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Abstract

Most genome-wide association studies consider genes that are located closest to

single nucleotide polymorphisms (SNPs) that are highly significant for those

studies. However, the significance of the associations between SNPs and

candidate genes has not been fully determined. An alternative approach that used

SNPs in expression quantitative trait loci (eQTL) was reported previously for

Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies

was a useful approach for identifying risk loci from the results of moderately sized

GWAS. In this study, we propose an approach that uses eQTL SNPs to support the

functional relationships between an SNP and a candidate gene in a genome-wide

association study. The genome-wide SNP genotypes and 10 biochemical

measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma

GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were

obtained from the Korean Association Resource (KARE) consortium. The eQTL

SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP

data from the ENCODE projects and two recent eQTL reports. A total of 25,658

eQTL SNPs were tested for their association with the 10 metabolic traits in 2

Korean populations (Ansung and Ansan). The proportion of phenotypic variance

explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely

to be associated with the metabolic traits genetically compared with non-eQTL

SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14

eQTL SNPs that were significantly associated with metabolic traits. These results

suggest that our approach can be expanded to other genome-wide association

studies.
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Introduction

Recently, large-scale genome-wide association studies (GWAS) that comprised

several thousands of samples have reported many novel findings in various

diseases and disease-related phenotypes [1]. These findings have been enlightening

the path to the identification of disease mechanisms and biomarkers.

Among the human phenotypes, metabolic traits are frequently studied in

different populations [2]. In the Korean population, common metabolic traits,

such as glucose, cholesterol, and bilirubin levels, have been studied via

conventional GWAS [3, 4]. However, little was explained by heritability [3]. This

phenomenon, which is termed the missing heritability problem, is hard to resolve

by conventional GWAS. It was suggested that the missing heritability might come

from the stringent multiple testing correction of GWAS analyses [5]. This

multiple testing correction is necessary to exclude false-positive loci, but

simultaneously may discard many true-positive loci [6]. In other studies, it was

shown that reducing the number of tests is advantageous for GWAS. In that

research, the categorization of the genome-wide SNPs into functional categories

provided the opportunity to reduce multiple testing and to identify functional

variants [7, 8].

In addition to the missing heritability, it should be considered that most of the

significant single-nucleotide polymorphisms (SNPs) used in these GWAS lay in

intergenic and intron regions and had little association with changes in the

protein-coding sequences of genes [1]. Thus, these SNPs likely regulate gene

activity at the transcript level directly, or cooperate with other DNA variations

that mediate this type of regulation. Based on these facts, expression quantitative

loci (eQTL) are being actively studied for elucidating the relationship between

changes in genotype and expression dynamics, which will promote the under-

standing of the results of GWAS [9–15].

eQTL information provides insights into the regulation of transcription and

aids in the interpretation of genome-wide association studies [9]. In cases in

which the allelic changes of a SNP are significantly correlated with the expression

of a gene, the SNP is defined as an eQTL-SNP. Using this information, researchers

try to identify trait-associated SNPs that would be otherwise hard to find. For

example, Fransen and colleagues reported a GWAS for Crohn’s disease using

eQTL-SNP information. Those authors selected eQTL SNPs among the GWAS

results for Crohn’s disease, and performed follow-up replication studies [6]. They

showed that the eQTL-based preselection for follow-up studies was a useful

approach for identifying risk loci from the results of a moderately sized GWAS.

Here, we reanalyzed genome-wide associations between metabolic traits and

SNPs using eQTL information. The main goal of this research was to explore

metabolic trait-associated variants using an eQTL-based filtering strategy. The

major eQTL SNPs used in this study were obtained from the RegulomeDB, and

the other eQTL SNPs were obtained from recent reports of liver tissues [13] and

from lymphoblastoid cell lines [14]. We collected the genotypes of the eQTL SNPs

from the Korean Association Resource (KARE) [3, 16] and examined their
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association with 10 metabolic traits in two independent Korean cohorts (Ansan

and Ansung).

