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Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites
in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of
noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs
and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively
constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained
noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known
genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively
correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate
toward the 5’ end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding
sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and
neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with
genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total
number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have
occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate
is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.
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Introduction

Protein-coding genes typically comprise a rather small part
of many mammalian genomes [1-4]. Although it has been
known for some time that at least some of the noncoding
portion of the genome must be functional, the significance
and nature of the encoded function has remained elusive.

Large-scale comparative genomic studies are, however,
beginning to reveal the extent of potentially functional
noncoding DNA. The publication of the draft mouse genome
sequence enabled the first genome-wide comparative analysis
of mammalian (human-mouse) noncoding DNA [2]. One
intriguing suggestion arising from this study is that, although
approximately 5% of small (50-base pair [bp]) segments in the
human genome are under purifying selection, less than half
of these segments are located in protein-coding sequence.

Much work has since been undertaken in an attempt to
elucidate the nature of this functional noncoding DNA. In
particular, large-scale computational comparative analyses
have revealed extensive evolutionary conservation of non-
coding DNA in multiple mammalian and other species [5-13].
In addition to computational approaches, high-density
oligonucleotide arrays have also revealed extensive conserva-
tion of nonrepetitive human sequences in other mammals
[14]. Subsequent work has indicated that, whilst a number of
conserved regions in noncoding DNA sequences may be
undiscovered protein-coding genes, or partially overlap with
existing genes [9], the evidence does not support a protein-
coding function for such conserved regions in many cases
[6,11]. It should be noted, however, that sequence conserva-
tion per se does not necessarily imply functionality and may
reflect variation in the mutation rate [15].

One means of accounting for the effects of varying
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mutation rate involves calibration of the nucleotide sub-
stitution rate in putatively functional regions with that in a
nearby sequence which is assumed to be evolving neutrally.
This approach enables estimation of selective constraint,
defined as the proportion of new mutations occurring at a
locus which is strongly deleterious and removed by purifying
selection [16], and of the rate of deleterious mutation, an
important parameter in population genetics. This method
has been previously employed, both to estimate the extent of
purifying selection [2] and the genomic deleterious mutation
rate in mammalian coding and noncoding DNA [17,18].

We adopted this approach to address the following
questions: (i) How does the magnitude of selective constraint
in murids vary between different types of noncoding DNA
(e.g., introns, UTRs, and intergenic regions), (ii) What are the
relative genomic contributions of the different classes of
noncoding DNA to the total number of constrained bases in
the murid genome, (iii) Do the numbers of selectively
constrained noncoding sites vary with gene function, and
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Synopsis

Most DNA can typically be divided into two categories: regions that
encode the instructions for the assembly of a protein molecule
(protein-coding genes) and those that do not (noncoding).
Although mammalian genomes are primarily noncoding, relatively
little is known about how much of this is functional, where such
regions are found in the genome, and what functions they are likely
to perform. In this study, the authors investigated the quantity and
location of functional noncoding DNA in mice and rats. They
estimate that functional noncoding DNA is at least three times as
common as coding DNA in rodents, and the majority is located large
distances from known protein-coding genes. Putatively functional
intronic DNA tends to be clustered towards the gene 5’ end,
suggesting that much intronic sequence is instrumental in regulat-
ing gene expression. This study also finds that genes involved in
development and the nervous system are typically associated with
much higher quantities of functional noncoding DNA, suggesting
that these genes require more finely tuned control of their
expression. One implication of this study is the finding that
disease-causing mutations have occurred more frequently in non-
coding regions and may have affected gene expression, rather than
protein structure.

(iv)What is the total genomic deleterious mutation rate per
generation, U, in murids accounting for noncoding sites
located large distances from known genic regions? We
focused upon mice and rats because the genomic resources
(annotation and sequence quality) for both mouse and rat are
unparalleled by any other mammalian species pair. Further-
more, mouse and rat are sufficiently diverged, so that, whilst
alignment of noncoding regions is not overly problematic,
substantial statistical power is available for comparative
genomics, unlike closely related species, such as human and
chimpanzee.

We compiled a large dataset of mouse-rat gene orthologs
and their surrounding noncoding DNA. Using a pair-wise
comparison, we can, by definition, only infer the total
number of selectively constrained bases in that portion of
the mouse and rat genomes that can be aligned. However,
mouse and rat are relatively closely related and the
proportions of their genomes that can be aligned with one
another represent the majority of both genomes [3]. Some
previous studies of selective constraint have used a “fastest
evolving” criterion to denote an assumed “neutral standard”
[18-20]. This criterion assumes that those sites which appear
to be evolving most swiftly are likely to be neutral, given that
adaptive substitutions are likely to be negligibly rare. The
validity of this assumption is crucial to the accurate
estimation of selective constraint. In order to relax the
“fastest-evolving” criterion of selective neutrality, observed
nucleotide substitution rates in repetitive DNA were used
throughout this study as an assumed neutral standard. In
mammals at least, transposable elements (TEs) are likely to be
highly enriched for neutrally evolving sequence.

One problem with using a “neutral standard” is that there
is considerable compositional variation between TE families
and different, nonrepetitive coding and noncoding DNA.
Because the rate at which any one nucleotide mutates into
another is known to vary between nucleotides [21,22], rates of
nucleotide substitution may vary between neutrally evolving
sequences whose base compositions differ. In this study, we
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attempted to determine to what extent varying base
composition could explain differences in substitution rate
observed under the null hypothesis of no selective con-
straints. To quantify this effect, we simulated the evolution of
coding and noncoding sequences with realistic base compo-
sitions entirely free of selective constraints under a mutation
model derived from mouse polymorphism data. Any differ-
ences in substitution we observed would therefore reflect the
action of mutation coupled with compositional variation, as
opposed to purifying selection.

Results

The initial list of “known” ENSEMBL mouse genes
contained 24,560 peptides. Processing to remove those
peptides that did not meet our selection criteria left 8,932
mouse genes. Upon comparison with the rat genome, those
matches that appeared to be invalid or matched a rat
sequence that was not also a valid coding sequence (i.e., had
one or more premature stop codons) were excluded. This left
a total of 6,381 putative mouse-rat orthologous loci. Exclud-
ing masked bases (repetitive and putatively non-homologous),
a total of 1.26 million 4-fold degenerate sites, 5.08-megabase
(Mb) aligned sites from UTRs, 85.85-Mb aligned intronic sites,
and 133.73 Mb of aligned intergenic sequence (of which 71.93
Mb was 5 and 61.80 Mb 3’ intergenic) was extracted. The
alignments also provided a total of 62.50 Mb of ancestral
repeat sequence, of which 20.14 Mb was located within
introns and the remaining 42.36 Mb located within intergenic
regions. The total aligned sequence was 288.42 Mb, which is
approximately 17% of the total alignable sequence between
mouse and rat.

Substitution Rates in Coding and Noncoding DNA

The mean nucleotide substitution rate was estimated for
each of seven sequence classes: 4-fold degenerate sites, UTRs,
first introns, non-first introns, intergenic DNA, and intronic
and intergenic ancestral repeats. The results of this analysis
are presented in Figure 1, which shows nucleotide substitu-
tion rates estimated at all sites and at non-CpG-prone sites. It
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Figure 1. Mean Nucleotide Substitution Rates in Different Sequence
Types

Substitution rates were estimated at all sites (dark bars) and non-CpG-
prone sites (light bars). Intronic substitution rates were estimated from
all intronic sites, excluding splice regions which were assumed to occur
in the first 20 and last 40 bp. 95% confidence intervals were estimated by
bootstrapping the dataset by 1-Mb block, 1,000 times.
doi:10.1371/journal.pgen.0020204.g001
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is clear that the non-CpG-prone substitution rate is substan-
tially lower than the substitution rate at all sites in all
sequence classes. The widest margin between the two is
observed at 4-fold degenerate sites and the smallest within
intergenic repetitive DNA. This gradient reflects the varia-
tion in the CpG content of each sequence class. At non-CpG-
prone sites, the most swiftly evolving sequence class is the
ancestral repeats. This supports the assumption that after
excluding CpG dinucleotides, TEs contain the highest
proportion of neutrally evolving sites. The results also show
a significantly higher (5% at non-CpG-prone sites) nucleotide
substitution rate in those TEs located within intergenic DNA.
One explanation of this result is a lower base mutation rate in
transcribed DNA, possibly due to transcription-coupled
repair of genes expressed in the germline [23].

Simulation Results

In order to investigate the effects of base composition and
site selection on estimates of nucleotide substitution rates, 4-
fold sites, introns, and ancestral repeats derived from real
sequence data were simulated to evolve down two lineages
entirely free of selective constraints. Mean nucleotide
substitution rates, in each of the simulated sequence classes
across 100 simulated phylogenies, are presented in Figure 2.
At all sites, substitution rates are most substantially affected
by differential frequencies of the CpG dinucleotide and are,
therefore, highest at 4-fold degenerate sites, which have the
highest CpG frequency (0.044 compared with 0.010 and 0.008
in introns and ancestral repeats, respectively). In addition to
CpG hypermutation, our mutation model suggests that in
murids, G/C bases are marginally more mutable than A/T
bases (~1.36-fold). It is this that produces the decreasing
gradient in non-CpG-prone substitution rates from 4-fold
degenerate sites (% GC = 57.4), ancestral repeats (% GC =
44.5) to introns (% GC = 43.0).
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Figure 2. Substitution Rates at Simulated 4-Fold Degenerate, Intronic,
and Repetitive Sites

Means over 100 simulated replicates, each of which evolved a single
sequence containing ~8 Mb of coding, intronic, and repetitive sequence
along two lineages are shown.

doi:10.1371/journal.pgen.0020204.g002
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Compared with the rates of nucleotide substitution
observed in the real sequence data, a number of patterns
are evident. Firstly, although 4-fold sites are clearly the most
swiftly evolving class in the neutral simulations, this is not the
case at non-CpG-prone sites in the real data (Figure 1). Whilst
simulated 4-fold sites evolved ~7% faster than repetitive
DNA, real 4-fold sites are in fact evolving ~7% slower than
real intronic TEs. Thus, we may underestimate constraint at
4-fold sites, given that their base mutation rate, even
excluding hypermutable CpG dinucleotides, may be some-
what higher than other regions of the genome.

Secondly, in the simulated phylogenies, TEs evolved
marginally faster (~1.3%) than introns. This is also the case
in the real data and suggests that at least some of the
elevation of evolutionary rate observed in repetitive sequence
over intronic DNA is due to neutral, mutational effects
coupled with compositional variation. In order to quantify
the potential effect of this compositional elevation of rates,
we estimated “constraint” in simulated intronic sequence.
For each simulated replicate, “constraint” was estimated in
an identical fashion to the real data. Simulated TEs were used
as a neutral standard to calculate the expected numbers of
substitutions in the simulated intronic sequences, and this
was compared to the observed rate. The distribution of
estimated “constraint” across 100 replicates (Figure SI)
suggests that positive constraint values in our real data, up
to a maximum of ~1.4%, could be explained by mutation/
compositional bias alone. Although the smallest difference
observed between repetitive and nonrepetitive evolutionary
rates (~3.8%; between intronic TEs and non-first introns,
excluding splice regions) is still larger than that observed in
simulated data, this result suggests caution in the interpre-
tation of differences in substitution rate between sequences
of even marginally different base composition.

Variation in Ancestral Repeat Substitution Rates

We also investigated the validity of the assumption of
neutral evolution in ancestral repetitive DNA. As part of this,
the mean nucleotide substitution rate was estimated sepa-
rately in each of the four main TE families (Figure 3). Under
the assumption of selective neutrality and the same base
mutation rate, the nucleotide substitution rates in each
element class should be approximately the same. It is evident,
however, that this is not the case, and there is significant
variation in the mean element family substitution rates. This
pattern is evident in both intronic and intergenic elements,
although intergenic elements generally tend to be slightly
more swiftly evolving than their intronic counterparts.

In order to determine whether the observed variation in
nucleotide substitution between different TE families could
be due to compositional variation coupled with mutational
bias, we simulated the evolution of the four main element
families under our mutation model. The results of these
simulations suggest that the mutation model implemented in
our simulations could not produce the substitutional varia-
tion we observe between real element families (Figure S2). In
our real data the mean TE family substitution rate was lowest
in DNA elements, followed by short INterspersed elements
(SINEs) and long terminal repeat transposons (LTRs), and
highest in long INterspersesd element (LINE) TEs. This is the
case at all sites and non-CpG-prone sites. In contrast, in our
simulated TE families, at all sites we observed the highest
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Figure 3. Estimated Mean Nucleotide Substitution Rate in Transposable
Elements

Substitution rates were estimated at all sites (dark bars) and non-CpG-
prone sites (light bars). Elements are subdivided into those found in
intronic and intergenic sequence. 95% confidence intervals were
estimated by bootstrapping the dataset by 1-Mb block, 1,000 times.
doi:10.1371/journal.pgen.0020204.g003

estimated substitution in SINE elements, roughly equal rates
in DNA and LTR elements, and the lowest substitution rate in
LINEs. Furthermore, at non-CpG-prone sites, all simulated
TE families appeared to be evolving at approximately equal
rates.

This contrast would suggest that other forces (e.g., biased
gene conversion or selection) may influence evolutionary rate
in TEs. However, we note that these simulations are not a
rigorous means of eliminating mutational variation as the
cause of substitutional variation between TE families. In
particular, the implicit assumption that different members of
different element families were inserted into the genome
simultaneously may be unrealistic.

Divergence and Constraint

Variation in constraint and divergence with distance from
splice sites in first introns is shown in Figures 4A and 4B and
S3. Constraint is significantly above zero in first introns for at
least the first 10 kb upstream and downstream of the acceptor
and donor splice sites, respectively. As demonstrated pre-
viously [18], constraint is highest at the 5 end of intron 1,
reaching a maximum value of approximately 20% immedi-
ately adjacent to the 5’ splice site. In contrast to these
previous analyses, however, adoption of a new neutral
standard and a larger dataset reveals that the 3’ end of
intron 1 is also under low, but significant, constraint.

In our previous analyses [18], it was assumed that the fastest
evolving intron sites were neutral. This assumption, by
definition, precluded the estimation of selective constraint
in those introns in which the neutral standard was located.
Use of ancestral repeats in the current study allowed an
investigation of patterns of selective constraint within non-
first introns (Figure 4C and 4D). The results show that, whilst
intronic sequence situated in the first 1-2 kilobases (kb) of
non-first introns is evolving at a similar rate to intronic TEs,
sequence more distant than this from the splice sites is under
low to moderate selective constraint. Although this may seem
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counterintuitive, this results from the relationship between
intron length, ordinal number, and constraint (see below).
Small introns (<3 kb) are the least selectively constrained and
these contribute only to the estimates of divergence near to
the splice sites. In contrast, longer introns, which are more
highly selectively constrained, contribute to estimates of
constraint both proximal and distal to intron splice sites.

The change in mean constraint (Figure 5) and pair-wise
divergence (Figure S4) in intergenic DNA with distance from
the transcription start/stop points was also estimated.
Although there is a sharp drop in constraint immediately
adjacent to the start/lend of the UTRs, this appears to plateau
at ~b kb. Further into the intergenic region, constraint
apparently does not drop to zero but appears to increase
slightly. Although the number of sites also decreases with
distance, it seems that even comparatively large distances
from genic regions, alignable, nonrepetitive sites are still
under moderate selective constraint. It is notable that the
95% confidence intervals of constraint estimates do not span
zero at any point over a distance of 50 kb (Figure 5).

In order to calculate the relative contribution of each
different sequence class to the total numbers of constrained
sites in the genome, the mean selective constraint across all
sites was estimated for each class (Table 1). The number of
constrained bases per locus was defined as the product of the
mean constraint at non-CpG-prone sites and the mean
number of aligned sites per locus for that class. This method
assumes that constraint at non-CpG-prone sites is a reliable
estimate of constraint at all sites. To get the total number of
sites, this figure was multiplied by an estimate of the total
number of mouse genes. The estimate of the number of
mouse genes (26,512) was based on the total number of known
and predicted genes in release 36 of the ENSEMBL database
[24]. A few striking patterns are evident. Firstly, whilst the
estimated number of constrained, non-degenerate coding
sites is not insubstantial (25 Mb), there are over three times as
many constrained sites in noncoding regions (83 Mb). In
addition, of all classes of noncoding DNA, the majority (~47
Mb) of constrained sites are located within the “deep” (>5 kb
from known coding sequence) intergenic regions. The
contribution of intronic sequence to the total number of
constrained bases is, by comparison, small. Our results also
show that mean intronic constraint is primarily related to
intron ordinal number (see below). Finally, we find that 3’
UTR sequences contain over three times as many constrained
bases as 5" UTRs, a conclusion supported by a recent analysis
of conserved elements in vertebrates [12].

Intron Length, Ordinal Number, and Selective Constraint

The results presented in Figure 4 appear to suggest a
relationship between mean intron length and selective
constraint. In Arabidopsis it has been shown that intron length
is also negatively related to intron ordinal number [25]. We
therefore investigated whether a similar relationship exists in
murids, and how intron ordinal number relates to selective
constraint. The results of this analysis are presented in Figure
6. Both mean intronic length and selective constraint are
negatively associated with intron ordinal number in murids.
This conclusion is supported by a recent study showing that
the number of conserved blocks between human and mouse is
also related to intron number [26]. Despite this, the slope of
the regression line of mean intronic constraint (averaged
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Figure 4. Change in Intronic Constraint with Distance from the Splice Sites
Constraint was estimated at non-CpG-prone sites in first (A and B) and non-first (C and D) introns. Dashed lines show 95% confidence intervals

estimated by bootstrapping the dataset by 1-Mb block, 1,000 times.
doi:10.1371/journal.pgen.0020204.g004
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Figure 5. Change in Intergenic Constraint with Distance from Transcription Start and Stop Points

Constraint was estimated at non-CpG-prone sites. Dots show 95% confidence intervals estimated by bootstrapping the data by 1-Mb block, 1,000 times.
doi:10.1371/journal.pgen.0020204.g005
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Table 1. Selective Constraint and Numbers of Constrained Sites
(Ng) in the Murid Genome

Sequence Type C (95% CI) Bp/Locus N¢ (Mb)
Coding 0.87 (0.85, 0.89) 1,050 24.22
4-fold synonymous 0.044 (0.032, 0.057) 198 0.231
UTR (all) 0.319 (0.311, 0.328) 797 6.74
UTR (5') 0.470 (0.455, 0.483) 130 1.61
UTR (3') 0.294 (0.285, 0.303) 667 5.20
Intron (splice sites) 0.215 (0.209, 0.221) 380 2.16
Intron (excluding splice sites) 0.050 (0.045, 0.056) 13,075 173
Intron 1 0.080 (0.074, 0.087) 4,065 8.62
Introns 2-5 0.045 (0.052, 0.038) 5,146 6.14
Introns >6 0.025 (0.035, 0.015) 3,864 2.56
Intergenic (all) 0.108 (0.104, 0.113) 20,958 58.97
Intergenic (5" < 5 kb) 0.122 (0.117, 0.127) 2,240 7.00
Intergenic (5" > 5 kb) 0.103 (0.098, 0.108) 9,032 23.83
Intergenic (3" < 5 kb) 0.086 (0.080, 0.092) 1,884 415
Intergenic (3" > 5 kb) 0.115 (0.108, 0.122) 7,801 2298

Intron splice sites were defined as the first 20 bp downstream of the donor splice site and
the last 40 bp upstream of the acceptor splice site. For intergenic DNA, “<, > 5 kb” refers
to estimated constraint within or beyond the first 5 kb upstream/downstream of
transcription start or stop point. Number of sites per locus refers to the mean number of
aligned sites per locus for each sequence type. Number of constrained bases is an
estimate of the number of bases in the alignable portion of the genome that are
completely constrained (C = 1.0). Estimates of the total number of constrained bases were
calculated assuming 26,512 mouse genes. This is the total number of known and
predicted mouse genes in release 36 of the ENSEMBL online database [24]. 95%
confidence intervals for each estimate are shown in parentheses. Cl, confidence interval.
doi:10.1371/journal.pgen.0020204.t001

across all introns in a gene) on gene total intron number,
whilst significant, is extremely small (~3.4 X 10~*). This results
from two factors. Firstly, because of the negative relationship
between intron ordinal number and length, higher number
introns have progressively smaller impact on the total
intronic constraint. Thus, mean constraint in genes with
large numbers of introns is primarily determined by their low
number introns. Secondly, the variation in constraint within
each intron number class across genes with different numbers
of introns is small. For example, divergence in the first intron
is not significantly different between genes with one intron
and genes with 15 introns (¢-test; p < 0.39). This result
indicates that there is a general trend across all murid genes
toward the accumulation of functional intronic DNA toward
the 5" end of the gene.

Noncoding Constraint and Gene Function

We investigated the relationship between mean intronic
and intergenic constraint and gene function by classifying the
genes in our dataset according to their annotated “biological
process” in the PANTHER protein family database [27]. The
results of this analysis are presented in Tables 2 and 3. Of our
6,381 mouse-rat gene orthologs, 3,551 could be assigned to a
particular protein family or subfamily. Of these, 1,834 were
assigned to multiple families or subfamilies. As so many genes
in our dataset were classified as having multiple functions,
ontology groups were not independent of one another and it
was therefore not possible to assess (using a one-way ANOVA,
for example) whether gene function has a statistically
significant effect upon noncoding constraint. Nonetheless,
mean intronic and intergenic constraint does appear to vary
nonrandomly with gene functional group. Interestingly, our
analysis supports the view that genes with complex expression

@ PLoS Genetics | www.plosgenetics.org

Genomic Constraints in Murids

2 A
S | ' r®
e Constraint
8 E A Length N
e s
© <
Q - © <
g ° E 2
s < 3
2 3 s
S ]
O a £
S rY <
o @
s s
| A = o
A
o A A
S VNN A o AL«
<

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Intron number

Figure 6. Mouse Intron Length Selective Constraint and Ordinal Number

Bars show the 95% confidence interval of constraint obtained by
bootstrapping the data by 1-Mb block, 1,000 times.
doi:10.1371/journal.pgen.0020204.g006

patterns require proportionally more regulatory DNA. In
particular, we note that genes involved in development and
neuronal processes are among those associated with the
highest number of putatively functional intronic and inter-
genic sites. In contrast, genes involved in a variety of
metabolic functions contain and are surrounded by substan-
tially less constrained noncoding DNA. The relationship
between total number of putative functional intronic sites
and gene ontology does not appear to be explained by
differences in the median number of introns between
ontology groups. This is likely to be because of the weak
relationship between total intron number and constraint, as
mentioned above. In addition there seems to be substantial
variation within ontology groups in median intron number.

Genomic Deleterious Mutation Rate

Our estimate of 108.48-Mb total constrained sequence
(Table 1) gives an average selective constraint of 0.087 in the
mouse-rat genome (see Materials and Methods). This estimate
of selective constraint applies strictly to that nonrepetitive
portion of the mouse and rat genomes that can be aligned
with each other. By definition, we assumed that all mutations
occurring within repetitive DNA are neutral. Furthermore,
extension of our results to the entire mouse or rat genome
requires some assumptions regarding the selective neutrality,
or otherwise, of that proportion of either species’ genome
which is lineage- specific. Although selective constraint of
lineage-specific sequence is impossible to measure using the
method employed in this study, we can define a lower bound
for the average constraint of a single nucleotide in the entire
genome by assuming that all lineage-specific sequence in
mouse is completely neutral. The estimated average selective
constraint of a single nucleotide then becomes 108.48 Mb/
1,462 Mb = 0.074, where 1,462 Mb is the total nonrepetitive
DNA in the mouse genome.

Assuming lineage-specific sequence is under the same
mean selective constraint as sequence which can be aligned
between mouse and rat, we calculate that, on average, the
mouse genome has experienced 0.91 deleterious mutations
per generation, since divergence from the rat (Table 4). Our
results would also indicate that nearly twice as many of these
mutations have occurred in the nongenic portion of the
genome as the genic region. This estimate of U is over twice as
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Table 2. Mean Intron Number, Constraint, and Number of
Constrained Intronic Bases by Gene Function

Table 3. Intergenic Constraint and Number of Constrained
Intergenic Bases by Gene Function

Gene Function Ng N; C (95% Cl) Nc Gene Function Nine C(95% CI) Nc¢
Nitrogen metabolism 7 40 0.030 (-0.03,0.12) — Nitrogen metabolism 7 0059 (—0.01,0.23) —
Electron transport 94 7.0 0.036 (—0.00, 0.07) — Electron transport 94  0.070 (0.05, 0.09) 869.4
Lipid, fatty acid, steroid 247 7.0 0.031 (0.01, 0.05) 516.4 Lipid, fatty acid, steroid metabolism 250 0.065 (0.05, 0.08) 979.0
metabolism Co-enzyme, prosthetic group metabolism 73 0.091 (0.06, 0.13) 1,072.6
Intracellular protein traffic 269 7.0 0.034 (0.02, 0.05) 520.6 Sensory perception 266 0.091 (0.07, 0.11) 1,198.5
Cell cycle 235 8.0 0.033 (0.01, 0.05) 521.2 Other metabolism 195 0.088 (0.07, 0.10) 1,214.7
Other metabolism 188 7.0 0.042 (0.02, 0.07) 569.9 Protein targeting, localization 51 0.084 (0.02, 0.12) 1,422.9
Immunity, defense 387 5.0 0.053 (0.03, 0.07) 577.1 Intracellular protein traffic 282  0.088 (0.08, 0.10) 1,507.5
Co-enzyme, prosthetic group 72 6.5  0.056 (0.01, 0.09) 622.8 Amino acid metabolism 79 0.109 (0.07, 0.14) 1,798.1
metabolism Blood circulation, gas exchange 45  0.085 (0.06, 0.11) 1,909.0
Blood circulation, gas exchange 36 40 0.061 (0.03, 0.09) 650.9 Immunity, defense 423 0.092 (0.08, 0.11) 1,911.8
Nucleic acid metabolism 766 6.0  0.050 (0.03, 0.07) 713.8 Cell structure, motility 303 0.106 (0.09, 0.12) 2,012.0
Amino acid metabolism 78 10.0 0.047 (0.02, 0.07) 775.5 Protein metabolism, modification 797 0.107 (0.09, 0.12) 2,065.6
Protein metabolism, modification 754 9.0  0.042 (0.03, 0.05) 791.5 Transport 424 0.113 (0.09, 0.13) 2,437.0
Homeostasis 69 5.0 0.060 (0.02, 0.10) 799.6 Cell cycle 256 0.118 (0.10, 0.14) 2,454.1
Cell structure, motility 257 8.0  0.056 (0.03, 0.08) 884.1 Sulfur metabolism 34 0.091 (0.06, 0.12) 2,520.9
Transport 400 8.0  0.054 (0.04, 0.07) 1,027.9 Phosphate metabolism 36 0.085 (0.04, 0.11) 2,605.6
Carbohydrate metabolism 186 8.0  0.050 (0.02, 0.07) 1,060.6 Carbohydrate metabolism 204 0.104 (0.09, 0.12) 2,609.2
Apoptosis 160 5.0 0.067 (0.01, 0.11) 1,135.2 Apoptosis 168 0.117 (0.09, 0.15) 2,921.1
Sensory perception 92 50 0.062 (0.02, 0.09) 1,155.8 Nucleic acid metabolism 848 0.130 (0.12, 0.14) 3,204.6
Protein targeting, localization 51 120  0.051 (0.02, 0.07) 1,179.4 Signal transduction 1,258 0.115 (0.11, 0.12) 3,276.3
Cell proliferation, differentiation 259 5.0 0.071 (0.05, 0.09) 1,2223 Muscle contraction 57 0.120 (0.07, 0.15) 3,363.2
Oncogenesis 134 6.0 0.084 (0.06, 0.11) 1,442.7 Cell proliferation, differentiation 301 0.125 (0.11, 0.14) 3,5335
Phosphate metabolism 36 10.0  0.066 (0.03, 0.10) 1,542.6 Homeostasis 77 0.121 (0.09, 0.15) 3,931.1
Signal transduction 927 6.0 0.076 (0.07, 0.09) 1,585.4 Oncogenesis 145 0.146 (0.11, 0.19) 4,047 .4
Sulfur metabolism 33 6.0  0.059 (0.00, 0.09) 1,619.9 Cell adhesion 132 0.146 (0.12, 0.16) 4,323.7
Developmental processes 592 5.0 0.091 (0.07, 0.11) 1,840.0 Developmental processes 664 0.134 (0.13, 0.14) 4,474.4
Muscle contraction 50 5.0 0.104 (0.06, 0.15) 1,958.0 Neuronal activities 205 0.128 (0.11, 0.14) 5,015.0
Cell adhesion 115 10.0 0.088 (0.07, 0.10) 2,516.9

Neuronal activities 168 7.0 0.089 (0.07, 0.11) 2,794.4

Genes are ranked by estimated total number of constrained intronic nucleotides per
gene. Gene function was the “biological process” defined in the PANTHER [27] database
of protein families. Ng, N; and C are the total number of genes, the median number of
introns per gene, and mean intronic constraint for each functional group. Intronic
selective constraint was estimated at non-CpG-prone sites, across all introns in a
functional group. 95% confidence intervals were derived by bootstrapping each
functional group by 1-Mb block, 1,000 times. N¢ is the mean number of constrained
intronic bases (C = 1.0) per gene, estimated as the product of the mean intronic constraint
and number of aligned intronic sites per gene. Nc was estimated only when the 95% Cls
for intronic constraint did not overlap zero. Cl, confidence interval.
doi:10.1371/journal.pgen.0020204.t002

large as that estimated in a previous study (0.44) [18], despite
a substantially lower estimate of the total number of mouse
genes used in this study (25,612 versus 35,000). This increase is
primarily due to the inclusion of larger amounts of intergenic
sequence, and the exclusion of repetitive DNA from estimates
of constraint. The lower bound for U (0.79; assuming lineage-
specific sequence is entirely neutral) is also considerably
larger than our earlier estimate. We note, however, that this
calculation relies on parameters, such as mouse-rat diver-
gence time, total number of mouse genes, and number of
generations per year, which are themselves the subject of
debate.

Discussion

This study investigated genomic patterns of selective
constraint in murid noncoding DNA. Our results provide
estimates of genomic selective constraint in a variety of
classes of murid noncoding DNA and can be summarized as
follows: Firstly, the data indicate that there are at least three
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Genes are ranked by estimated total number of constrained intergenic nucleotides per
gene. Gene function was the “biological process” defined in the PANTHER [27] database
of protein families. N, is the total number of intergenic regions. Intergenic selective
constraint (C) was estimated across all intergenic regions in a functional group. 95%
confidence intervals were derived by bootstrapping each functional group, by 1-Mb
block, 1,000 times. N¢ is the average total number of constrained intergenic bases (C =
1.0) per gene, estimated as the product of the mean intergenic constraint and number of
aligned intergenic sites per gene. N¢ was estimated only when the 95% Cls for intergenic
constraint did not overlap zero. Cl, confidence interval.
doi:10.1371/journal.pgen.0020204.t003

times as many selectively constrained, functional noncoding
sites as coding sites in murids. This estimate is considerably
larger than from our previous study in murids [18], but is in a
similar range to that more recently estimated in humans [10]
and in a variety of vertebrates [12]. Our results also indicate
that intergenic selective constraint does not appear to
decrease with distance from known genic regions beyond a
certain distance (~5 kb). Secondly, this study clarifies the
patterns and extent of evolutionary constraints within murid
introns. Our results show that intronic constraint and intron
length both covary with intron ordinal number. Perhaps
surprisingly, however, our data suggest that selective con-
straint in all introns, even intron 1, is significantly lower than
in intergenic regions. Thirdly, we show that the number of
selectively constrained, putatively functional intronic and
intergenic sites vary markedly with gene function. Interest-
ingly, our results indicate that there are many more
selectively constrained noncoding sites within and adjacent
to developmental and neuronal genes than genes involved in
a variety of metabolic functions. Fourthly, assuming that
nucleotide substitution rates within TEs primarily reflect
mutational rather than selective forces, our results suggest
that mutation rates within genic DNA are lower than those in
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Table 4. Murid Diploid Genomic Deleterious Mutation Rate

Sequence Type Kncpa Mb wu

NCpG NnCpG N

Genic 0.154123 4648 296 X 107° 0.60 2.68 3.28
Nongenic 0.162233 9980 312X 1077 1.04 6.11 7.15
Mutations per diploid 1043
per generation

Genomic deleterious 0.91

mutation rate, U

Kncpe is the pair-wise divergence at non-CpG-prone sites in either intronic or intergenic
transposable elements. “Mb” refers to the total, nonrepetitive sequence in the haploid
mouse genome; estimated assuming 39.45% of the mouse genome is repetitive [3]. Total
genomic nonrepetitive genic sequence was estimated assuming an average mouse
transcript length of 29,974 bp [3] and 25,612 mouse genes [24]. u denotes the estimated
mutation rate per site, per generation. Numbers of CpG and non-CpG mutations (N¢yg
and N,¢,6, respectively) were estimated assuming a genomic frequency of sites involved
in CpG dinucleotides of 0.0245 in genic DNA, 0.0188 in nongenic DNA, and 8.88-fold CpG
hypermutability. Genomic CpG frequencies were estimated from the mouse sequence
collected in the current study, with repetitive DNA excluded.
doi:10.1371/journal.pgen.0020204.t004

nongenic regions. Finally, taken together with our estimates
of selective constraint, it is likely that over twice as many
deleterious mutations have occurred in nongenic, as opposed
to genic, sequence over the murid evolutionary tree.

Our study provides an insight into the evolutionary
significance of introns. The results presented here suggest
that there has been a general accumulation of functional
intronic sites toward the 5" end of murid genes. This pattern
is apparent both within intron 1 and across all introns, with
mean constraint decreasing with increasing intron ordinal
number. Accumulation of functional intronic DNA is also
reflected in intron length, which is negatively correlated with
intron ordinal number. Previous studies in humans have
shown that multi-species conserved sequences are preferen-
tially located within longer introns [28] and this is likely to be
the same phenomenon we observe in this study. Furthermore,
our results suggest that the total number of functional
intronic sites covaries with gene ontology, with the highest
numbers of functional sites located in (among others) genes
involved in development and nervous system functioning.
What is the significance of these results?

Evolutionarily conserved regions within introns are likely
to play (at least) two separate roles: gene splicing and gene
expression control. We suggest that it is likely that most
functional intronic sites in intron 1 are involved in tran-
scription control, given their proximity to the gene pro-
moter. Furthermore, assuming it is equally important that
high and low number introns are spliced correctly, it seems
improbable that intronic splice control regions should be
preferentially located in lower ordinal number introns.
Additionally, we have (imperfectly) excluded many alterna-
tively spliced genes from our dataset, and so those intronic
sites which regulate alternative splicing should have been
excluded. Our data therefore suggest that many of the
selectively constrained intronic nucleotides we observe are
involved in expression control and that these sites tend to
cluster toward the 5" end of the gene in which they reside. It is
also likely that many of the constrained intergenic nucleo-
tides we observed function in the regulation of the gene they
are adjacent to. Thus, our results suggest that genes involved
in development, cell adhesion, and neuronal activities require
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more complex regulation than genes involved in electron
transport, cell cycle, lipid and steroid metabolism, and a
variety of metabolic processes. It may be that, in part, this
pattern is determined by variation in the number of
transcription factors required to control a gene’s expression.
For example, transcriptional control of developmental genes
is finely tuned and may require rapid alternate stimulation
and suppression by multiple different transcription factors.
Each of these factors, in turn, binds to an individual site in
the gene promoter region, and so genes which are regulated
by large numbers of transcription factors may be associated
with larger numbers of constrained noncoding sites.

This conclusion is supported by evidence suggesting that
the quantity of noncoding DNA in Caenorhabditis elegans and
Drosophila melanogaster genes is related to their regulatory
complexity [29]. One potential implication of this result is
that there will be a substantially higher deleterious mutation
rate in the regulatory noncoding DNA of genes with complex
regulation than in those which are permanently “switched
on.” For example, summing across intergenic and intronic
DNA, we estimate that a developmental or neuronal gene is
associated with, on average, almost six times as many
constrained functional sites as a gene involved in electron
transport or lipid or steroid metabolism. If most of these sites
are involved in the regulation of the adjacent gene, and
assuming base mutation rates are similar across different
ontology groups, then developmental and neuronal genes
may be up to six times more likely to experience a deleterious
regulatory mutation than genes involved in electron trans-
port or lipid metabolism. It is clear, however, that a deeper
understanding of the nature of the motifs that regulate gene
expression and control mRNA splicing will shed light on the
relative significance of these two functions in explaining
patterns of intronic constraint.

Our study adds to the growing body of work that indicates
that mammalian synonymous sites are under some purifying
selection [30-32], although it seems that, in murids at least,
mean selective constraint at such sites is extremely weak. This
may be an underestimate, however, if, as suggested by our
simulations, 4-fold sites have a higher non-CpG mutation rate
than other regions of the genome. The GC content at 4-fold
sites is elevated beyond that typical in noncoding DNA
(~53%) and this may reflect codon bias towards G- or C-
ending codons, as has been reported in humans [33].
Constraint at 4-fold sites could also result from purifying
selection on exonic splice enhancers [34].

The accuracy of our estimates of constraint relies on the
assumption that TEs can be used to estimate the local, neutral
mutation rate. Our simulations appear to suggest that the
variation we observe in mean nucleotide substitution rate
between TE families reflects non-neutral evolution. However,
there are a number of scenarios, both neutral and otherwise,
which could explain this observation. Our simulations may
have neglected some important aspects of TE evolution. For
example, it may be that different TE families insert into
regions with different mean mutation rates. It is known that
SINE elements are preferentially located within GC rich
regions in the human genome, whereas LINE elements tend
to occur in AT rich regions [1]. If these varying base
compositions are the result of regional mutational variation,
then this could explain the differences in substitution rates
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between TE families. In this case the assumption that TEs can
be used to estimate local mutation rates holds.

There are also a number of scenarios which explain
evolutionary rate variation between TE families in which
the assumption that TEs reliably reflect local mutation rates is
violated. TE evolutionary rate may covary with age of
insertion, as older TEs evolve more slowly after coming to
compositional equilibrium with their surroundings [33]. If
this is the case, we may have overestimated constraint by
including relatively recently inserted TEs in our dataset. In
addition, TEs may occasionally acquire a selectively beneficial
function [35-37] and thus be preserved by purifying selection.
Finally, it may be that substitution rates in TEs are influenced
by biased gene conversion [38] such that mutations increasing
GC content are fixed preferentially. The effect of biased gene
conversion is equivalent to selection for the allele toward
which gene conversion is biased [39]. If substantial selection
or biased gene conversion is occurring, it is likely that we
have underestimated constraint. However, although there
have been a number of recent discoveries of selectively co-
opted TEs, these functional TEs still represent a small
minority of most extant TEs. Furthermore, in this study it
appears that repetitive DNA is the most swiftly evolving
sequence class. Thus, if such processes regularly occur in TEs
their effects are either small, confined to a minority of
elements within the dataset, or both.

A further caveat to our estimates of genomic constraint
relates to the exclusion of potentially alternatively spliced
genes from the dataset. It is known that introns within
alternatively spliced genes are more highly conserved than in
constitutively spliced genes [40]. If such conserved regions are
truly noncoding, as opposed to being occasionally included in
an alternate exon, then our estimates of intronic constraint
may also be biased downward. We note also that our
extrapolation of estimates of constraint to the whole murid
genome will potentially be biased upward by two factors.
Firstly, we have used sequence similarity (via BLAST
comparison) as a criterion of orthology and this will
necessarily bias our dataset toward more evolutionarily
conserved genes. However, until a relatively complete func-
tional annotation of the mouse and rat genomes becomes
available, this criterion remains necessary. Given the low
threshold E-value we used and the relatively small divergence
between mice and rats, we argue that this should have a
relatively small impact on our results. Of perhaps more
concern is the presence of overlapping genes in our dataset.
Overlapping genes will share some common intergenic and
intronic sequence, which means that our method of extrap-
olation to the whole genome will overestimate the quantity of
constrained noncoding sequence. Some recent studies have
suggested that antisense transcription is a common phenom-
enon in the human genome [41]. It is difficult to assess the
impact of overlapping genes on our data, but it could be
substantial. Finally, we will have underestimated the genomic
deleterious mutation rate since we have not considered indel
mutations, particularly transposable element insertions, at
least some of which are known to have deleterious effects
[42,43]. Whilst the effects of indel mutations in coding
sequence are probably unconditionally deleterious, the
impact of indel mutations in noncoding DNA is still poorly
understood.
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Materials and Methods

Data collection. A list of “known” mouse peptide sequences was
obtained from release 36 of the ENSEMBL sequence database [24].
This list consists of peptide models that can be mapped to mouse-
specific peptides in the Swiss-Prot, RefSeq, or SPTrTEMBL databases.
In this study we used only those peptides that matched an existing
sequence in the National Center for Biotechnology Information
(NCBI) RefSeq database. We removed those peptides which were
annotated in ENSEMBL as having multiple transcripts, due to the
uncertainty of annotation of introns in alternatively spliced genes.
Finally, those peptides which were not listed as having a unique best
reciprocal BLAST hit (UBRH) in the rat genome in the ENSEMBL
database were removed. The remaining peptides were then mapped
onto NCBI build 33.1 of the mouse genome using their RefSeq IDs,
and their coding sequences extracted.

Putative rat orthologs of the mouse coding sequences were located
by comparing the first and last exons of each mouse coding sequence
to NCBI build 3.1 of the rat genome using BLASTN [44]. Mouse
coding sequences were only compared with regions of the rat genome
that are known to be syntenic, where synteny was as defined in Figure
4 of [3]. The “flanking” sequences extended to the midpoint in
intergenic DNA to the next annotated mouse coding sequence.
BLAST matches in the rat genome were accepted or rejected on the
basis of a number of criteria. Firstly, coding sequences were excluded
unless both first and last exons had a single unique match on the same
rat contig. Secondly, if both first and last mouse exons matched more
than one sequence on multiple, different rat contigs they were
excluded. Thirdly, both first and last exon matches were rejected
unless BLAST hits were matched on the same strand of the rat
genome. Fourthly, matches of the first and last mouse exons, which
were further than 1 Mb apart on the same rat contig, were also
rejected. Finally, only matches for which the BLAST E-value of both
first and last exons was < 107" were accepted. Whilst these reduced
the number of genes in our dataset, we argue that they are necessary
limitations of our analysis.

For each pair of flanking mouse sequences and their corresponding
matches in the rat, we extracted all sequences between the start of the
upstream flank to the end of the downstream flank. This pair of rat and
mouse sequences was aligned using AVID (45). We located LINEs,
SINEs, LTRs, and DNA insertion elements in these alignments using
RepeatMasker (http://www.repeatmasker.org). Mouse repeats which
were well aligned with the corresponding region in the rat sequence
were denoted as being ancestral or inserted prior to the mouse-rat
divergence. In this context, “well-aligned” was defined as those mouse-
rat repeat alignments which contained more than 30 valid (i.e., not
masked; see below), aligned nucleotides. This criterion was deliberately
lax in order to avoid potential selection bias toward more conserved
sequences. The efficacy of this criterion in identifying reasonably
aligned repeats was confirmed by eye for a subset of the total dataset.
In our final dataset, less than 5% of the total number of ancestral
repeat alignments contained less than 55 valid, aligned nucleotides.

Aligned coding and intronic sequence was also extracted, using the
annotated mouse exons as a reference. Any mouse or rat coding
sequence that did not have a valid start and stop codon, or included
premature stop codons was excluded. The remaining coding
sequences were realigned using CLUSTALW [46], an alignment
method that was specifically designed for the alignment of protein-
coding genes.

Alignment masking. In order to minimize the possibility of
nonorthologous sites contributing to estimates of divergence, a
simple masking protocol was implemented. Two primary masking
targets were identified: (i) Sections of alignments which were so
divergent as to be unlikely to be orthologous were located through
the use of a sliding window of 40 bp in size. Any region in which each
of 30 or more consecutive windows showed a mean divergence
greater than the threshold divergence of 30% was masked. The
divergence threshold was set to be three standard deviations above
the mean divergence of ancestral repeats (mean = 0.1596; standard
deviation = 0.0504). (ii) Regions which contained short aligned blocks
surrounded by large gaps were also considered unlikely to be truly
nonhomologous and were masked off. These regions were identified
as one or more blocks of <20 bp in size, flanked by large gaps (>40
bp) in size. Any alignments which contained >75% putatively
nonorthologous sites as identified by these criteria were excluded
from further analyses. In addition to masking putatively nonorthol-
ogous sites, repetitive sequence (simple sequence repeats, retroele-
ments, and DNA elements) present in the alignments were also
masked using RepeatMasker, as this study specifically addresses
constraint within unique, nonrepetitive sequence.
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Data analysis. Nucleotide substitution rates were corrected for
multiple hits according to the Tamura-Nei model [47]. It has been
suggested that the level of methylation may differ between repetitive
and nonrepetitive DNA [48]. If this is the case, CpG sites effectively
mutate at different rates depending upon their location in the
genome and it is desirable to remove this effect as much as possible
from the estimation of selective constraint. In order to effectively
remove the impact of CpG-derived mutation, nucleotide substitution
rates were also calculated at those sites that were either preceded or
followed by a “C” or a “G” (non-CpG-prone sites). Substitution rates
at linked sites are also autocorrelated across distances of ~1 Mb in
murids [15]. All gene orthologs were therefore grouped into 1-Mb
blocks, according to their annotation on the mouse genome, to
minimize the effects of autocorrelation of substitution rates on the
estimation of standard errors and confidence intervals. These 1-Mb
blocks were treated as independent observations in the dataset.
Substitution rates in different sequence types were estimated by
summing across all annotated regions of interest (e.g., all non-first
introns or intergenic transposable elements) within a block.
Synonymous substitution rates were estimated at 4-fold degenerate
sites only. Only those 4-fold codons that coded for the same amino
acid in both derived sequences and that had experienced a single
synonymous change were defined as ancestrally 4-fold. All standard
errors and confidence intervals were calculated by bootstrapping the
data over a 1-Mb block, 1,000 times.

In order to estimate selective constraint, a variation of the method
of Kondrashov and Crow [49] was employed, as in previous studies
[17,18,50]. For each sequence class, observed substitution rates were
compared to that expected under neutrality, where the neutral
expectation was estimated using a weighted average of the sub-
stitution rate in all ancestral repeats within a block. However, when
base composition varies between assumed neutrally evolving se-
quence and the sequence of interest, differences in the frequencies of
each nucleotide can introduce error into the estimation of the
expected evolutionary rate under neutrality. We attempted to
account for this by estimating the expected substitution rates for
different nucleotides separately. The Tamura-Nei model is described
by three substitution rate parameters: the A«~G transition rate (K,¢),
the T—C transition rate (K7¢), and the transversion substitution rate
(Kry). The rate of substitution expected under neutrality was
calculated as the product of each of the mean ancestral repeat
substitution rates and the number of appropriate bases for that
substitution type in the target sequence of interest. We have:

(KaciNaci + KrciNrci + KrviNtvi)
(KagarNaci + KrcaNrci + KrvarNrvi)

C=1- (1)
where K. i denotes the substitution rate in the sequence of interest, N.
i the number of sites of a certain type in the sequence of interest, and
K. ar the mean substitution rate (weighted by length) across all
ancestral repeats located within a block. In all cases, constraint was
estimated at non-CpG-prone sites, both to remove the influence of
differential CpG frequency between sequence classes as well as to
avoid the potential effects of differential methylation of repetitive
and nonrepetitive DNA. When investigating the relationship between
sequence length and selective constraint, sequence length was always
defined as the number of bases in mouse.

Simulations. We attempted to quantify the effects of compositional
variation on rates of substitution using a simulation approach.
Sequences were divided into three approximate groups on the basis
of their observed GC and CpG contents: 4-fold degenerate, intronic/
intergenic, and ancestral repeat (Figure 7). In order to accurately
reflect the base composition of coding and noncoding sequence,
simulated phylogenies were generated using real mouse sequence
data. All mouse coding sequences and a random sample of mouse
intronic and repetitive sequences (of approximately the same length
as that of the coding DNA used, i.e., ~8.5 Mb) were concatenated into
a single sequence. This sequence was evolved along two independent
branches to produce a tree in which the probability of a nucleotide
substitution at any site in either lineage was 0.08, on average. 80% of
amino acid changing mutations in coding sequence were rejected.
The remaining sites (4-fold degenerate, intronic, and repetitive) were
allowed to evolve neutrally. A different random sample of intronic
and repetitive sequence was collected for each replicate phylogeny.

The mutation model implemented in all our simulations was
derived from mouse polymorphism data extracted from the NCBI
single nucleotide polymorphism (SNP) database (http://[lwww.ncbi.nlm.
nih.gov/projects/SNP). We collected all non-redundant refSNP clus-
ters for each mouse chromosome, excluding those SNPs which were
inferred from sample sizes of less than 20 individuals. The flanking
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Figure 7. Proportion of G/C Bases and CpG Dinucleotides in Different
Mouse Sequence Classes
doi:10.1371/journal.pgen.0020204.g007

CpG dinucleotides

sequence of each SNP was then compared to a BLAST database
constructed from all mouse non-first introns of length <6 kb on the
appropriate mouse chromosome. We used these introns as they are
likely to be evolving close to neutrally (see Table 1). Only those SNPs
whose flanking sequence returned a single, significant (e < 107
>95% sequence identity) match to a sequence in the intron BLAST
database were included in our final dataset. In order to estimate the
mutation frequencies, we assumed that the most frequent allele was
ancestral.

Using these data, the relative mutabilities at three site types (CpG,
non-CpG “G”, or “C” and non-CpG “A”or “T”) were estimated, by
pooling the total number of polymorphisms inferred to have
occurred at one of three site types. The relative mutabilities of the
three site types were estimated as 0.815, 0.100, and 0.085, respectively.
The relative probabilities, given that a mutation occurs, of six
different non-CpG mutation types and three CpG mutation types,
were also derived. The six non-CpG mutation types inferred from
polymorphism data were transversions within Watson-Crick pairs
(A—T, G=C), transversions between Watson-Crick pairs (A<~C or
TG, C—A or G+T), and transitions between Watson-Crick pairs
(G=A or C=T, A—=G or T+—C). Three CpG mutation types were also
inferred from the polymorphism data. These mutational classes were
chosen because it is impossible to infer from sequence data which
strand a mutation originally occurred upon. The relative probabil-
ities used in the simulation are presented in Table S1. Assuming that
this mutation model accurately represents true murid point mutation
rates, simulated phylogenies should approximate the rates and
patterns of nucleotide substitution expected under neutral evolution
of 4-fold sites, introns, and transposable elements.

Preliminary results suggested that the nucleotide substitution rate
varies between different transposable element families. In order to
determine whether this variation could be the result of compositional
variation coupled with mutational bias, we simulated the evolution of
the four main transposable element families: SINEs, LINEs, LTRs, and
DNA transposons. In these simulations we used transposable element
consensus sequences from the rodent RepeatMasker Libraries (http:/
www.girinst.org) as the ancestral sequence. In each simulated
replicate, a single consensus sequence was chosen at random for
each of the four transposable element families. These four sequences
were concatenated into a single sequence which was evolved neutrally
along two lineages as described above.

Noncoding constraint and gene ontology. Genes with different
functional roles and expression levels appear to harbor (and be
surrounded by) different quantities of noncoding DNA [51,52]. There
are at least two (non-mutually exclusive) factors which may produce
this variation. Firstly, intron length (and the length of all noncoding
DNA) may be dictated simply by the amount of functional noncoding
sequence which it contains [26,53]. Secondly, an intron’s length may
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be affected by selection for transcriptional efficiency, and therefore
be determined by the expression level of the gene in which it lies
[25,51]. It is likely that both these forces play a role in shaping the
length of noncoding DNA. Of relevance to this issue is how intronic
constraint varies (if at all) with gene function. In particular, given that
our analysis revealed a relationship between intron length, ordinal
number, and constraint, we wanted to determine how these variables
relate to the functional role of a gene.

To this end, we classified the genes in our dataset according to
function based on their biological classification (i.e., “biological
process”) in the PANTHER protein family database [27]. We used the
RefSeq IDs of the genes in our dataset to determine their function as
annotated in the PANTHER database. We note that a proportion of
the genes in our dataset are annotated as having multiple functions.

Genomic deleterious mutation rate. The estimation of genomic
selective constraint enables us to calculate the diploid genomic
deleterious mutation rate per generation (U), an important param-
eter in population genetics. We assume that mouse and rat diverged
13 million years ago [54], and that mice, on average, undergo two
generations per year [50]. In order to estimate the average constraint
upon a single nucleotide, we assume a total of 1,241-Mb nonrepetitive
sequences can be aligned between mouse and rat [3]. When
calculating the genomic mutation rate per genome per generation,
we accounted for CpG hypermutability by calculating the contribu-
tions from these sites separately. From the mouse polymorphism data
we estimated that CpG-derived mutations occur at 8.88 times the rate
of non-CpG mutations. We further divide the contribution of
mutations occurring in genic and nongenic regions, given that our
data suggest that the non-CpG mutation rate differs between both
regions. For both, we use the mean transposable element pair-wise
divergence at non-CpG-prone sites to estimate the non- CpG
mutation rate per site.

Supporting Information

Figure S1. Constraint in Simulated Neutrally Evolved Sequence

Distribution of “constraint” values estimated in neutrally evolved,
simulated noncoding DNA, using transposable elements evolved
under the same mutational model as a “neutral standard.” Constraint
was estimated for each one of 100 replicates.

Found at doi:10.1371/journal. pgen.0020204.sg001 (3 KB EPS).

Figure S2. Substitution Rates in Simulated Transposable Elements

Estimated mean nucleotide substitution rate in simulated SINEs,
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