
ORIGINAL RESEARCH
published: 13 August 2021

doi: 10.3389/fphys.2021.709485

Frontiers in Physiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 709485

Edited by:

Rafael Sebastian,

University of Valencia, Spain

Reviewed by:

Oleg Aslanidi,

King’s College London,

United Kingdom

Francisco Sahli Costabal,

Pontificia Universidad Católica de

Chile, Chile

*Correspondence:

Radek Halfar

radek.halfar@vsb.cz

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 14 May 2021

Accepted: 30 June 2021

Published: 13 August 2021

Citation:

Halfar R, Lawson BAJ, dos

Santos RW and Burrage K (2021)

Machine Learning Identification of

Pro-arrhythmic Structures in Cardiac

Fibrosis. Front. Physiol. 12:709485.

doi: 10.3389/fphys.2021.709485

Machine Learning Identification of
Pro-arrhythmic Structures in Cardiac
Fibrosis
Radek Halfar 1*, Brodie A. J. Lawson 2,3, Rodrigo Weber dos Santos 4 and Kevin Burrage 3,5

1 IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czechia, 2Centre for Data Science, School of Mathematical

Sciences, Queensland University of Technology, Brisbane, QLD, Australia, 3 ARC Centre of Excellence for Mathematical and

Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia,
4Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil, 5Department of

Computer Science, University of Oxford, Oxford, United Kingdom

Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from

myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy

propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical

signalling in the heart, however, the connection between different arrangements of

blockage and various arrhythmic consequences remains poorly understood. Where a

mechanism defies traditional understanding, machine learning can be invaluable for

enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in

terms of predictor variables (such as the arrangement or pattern of obstructive scarring).

In this study, we simulate the propagation of the action potential (AP) in tissue affected

by fibrotic changes and hence detect sites that initiate re-entrant activation patterns.

By separately considering multiple different stimulus regimes, we directly observe and

quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region.

Then, by extracting the fibrotic structures around locations that both do and do not

initiate re-entries, we use neural networks to determine to what extent re-entry initiation

is predictable, and over what spatial scale conduction heterogeneities appear to act to

produce this effect. We find that structural information within about 0.5mm of a given

point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

Keywords: machine learning, neural networks, fibrosis, cardiac electrophysiology, arrhythmia, monodomain

model, re-entry, unidirectional block

1. INTRODUCTION

According to the WHO, in 2016, 17.9 million people worldwide died of cardiovascular diseases
(31% of all deaths). These diseases are the most common cause of death in the world. Although
the function and dysfunction of the heart have been extensively studied, the sheer complexity of
the spatiotemporal dynamics underlying its electrical signalling process leaves much still poorly
understood. This is particularly true when complicating factors are present, such as cardiac fibrosis.

Cardiac fibrosis, the over-activity of fibroblasts in the heart, poses significant health
risks (Hinderer and Schenke-Layland, 2019). Fibroblasts deposit extracellular matrix proteins that
can separate myocytes, resulting in tortuous paths of activation that increase the risk of signalling
malfunctions. This risk depends critically on the extent and arrangement of afflicted tissue, but
this dependency is intricate and very difficult to quantify. Efforts have been made to classify
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different types of fibrotic patterning with the suggestion that
might help stratify risk (de Jong et al., 2011) but with little
attempt to explain why or how these different types of pattern
present different levels of risk. A separate approach focuses on
small-scale structures that produce key behaviours underlying
re-entry and arrhythmia. The pro-arrhythmic mechanisms of
fibrosis are well understood (Nguyen et al., 2014), but the
precise patterns that do or do not trigger those mechanisms are
not well understood. The computational simulation presents a
powerful tool for investigating these structures mechanistically,
and machine learning (ML) provides the opportunity to
automate identification.

In this study, we consider the risk of re-entry posed by
many different fundamental structures of fibrosis. The specific
pattern of fibrosis plays two important roles in the promotion
of re-entry or micro-re-entry: through re-entrant paths within
the damaged region that are long enough to accommodate the
wavelength of the propagating action potential (AP) and by
the presence of structures that facilitate one-way block of AP
propagation. We concentrate on the latter, that is, structures that
selectively block conduction, for example, permitting conduction
in one direction but not the other. This phenomenon of a
unidirectional block is a critical precursor to re-entry (Quan and
Rudy, 1990).

Computational studies have successfully reproduced re-
entries from fibrosis for different types of diseases, such as
atrial fibrillation (Alonso et al., 2016; Vigmond et al., 2016),
myocardial infarction (Sachetto Oliveira et al., 2018a), and
many other pathologies related, for instance, to hypoxia and
fibrosis including hypertrophic cardiomyopathy, hypertensive
heart disease, recurrent myocardial infarction, obstructive
pulmonary disease, obstructive sleep apnoea, and cystic
fibrosis (Sachetto Oliveira et al., 2018b). However, as we do
not know which kind of patterns within the fibrotic substrate
are pro-arrhythmic, these studies depend on the generation
of hundreds of thousands of fibrosis patterns, followed by
Monte Carlo simulations and statistical analysis. These studies
have investigated, for example, the probability of re-entry as a
function of the fraction of damaged tissue. Nevertheless, the
kind of patterns that facilitate unidirectional blocks and how
often these patterns are present in damaged tissues are important
open questions.

Machine learning (ML), as with most fields, has begun to see
a considerable application to cardiac electrophysiology. These
include automated extraction of subtle information from the
electrogram (Yang et al., 2018; Mincholé et al., 2019) and
the identification of promising targets or success rates for
ablation (Zahid et al., 2016; Muffoletto et al., 2019, 2021; Shade
et al., 2020). In this study, we generate a large number of
different realisations of fibrotic arrangement corresponding to
significantly damaged tissue and then apply a single stimulus
originating frommany different points. This creates a rich dataset
of structures that give rise to re-entry. We then isolate regions
of selective block and train a classifier model that identifies
with high accuracy whether a given pattern of fibrosis generates
this pro-arrhythmic behaviour. Importantly, this successful
classification is a first step to address fundamental questions

relating anatomical heterogeneity to re-entry risk, and over what
spatial scale these effects manifest.

2. MATERIALS AND METHODS

2.1. Simulation of Cardiac Activity
We simulate cardiac activity inside the regions afflicted
with fibrosis, examining the patternings of obstacles to
conduction that initiate re-entries sustained inside these fibrotic
regions. These micro-re-entries cause fibrotic regions to act
potentially as ectopic pacemakers that drive tachycardia or
other arrhythmia (Hansen et al., 2015). As our focus is on the
initiation and immediate sustainment of re-entry, we do not
simulate how waves of activation produced by a fibrotic region
interact with healthy surrounding tissue, nor do we consider
scenarios such as fast pacing that indicate the existence of prior
signalling dysfunction.

Cardiac electrophysiological dynamics were simulated using
the monodomain formulation (Sundnes et al., 2006),

Cm
∂V

∂t
= ∇ ·

(

D∇V
)

− Iion, (1)

which treats cardiac cells as capacitive and hence describes the
change in their membrane potential in terms of the current
that flows diffusively to/from neighbouring cells through gap
junctions and by ion transport through the ion channels of
the cell membrane. We use a capacitance density of Cm =

1 µFm−2 and electrical conductivity D = 2.5× 10−4mS. Cell
APs were simulated using the Bueno-Orovio–Cherry–Fenton
(BOCF) model, a reduced model that nevertheless accurately
captures the most important electrophysiological dynamics of
ventricular myocytes (Bueno-Orovio et al., 2008). To represent
the effects of significant tissue damage on APs Shaw and Rudy
(1997); Sachetto Oliveira et al. (2018b), we modified model
parameters to shorten AP duration (APD) to approximately
50ms (see Figure 1A and Table 1). This results in a conduction
velocity of 23 cm s−1, reflecting the decreased gap junction
functionality in diseased tissue (Duffy, 2012; Nguyen et al., 2014).

Simulations were carried out in two-dimensional, 2 × 2 cm
slices of isotropically conductive cardiac tissue. We chose a
larger amount of tissue than the minimum needed to support
re-entry as reported for these types of conditions (0.7 ×

0.7 cm; Sachetto Oliveira et al., 2018b), so as to increase the
number of re-entries present in our generated data. The effect
of fibrosis on conduction was represented by the presence of
non-conducting obstacles (for example collagen), a common
approach taken for both ventricular tissue (Ten Tusscher and
Panfilov, 2007; McDowell et al., 2011) and atrial tissue (Cherry
et al., 2007; McDowell et al., 2015), as well as highly-detailed
microscopicmodels of cardiac tissue where cells are disconnected
by barriers or dead cells (Jacquemet and Henriquez, 2009;
Hubbard and Henriquez, 2014; Gouvêa de Barros et al., 2015).
This approach is in contrast to approaches that represent fibrotic
obstacles indirectly through modifications to conductivity in
afflicted areas, often in response to imaging data informing
fibroblast density (Zahid et al., 2016; Roy et al., 2020).
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FIGURE 1 | Graphical demonstration of some of the methods used in this study. (A) The action potential (AP) of the Bueno-Orovio-Cherry-Fenton (BOCF) model

modified to represent strongly fibrosis-afflicted tissue (parameters in Table 1), and the original BOCF model. Remodelled myocytes repolarise very rapidly with a

triangular-shaped AP. (B) An example fibrotic structure, visualised to highlight the ‘diagonal’ connectivity inherent to placing nodes on element vertices. (C) The

stimulus locations (yellow) used across separate simulations to generate wavefronts travelling in different directions and hence bolster identification of structures that

produce re-entry. (D) Re-entry vulnerability index (RVI) values observed for the structure pictured in (B), showing the identification (by significantly negative value) of

locations that demonstrate selective conduction block.

TABLE 1 | The parameters of the Bueno-Orovio-Cherry-Fenton (BOCF) model,

modified to represent cardiac tissue with significant fibrosis.

Parameter Value Parameter Value Parameter Value

Cm 1 τ+
v 1.4506 τs1 2.7342

uv 0.3 τ−

v1 60 τs2 16

u−v 0.006 τ−

v2 1150 τfi 0.11Cm

uw 0.13 τ+
w 200 τsi 2.8

u−w 0.03 τ−

w1 60 τso1 30.0181

uo 0.006 τ−

w2 15 τso2 0.9957

us 0.9087 τw∞
0.07 ks 2.0994

uso 0.4 τo1 400 k−w 65

uu 1.2 τo2 6 kso 2.0458

w∗
∞ 0.94

Parameter notation is that of Bueno-Orovio et al. (2008).

Obstacles were seeded randomly through the domain by
randomly replacing each grid element with a non-conductive
element with some fixed probability ρ, a typical approach used
for modelling diffuse fibrosis (Kazbanov et al., 2016). We did not
explicitly consider the other types of fibrotic microtexture (such
as compact or patchy fibrosis de Jong et al., 2011). However, by
choosing ρ ∼ 0.5 and simulating many different realisations,

we have considered a very broad range of patterns on the fine-
scale that we analyse in this study. It is worth noting that other
types of fibrotic patterning could be directly incorporated into
our machine learning workflow through recent techniques for
computer generation of large numbers of realisations of different
fibrotic patterns (Clayton, 2018; Jakes et al., 2019).

Equation (1) was discretised using a vertex-centred
control volume finite element method that integrates
bilinear interpolants over the square-shaped elements. This
generates a non-diagonal mass matrix and significantly
reduces discretisation error in this sharp-fronted wavefront
setting (Pathmanathan et al., 2012). For a vertex-centred
mesh where nodes are at element vertices, excitation can
still propagate through the “crack” between diagonally
opposed obstructions, owing to a node being there. As
such, to make our visualisations of fibrotic structures
more intuitive, we display fibrotic obstructions such that
these diagonal connections are respected (Figure 1B).
Timestepping used the second-order generalisation of the
Rush–Larsen method put forward by Perego and Veneziani
(2009), with 1t = 0.05ms. Simulations continued until
all cardiac activity died out, or t = 2 s was reached. These
simulations were carried out on the Barbora supercomputer
(Czech Republic).

Frontiers in Physiology | www.frontiersin.org 3 August 2021 | Volume 12 | Article 709485

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Halfar et al. Learning Structures Causing Unidirectional Block

2.2. Re-entries and Conduction Block
Our study concentrates solely on the effect of structure on
the initiation of re-entrant patterns of activation. As such,
each individual simulation used only one stimulus pulse so
as to preclude other conflating factors such as repolarisation
heterogeneity in scarred tissue (Gough et al., 1985). However, to
maximise the opportunity to identify pro-arrhythmic structures,
we increased robustness to specific propagation directions
and patterns of activation by separately using 13 different
stimulus sites for each fibrotic realisation (Figure 1C). To
obtain sufficient data featuring re-entry, a sweep through values
0.4 ≤ ρ ≤ 0.6 was first used to determine those extents of
fibrosis prone to re-entry. For each density value considered,
50 different realisations of fibrosis were created. Re-entry was
detected by the activation of any boundary nodes more than
one time (Figure 2), capturing ectopic waves that successfully
escape the fibrotic region being simulated. A realisation of
fibrotic structure that generated a re-entry for any of the
possible stimulus sites was then labelled as a substrate for re-
entry.

Following initial observations, our high-throughput
simulation protocol concentrated on the range ρ ∈ [0.46, 0.50]
as the values most prone to re-entry. For each ρ value in this
range (in increments of 0.01), an additional 800 fibrotic patterns
were created, and the same simulation protocol as above then

applied to each. Table 2 summarises the size, and basic qualities,
of the resulting data.

To detect specific micro-structures that promote re-entry,
we used the re-entry vulnerability index (RVI) (Orini et al.,
2017; Orini et al., 2019). This index calculates the difference
in activation time for a node and the repolarisation time
of its neighbours, and hence indicates potential for re-entry
formation (Figure 1D). In particular negative values occur when
a neighbouring node has already activated and repolarised when a
node first activates, allowing the node to spread its activation back
to that neighbour and potentially much more of the tissue. This
scenario arises when conduction blocks despite the existence of
waiting excitable tissue, for example, due to excessive electrotonic
loss (Nguyen et al., 2014). An example of conduction dying
out due to source-sink mismatch, only for wave propagation to
succeed in travelling through the same structure from a different
direction, is provided in Figure 3.

Significantly negative RVI values further indicate a likelihood
that surrounding tissue will also be ready to excite, increasing the
risk that a re-entrant event develops into an ectopic wavefront
significant enough to escape and hence trigger extrasystole. We,
therefore, find all locations that exhibited RVI values below a
threshold RVI ≤ −50. When multiple locations were detected
together as a contiguous group, these were simplified to a single
location. Around each detected site, the patterning of fibrosis

FIGURE 2 | A re-entry formed in fibrotic tissue (red arrow indicates the direction of AP propagation), and its detection. An AP initialised on the left border propagates

through the tissue, failing to conduct through the bottom passage. Then, when the excitation turns around (about 250ms), it transmits through this bottom passage

and successfully re-emerges into the remainder of tissue, forming a re-entry (about 375ms). Only re-entries that might escape back into the tissue surrounding the

afflicted region are counted, as detected by nodes sitting on the boundary of the domain being activated more than one time (marked with a red asterisk on

the boundaries).
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(as an array of binary values) was extracted, and labelled as
a “discriminative” structure, reflecting its inconsistent passing
along the excitation dependent on wavefront direction or other

TABLE 2 | Summary of the simulations performed, and the resulting data used for

machine learning (ML) (using one structure size as an example).

65,650 Total simulations

3,902 Simulations featuring a re-entry (that reached the boundary)

5,050 Unique arrangements of fibrosis

1,907 Fibrotic arrangements that generated re-entry

228,659 11×11 binary patterns exhibiting selective block

228,571 11×11 binary patterns not exhibiting selective block

conditions. To complete the dataset, this set of structures was
complemented by a set of ‘indiscriminate’ structures of the same
size, selected by finding locations that satisfied two conditions.
First, indiscriminate structures have to be activated (at least 40%
of their constituent excitable tissue), so that their effects on
wavefront propagation had been tested by the simulation they
came from. Second, indiscriminate structures could not contain
any locations identified by RVI values under the threshold
as discriminative.

2.3. Pattern Classification
To explore how much information regarding re-entry risk
is contained in the patterning of fibrosis, we considered the
ability of neural networks (NN) to successfully classify different

FIGURE 3 | Snapshots of AP propagation demonstrating an event of the unidirectional block. Visualised is one section of the full fibrotic region, detected by our

RVI-based approach. The brightness of colour indicates level of activation, and the red arrows indicate the overall direction of propagation. (A) The wave propagates

from the bottom-right to the bottom-left corner of the section, attempting also to propagate through the central passage but failing due to an imbalance between

excited and excitable tissue. (B) When the wavefront later propagates through the top portion of this structure, it is able to successfully propagate downwards through

the central passage, re-entering into the tissue in the bottom portion.

FIGURE 4 | Re-entry formation depends critically on the amount of fibrotic obstructions. Only a specific range of values of ρ, the probability that any individual mesh

element is obstructed, permits re-entry formation. Shown are the probabilities that a given fibrotic realisation produced a re-entry for (A) at least one stimulus scenario

and (B) for an individual stimulus scenario. A comparison of these two histograms highlights the importance of considering multiple stimulus locations when evaluating

a structure for potential as an arrhythmic substrate.
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structures as discriminative about excitation transfer or not.
The datasets were made balanced by detecting and adding
indiscriminate structures until these were the same in number as
the discriminative structures. As each structure is a binary mask,
they can simply be converted to a vector of 0 and 1 values to serve
as input to an NN. The NN then outputs a single value indicating
a category to which structure belongs (discriminative or not).

A variety of NN architectures were considered, using densely
interconnected layers and zero to four hidden layers. Layer
size varied from 100 to 1,200 neurons. All NN training and
evaluation used the Keras application programming interface
(API) (Chollet, Francois et al., 2015), a popular Python library
for machine learning. We used the Adam optimiser with a binary
cross-entropy loss function to optimise the neural network. The
rectified linear activation function (ReLU) activation function
was used in the inner layers and a sigmoid activation function in
the outer layer. To explore the spatial scale on which patterning
acts to create selective block of conduction and hence re-entry, we
also considered the ability to identify selectively blocking patterns
when working with structures of various sizes. In particular
we take the element identified via RVI as the centre of a
square binary pattern, with side lengths varying from 5 elements
(0.5mm) to 23 elements (2.3mm).

3. RESULTS

3.1. Preliminary Results
As brieflymentioned inMethods, re-entries were found to appear
only within a rather selective range of ρ values (Figure 4),
matching observations of previous studies considering micro re-
entry in untextured fibrosis (Sachetto Oliveira et al., 2018a,b).
This effect is caused by the requirement for both a sufficient
amount of obstruction to create the structures that produce a
source-sink mismatch, and a sufficiently conductive structure for
any resulting re-entrant event to successfully reach the domain
boundary and hence produce an ectopic beat. This balance is
strongly related to the percolation threshold, and we note that
the critical range of 0.45 ≤ ρ ≤ 0.52 for re-entry is here
larger than in the previous studies, as vertex-centred meshes are
naturally more conductive. Figure 4 also compares the chance
of re-entry for any individual simulation (one stimulus site),
with the chance per pattern realisation (for at least one re-entry
across all stimulus sites). Even given that a structure can produce
re-entries that escape the fibrotic region, only very few choices
of stimulus location result in this behaviour, demonstrating a
significant sensitivity to activation pattern.

Figure 5 compares the frequency with which selectively
blocking micropatterns were identified across the large-scale
fibrotic realisations (4 cm2) that did or did not result in re-entry.
The cases exhibiting re-entry showed on average more than two
times as many selectively blocking sites than those that did not.
This confirms the intuition that the presence of microstructures
that may initiate re-entry correlates significantly with the overall
risk posed by a fibrotic region. However, even those realisations
that did not produce re-entry under any stimulus scenario still
produced many individual events of unidirectional or other
selective block of conduction. This shows that the mutual spatial

arrangement of these initiator patterns, and the larger-scale
structure more generally, is also critical to the formation of
re-entries that persist and escape into the surrounding tissue.
Notably, there exists a positive feedback effect when it comes to
simply counting detected discriminative microstructures, and as
once a re-entry has successfully formed, there is an additional
opportunity for repolarisation heterogeneity to produce further
block events in vulnerable microstructures.

Individual examples of micropatterns capable or incapable of
initiating re-entry, as detected by our methods, are presented
in Figure 6. As shown by the arrows indicating the direction
of AP propagation (or block), the pro-arrhythmic patterns (left
side) all result in unidirectional block. Examining the fine-scale
structures that produce this effect reveals broad correspondence
to the AP emerging from thin passages into larger regions
of open tissue. This is the classical example of structural
heterogeneity producing unidirectional block through source-
sink mismatch (Ciaccio et al., 2018). However, the rich diversity
of patterning in these structures and the presence of visually
similar arrangements in the structures observed to permit normal
conduction (right side of figure) highlight the difficulty of
differentiating by eye alone patterns that may or may not
initiate re-entry. This motivates the use of machine learning
as a more accurate, and automated, means of carrying out
this classification.

3.2. Classification of Micropatterns That
Can Initiate Re-entry
The micropatterns that do or do not exhibit selective
(unidirectional, or inconsistent) conduction block were
learned by training a NN classifier, as described in Methods.
Depending on the NN architecture and micropattern size, the
overall accuracy of the classifier (as evaluated using unseen test

FIGURE 5 | Boxplots showing the frequency of microstructures that

selectively block condution (as detected by significant negative RVI) occurring

in large-scale fibrotic realisations that did or did not exhibit re-entry. The higher

the number of such discriminative structures found, the more likely a re-entrant

AP will survive and then escape into the surrounding tissue.
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FIGURE 6 | Examples of pro-arrhythmic (A–D) and non-arrhythmogenic (E–H) micropatterns (23×23 elements), and a close-up view of the structure at their centre.

Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block.

data) ranged from approximately 75 to 91%. Specificity and

sensitivity ranged from 74 to 91%, and the area under the receiver

operating characteristic curve (ROC) curve ranged from 0.82 to

0.95. The dependence of performance on network architecture,
for a fixed micropattern size, is summarised in Table 3, where
it can be seen that maximal classification accuracy of 91% was
obtained by using two hidden layers of 1,000 neurons each.
This architecture strikes the balance between including enough
neurons to capture the high complexity of the classification
problem, and the risks of training difficulties or overfitting
posed by a network with too many neurons. The classification
problems using other micropattern sizes showed very similar
relationships between accuracy and network architecture.
In Table 4 is shown the confusion matrix of the NN for
micropatterns of size 23 × 23, and 9 × 9. These results confirm

that NN performance is balanced, that is, the NN can detect
pro-arrhythmic as well as non pro-arrhythmic structures with
the same accuracy.

The classifier models with appropriate architectures obtain
very good accuracy, considering they are attempting to identify
a complex phenomenon such as unidirectional or otherwise
selective block only from binary micropattern data. On one hand,
we have considered many different patterns of activation (by
using different choices of stimulus site) to generate these data,
and so structures identified as pro-arrhythmic might still exist
safely in a scar region if they never experiencedwaves travelling in
the necessary direction to trigger the initial re-entry. On the other
hand, structures identified as non-arrhythmogenic will have
been subjected to multiple different AP propagation scenarios.
This suggests that microstructures identified as indiscriminate
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TABLE 3 | The resulting accuracy/area under the curve (AUC) of the neural network (NN) for the size of the micropattern 9.

Hidden layers

0 1 2 3 4

Neurons in layer

100 0.758/0.837 0.791/0.871 0.804/0.881 0.809/0.887 0.817/0.891

200 0.778/0.855 0.844/0.91 0.864/0.925 0.865/0.925 0.866/0.925

400 0.81/0.884 0.893/0.937 0.886/0.938 0.895/0.941 0.882/0.933

600 0.833/0.898 0.899/0.943 0.901/0.945 0.901/0.946 0.9/0.946

800 0.848/0.907 0.894/0.938 0.9/0.945 0.904/0.947 0.894/0.938

1000 0.855/0.915 0.904/0.946 0.911/0.952 0.909/0.951 0.903/0.948

1200 0.856/0.915 0.908/0.947 0.91/0.95 0.905/0.946 0.897/0.947

TABLE 4 | (A) The confusion matrix of the NN for 23×23 micropatterns, with four

hidden layers and 800 neurons in each layer.

True state

Pro-arrhythmic Not pro-arrhythmic

(A)

Prediction
Pro-arrhythmic 17,179 4,611

Not pro-arrhythmic 4,616 17,174

(B)

Prediction
Pro-arrhythmic 20911 2,090

Not pro-arrhythmic 2,094 20,915

(B) The confusion matrix of the NN for 9×9 micropatterns, using three hidden layers and

1,000 neurons in each layer.

could potentially be considered safe independent of the factor of
wavefront direction.

Classifier accuracy also allows us to consider the information
necessary in order to identify pro-arrhythmic micropatterns of
obstruction. In this study, we have varied the size of these
micropatterns, and thus can gain some understanding regarding
the spatial scale on which the dynamics of unidirectional
or selective block truly acts. On one hand, if the structures
considered are too small to correctly identify the relevant source-
sink interactions, accuracy will suffer due to this lack of requisite
information. On the other hand, when redundant information
is included by using a too large micropattern size, this only
increases the dimensionality of the learning problem without
supplying anything useful, and accuracy suffers due to the
negatively shifted the balance between dimension and amount of
training data.

Figure 7 shows how changes to micropattern size impact the
accuracy of the resulting classifier models. Accuracy peaks for
patterns of size 9×9, suggesting that the balance of source-
sink mismatch for a wavefront is meaningfully controlled by
the surrounding structure on a length scale of about 0.4–1mm.
The larger end of this range arises from the observation that
with increased amounts of training data, higher-dimensional
datasets may have exhibited even higher classification accuracy.
Saliency maps, which show the respective levels of contribution
of the individual elements of a structure towards the resulting
classification output by a NN, also showed a tendency to

FIGURE 7 | Graph of resulting accuracy dependence on micropattern size for

two hidden layers and 1,000 neurons.

concentrate importance on a small central subsection of the
larger micropatterns (Figure 8). This provides further evidence
towards the conclusion that selective and unidrectional block
events are governed by structure over only a small length scale.

3.3. Generalisation to New Data
In discussing classifier model accuracy, we have been referring
to the performance of the model in classifying micropatterns not
seen by it during the training process, but still sourcing from the
same overall batch of simulations from which the training data
were taken.

In this study, we test the classifier model in a more demanding
fashion by evaluating its performance on a new batch of
simulations designed to more directly examine events of the
selective block. These simulations were carried out on smaller
fibrotic domains (46×46 elements total), with single stimuli
triggered separately on all four edges of the domain to increase
the chance of observing unidirectional block where it might
arise. The best-performing classifier model was then used to try
to identify which microstructures in these new realisations of
fibrosis would or would not show this type of block.

Figure 9 shows a range of example patterns, including those
(both susceptible and not susceptible to unidirectional block)
that the classifier model successfully identified, and some of the
pro-arrhythmic structures that the model failed to detect. The
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FIGURE 8 | Example saliency maps for a selection of 21×21 (A–D) patterns classified by a neural network with zero hidden layers and 1,200 neurons in one layer and

9×9 patterns (E–H) with two hidden layers and 1,000 neurons in one layer. The lightness of grid sites indicates their level of contribution towards the decision of the

classifier for the different micropatterns tested. In the case of the larger patterns (A–D), site importance is concentrated around the centre of the pattern, whereas

smaller patterns more consistently use sites throughout the pattern to evaluate a structure for selective conduction block. This supports the conclusion that the vast

majority of these proarrhythmic phenomena take place on smaller spatial scales.

same archetypal structure of channels connecting to open regions
to produce unidirectional block is observed, although again
identification by eye is significantly challenging. For example,
structures exhibiting omnidirectional block (Figures 9D,E) do
not seem to be immediately separable from those exhibiting
unidirectional block (Figures 9A–C,G–I), but only the latter
structures are able to initiate a re-entry. Our classifier model
allows for the identification of this property beyond a simple
human search for the obvious, qualitative patterns.

However, some patterns that show unidirectional block when
simulated were not detected by the NN classifier, despite its high
accuracy on the data originally used to test its performance.
There could be several reasons for this. The unidirectional block
events observed in false-negative cases often occur very close
to the micropattern boundary (Figures 9H,I). In such cases,
there is insufficient information about the structure around the
wavefront at the critical location of the block, and so the classifier
model struggles to predict it. Additionally, in these smaller-
scale simulations, many more of the micropatterns evaluated
for testing will fall closer to the domain boundaries, where the
balance of source and sink can be affected by the initial stimulus
and the inability of travelling wavefronts to form their full ‘tail’
of activated cells that provide an additional electrotonic sources
of depolarisation. This is likely due to the fact that the structure
responsible for conduction block (unidirectional or otherwise)
will not precisely coincide with the location where the wavefront
dies out. We discuss this further in Conclusions.

4. CONCLUSIONS

We have used high-throughput simulation to approach an
exhaustive exploration of the issue of re-entry initiation in

fibrosis-afflicted tissue, a key precursor to arrhythmia (Hansen
et al., 2015; Sachetto Oliveira et al., 2018a). It is known, at least
for randomly placed obstructions as considered here, that the
probability a site is obstructed is a critical determinant of re-
entry formation (Vigmond et al., 2016; Sachetto Oliveira et al.,
2018b). This finding was recapitulated in this study, for a different
type of computational mesh and was extended by also exploring
how different patterns of activation interact with these regions of
afflicted tissue. In particular, we have demonstrated that for the
most risk-associated extents of fibrosis (ρ ∼ 0.49), a majority
of fibrotic realisations were in fact capable of initiating re-entry
from a single stimulus but only for waves sourcing from a select
few pattern-specific locations. This suggests that lower rates of
initiation previously reported (Sachetto Oliveira et al., 2018b)
are largely a function of only a single stimulus pattern being
considered in that study. This additionally sheds light on one
role of ectopic beats in arrhythmia initiation; if one of the
stimulus scenarios is said to correspond to a healthy sinus rhythm
activation pattern, then the other stimulus scenarios are related
to events such as premature contractions and can often initiate
re-entry even when the typical activation sequence does not.

Although we observed activation sequence to be similarly as
important as structure in terms of producing re-entrant waves
that escape the scar region, the fine-scale events of selective block
required to initiate any re-entrant activity were not expected
to be overly dependent on activation sequence. This intuition
was seen to hold, with a NN classifier model trained only
using binary arrays of fibrosis occupancy (no activation pattern
information) obtaining very good accuracy (up to 91% for
this very challenging learning problem). We also used classifier
accuracy to suggest the important length scale for identifying the
unidirectional block in these fibrotic micropatterns, observing
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FIGURE 9 | Conduction patterns in completely unseen structures from new simulations, and the corresponding predictions of the classifier model. Shown are

examples of correctly identified pro-arrhythmic (A–C) and non-arrhythmogenic (D–F) micropatterns, and undetected pro-arrhythmic (G–I) micropatterns. All are of

size 9×9 elements. Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block. Notably, the classifier model can

successfully identify structures that result in a complete block from all directions (D,E) but could not successfully identify all pro-arrhythmic structures, particularly

those where block occurs near the micropattern boundary (H,I).

9×9 patterns to best balance information content and learning
problem dimensionality for the NNs. This suggests the effective
length scale for individual events of unidirectional (or other
selective) conduction block to be∼ 0.5mm or a little larger.

When the classifier was tested on completely new data (new
simulations not used for training, validation, or testing), it
remained able to detect the key structures involved in generating
unidirectional block events. Impressively, completely-blocking
structures (i.e., blocking from all directions) could be correctly
classified. This more challenging test of the classifier model did
expose some of the limitations of the approach used in this
study, however. First, our RVI-based detection method picks
out the locations where activation dies out, but this does not
always perfectly correspond to the structure most responsible
for the failure to propagate. For example, a wavefront emerging

from a thin channel into a bay of excitable tissue may die out a
little way into the bay, even though the structure surrounding
where the channel ends is the most important. One potential
direction forward is improving the block detection algorithm, so
it better localises the structure responsible for the unidirectional
block instead of wave die-out points. Another direction is to
move away from detecting specific sites of unidirectional block
altogether, and instead attempt to classify micropatterns using
data generated by simulating AP propagation across the micro
patterns themselves.

As the focus of this study was purely on how much
fibrotic structure itself can inform the risk of re-entry, we have
not considered the importance of specific electrophysiological
conditions for the initiation and sustainment of re-entrant
activation patterns. Some examination of the effects of parameter
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variability in this context has already been carried out (Lawson
et al., 2020), but it is a limitation of this study that we
have not explicitly considered how different electrophysiological
conditions impact the importance of structure vs. activation
sequence or the ability to predict structures that selectively block.
We suspect that if the conductivity of unobstructed tissue was
adjusted, or a different cell model (or parameter values for the
BOCF model) was used, the general conclusions we have drawn
here would remain valid, but of course classifier models would
need to be retrained. Anisotropic conduction, in particular, might
also have a pronounced effect on our observations here, especially
considering that different ‘textures’ of fibrosis meaningfully act
to change the effective anisotropy of afflicted tissue (Nezlobinsky
et al., 2020).

We have used a generously sized region of afflicted
tissue for data generation in this study, larger than the
minimal size required to support re-entry in similar
simulations (Sachetto Oliveira et al., 2018b) and larger than
micro-re-entrant paths observed in explanted hearts (Hansen
et al., 2015). Domain size certainly effects the probability of
observing a sustained re-entry, but the observation that the
direction of the initial wavefront is critical for re-entry initiation
should be robust to the domain size. We have demonstrated that
the individual micro-structures that do or do not exhibit selective
or unidirecitonal block act on a length scale of about ∼0.5mm,
much smaller than the size of the full simulation domain. A
bigger limitation of our choice of domain is its two-dimensional
nature, a necessity for carrying out the number of simulations
performed here. In three-dimensions, critical length scales and
fibrotic extents of highest risk would be expected to change,
owing to the differences in source/sink balance (Xie et al., 2010;
Sachetto Oliveira et al., 2018b).

In summary, a new pipeline was implemented to generate
two datasets for pro-arrhythmic and non-arrhythmic fibrotic
patterns. The pipeline involves simulations of re-entries within
fibrotic substrates augmented by stimulations coming from
multiple sites and the automatic identification of unidirectional
blocks via the RVI method. These datasets were used to
train and test a neural network that was able to successfully
classify (accuracy up to 91%) micropatterns by only taking
as input their structures. Therefore, our results suggest that

machine learning provides tools that can be further exploited to
address fundamental questions such as the relationship between
anatomical heterogeneity and re-entry risk, and over what spatial
scale this heterogeneity should be considered.
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