Materials and Methods

Study subjects

The study subjects comprised two population-based cohorts, Ansung and Ansan,

which have been examined as part of the Korean Genome and Epidemiology

Study (KoGES). The phenotype of the cohort has been described [17]. Briefly, the

subjects came from Ansung and Ansan in KyungGi-Do province, near Seoul,

Korea. Written informed consent was obtained from all participants, and this

research project was approved by the institutional review board of KNIH. A total

of 10,038 individuals were recruited for the cohorts, and 8,842 individuals of the

KoGES were analyzed by the Korean Association Resource (KARE) consortium to

understand their genome-wide association with the surveyed or measured

phenotypes [16].

Subjects with genotype accuracies below 98% and high missing genotype call

rates ($5%), high heterozygosity (.30%), or inconsistency in sex were excluded

from subsequent analyses. Individuals who had a tumor were excluded, as were

related individuals whose estimated identity-by-state (IBS) values were high

(.0.80). Based on these criteria, 8,842 samples were selected; these quality-control

steps were described in a previous GWAS [16].

We obtained the following information from the cohorts (Ansung and Ansan

cohorts): sex; age; past disease history; anthropometric measurements, such as

weight and height; and biochemical measurements, such as fasting glucose

(GLU0), serum albumin (ALB), blood urea nitrogen (BUN), aspartate

aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl-

transpeptidase (GGT), total cholesterol (Tchol), high-density lipoprotein

cholesterol (HDLC), and triglyceride (TG) levels. Low-density lipoprotein

cholesterol (LDLC) was calculated as per the Friedewald formula: LDL5Tchol –

HDLC – (TG/5) (all concentrations in mg/dL). The exclusion criteria of each

metabolic trait are described in Table 1.

Genotyping

The genotype data were obtained from KARE, which used the Affymetrix

Genome-wide Human SNP array 5.0 and imputed SNPs. The genotype quality-

control criteria were as reported in a previous GWAS [16]. Briefly, the criteria for

the inclusion of SNPs were a genotype call rate .0.98, a minor allele frequency

.0.01, and Hardy–Weinberg equilibrium (HWE) (p.1610–6). Ultimately,

352,228 SNPs passed the quality-control process. SNP imputation was performed

with IMPUTE [18] using the JPT and CHB sets of HapMap Phase 2 as the

reference. After removing SNPs with a MAF ,0.01 and a SNP missing rate .0.05,
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we combined the genotyped SNPs and imputed SNPs; a total of 1.8 million SNPs

were used in the subsequent study.

Population stratification was tested by a principal component analysis using the

EIGENSOFT software [19]. To prevent overrepresentation of regions with more

redundant SNPs, we used the indep-pairwise command in PLINK [20] to reduce

linkage disequilibrium between the remaining variants by eliminating any SNP

that had a pairwise r2.0.3 with any other SNP in a 1500 bp window (step size,

150 bp). This reduced the original dataset to 93,877 SNPs; subsequently, we used

smartpca [19].

eQTL-SNP selection

Most of the eQTL-SNP resources that were used in this analysis are available in

online databases, such as RegulomeDB (http://regulome.stanford.edu/), including

several published resources for various cell types/tissues, such as monocytes [9],

human brain [10], lymphoblastoid cell lines [11, 12], and human liver [13]. The

RegulomeDB is one of the most comprehensive eQTL-SNP databases, because it

contains rich information about the products of the ENCODE project, such as

transcription factor binding sites, chromatin structure, histone modification, and

eQTL. The RegulomeDB classifies the human SNPs into seven categories [21], of

which Category 1 includes eQTL SNPs with other information about the

Table 1. Clinical characteristics of the Ansung and Ansan cohorts and the exclusion criteria for each biochemical trait.

Ansung Ansan p-value Exclusion criteria

Categorical Variables Chi-square test p-value

n (number of individuals) 4205 4637

Sex ratio (Male/Female) 0.76 (1809/2396) 1.05 (2374/2263) ,0.001

Continuous Variables (mean +– standard deviation) t-test p-value

Age (years) 55.67¡8.74 49.08¡7.86 ,0.001

Body weight (kg) 61.33¡9.91 64.67¡10.04 ,0.001

Body mass index (BMI, kg/m2) 24.46¡3.29 24.72¡2.96 ,0.001

Fasting glucose (GLU0, mg/dl) 83.42¡9.70 84.25¡9.89 ,0.001 .126 mg/dl, and T2DM history

Albumin (ALB, g/dl) 4.16¡0.25 4.33¡0.33 ,0.001 ,3.8, .5.1 g/dl

Blood urea nitrogen (BUN, mg/dl) 13.70¡3.00 13.73¡2.87 0.592 ,6, .20 mg/dl

Gamma glutamyl-transpeptidase
(GGT, IU/L)

18.29¡9.42 20.07¡10.07 ,0.001 ,8, .46 unit

Aspartate aminotransferase
(AST, IU/L)

26.26¡5.32 26.26¡5.50 0.977 ,5, .40 unit

Alanin transaminase
(ALT, IU/L)

23.76¡9.12 24.74¡10.04 ,0.001 ,7, .56 unit

High density lipoprotein
cholesterol (HDLC, mg/dl)

49.83¡8.76 49.52¡8.36 0.203 ,40 mg/dl, and history of hyperlipidemia

Low density lipoprotein
cholesterol (LDLC, mg/dl)

104.28¡27.42 113.15¡25.03 ,0.001 .160 mg/dl, and history of hyperlipidemia

Total cholesterol (Tchol, mg/dl) 178.60¡29.15 187.18¡27.78 ,0.001 .240 mg/dl, and history of hyperlipidemia

Triglyceride (TG, mg/dl) 119.95¡36.16 119.73¡37.09 0.820 .200 mg/dl, and history of hyperlipidemia

doi:10.1371/journal.pone.0114128.t001
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regulatory elements, such as transcription factor binding, chromatin structure,

and histone modification. A total of 39,332 eQTL SNPs were downloaded from

the RegulomeDB, Category 1. In addition, we also included two recent eQTL

reports based on liver (1,078 SNPs) or lymphoblastoid (907 SNPs) tissues [14, 15].

Finally, a total of 41,317 eQTL SNPs were used to extract the same SNPs from our

genotype dataset, and we extracted the 25,658 eQTL SNPs from the KARE SNPs

using PLINK [20] software.

Estimation of the genetic variance that is explained by eQTL or

non-eQTL SNPs

The non-eQTL SNPs were defined as the SNPs that excluded the eQTL SNPs and

were in perfect linkage disequilibrium with the eQTL SNPs (r251.0 and D951.0).

The genetic variances were computed via GCTA v1.24 [22], which is a tool for

estimating the proportion of phenotypic variance that is explained by genome-

wide SNPs for complex traits [23]. First, we estimated the pairwise genetic

relationship using the make-grm option. Next, we estimated the proportion of

phenotypic variance that was explained by the eQTL and non-eQTL SNPs,

respectively, based on the restricted maximum likelihood (REML) [23].

Statistical analyses

The effect of a genotype was analyzed by linear regression. We calculated the effect

size (beta) and standard error (SE) of minor alleles on metabolic traits for each

Ansung and Ansan subject. All analyses were adjusted for age, sex, body mass

index (BMI), and principal component (PC) 1 and PC2. PLINK v 1.07 [20] was

used for all statistical tests. All tests were performed based on the additive model,

and we combined the Ansung and Ansan results by an inverse-variance meta-

analysis under the assumption of fixed effects using Cochran’s Q test, to assess

between-study heterogeneity [24]. In this study, we applied false discovery rates

and Bonferroni correction p-values to determine significant associations.

Results

Dataset characteristics

The clinical characteristics and sample exclusion criteria are described in Table 1.

The KARE subjects consisted of two Korean populations (Ansung and Ansan),

which we used as the replication set of genetic associations based on their differing

clinical characteristics. However, the population stratification analysis showed

similar genetic structures (S1 Figure), indicating that they constitute a replication

set that can be used to identify consistent genetic effects, despite the differences in

demographics and environments.
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The proportion of phenotypic variance that was explained by eQTL

and non-eQTL SNPs

Based on the RegulomeDB and previous reports, we isolated 25,658 eQTL SNPs

from the KARE genotype dataset. The proportion of phenotypic variance that was

explained by eQTL and non-eQTL SNPs for complex traits is described in

Table 2. The non-eQTL sites examined were approximately 66 times more

examined SNPs than the eQTL sites; however, compared with those explained by

non-eQTL SNPs, the proportions of phenotypic variance that were explained by

eQTL SNPs were larger for GLU0 (1.9 in eQTL vs 0.2 in non-eQTL SNPs) and TG

(1.3 in eQTL vs 0.1 in non-eQTL SNPs), and similar for BUN (3.4 in eQTL vs 4.0

in non-eQTL SNPs). Moreover, the proportions of phenotypic variance that were

explained by eQTL SNPs were relatively large for the remaining phenotypes, with

the exception of ALB.

Association study of eQTL-related SNPs

These eQTL SNPs were examined with regard to their association with metabolic

traits in the Ansung and Ansan cohorts. Ultimately, we selected 509 eQTL SNPs

that had the same effect and p-values,0.05 in both cohorts, and combined the

results obtained for each cohort via a meta-analysis. All association results and

meta-analysis results for the 509 SNPs are described in S1 Table.

Among the 509 SNPs analyzed, we identified significant associations using

adjusted p-values,0.05 for FDR. Twenty-six SNPs for GLU0, eleven SNPs for

GGT, two SNPs for Tchol, thirty-five SNPs for LDLC, and two SNPs for TG met

our criteria (S1 Table, characters highlighted in bold). Because many associated

SNPs were located in the same LD blocks, we selected the most significant SNP in

each significant LD block (summarized in Table 3). We then used these SNPs for

further annotation and compared them with the previous conventional GWAS

results (http://www.genome.gov/gwasstudies). Further information for the

significant eQTL positions is described in Table 4, including the genes, cell types,

and ENCODE regulatory elements in metabolic-trait-related cell types derived

from the blood, liver, or pancreas. No significant association was detected

regarding the results of ALB, BUN, AST, ALT, and HDLC.

Significantly associated eQTL SNPs

Table 3 shows that two SNPs (rs1535 and rs463302) for FPG, two SNPs

(rs2251468 and rs11065774) for GGT, two SNPs (rs780092 and rs4604177) for

Tchol, and two SNPs (rs12679834 and rs651821) for TG were significantly

associated and passed the Bonferroni correction. The p-values of two SNPs

(rs3002007 and rs1431985) for FPG, one SNP (rs13233571) for GGT, and three

SNPs (rs11065774, rs9966367, and rs4604177) for TG did not pass the Bonferroni

correction, but passed the FDR correction.

In this study, we focused on significantly associated SNPs. SNP rs1535 was a

FADS1 and NXF1 eQTL-SNP hot spot, and the results of the meta-analysis of the
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association between the Ansan and Ansung populations were b5–0.943 and p-

value53.3610–8. SNP rs463302 was a B3GALT4 eQTL-SNP hot spot, and the

results of the meta-analysis were b51.347 and p-value58.5610–7. SNP rs2251468

was a C12orf43 eQTL-SNP hot spot, and the results of the meta-analysis were b5–

0.812 and p-value52.2610–7. SNP rs11065774 was an MYL2 eQTL-SNP hot spot,

and the results of the meta-analysis were b5–1.009 and p-value52.5610–7. SNP

rs780092 was a XAB1 eQTL-SNP hot spot, and the results of the meta-analysis

were b5–2.710 and p-value54.4610–7. SNP rs4604177 was a FAM169A eQTL-

SNP hot spot, and the results of the meta-analysis were b5–2.492 and p-

value57.7610–7. SNP rs12679834 was an eQTL-SNP hot spot of LPL, and the

results of the meta-analysis were b5–6.183 and p-value54.5610–9. