration and dosage of IS therapy were not col-

lected, more prospective studies with a larger cohort are needed to support the present findings,

retrospective analyses alone are not sufficient to determine the treatment choice for patients with

IgAN. Further more, external validation is required to prevent overfitting. Finally, this model has

been developed and tested in retrospective cohorts which could not show the effect of the model

in guiding treatment. However, the current prediction model is an effective and simple method to

predict the progression of IgAN patients to the conbined event.

Conclusion

In conclusion, ML algorithms exhibit an excellent predictive performance for IgAN patients

with a focal crescent shape. Among these algorithms, support vector machine model, show the

higher sensitivity, AUROC and Lift, can be used to predict the prognosis of IgAN patients

with a focal crescent shape. However, we also identified that eGFR, serum creatine, Serum tri-

glyceride, proteinuria, MAP, hematuria, age, Serum C3, Crescent proportion of glomeruli and
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Global crescent proportion of glomeruli had important impacts on the predictability of the

models. In future work, further prospective multicenter studies with multiple datasets are

needed to evaluate the validity of these model and to reduce the influence of the imbalance in

the target variables.
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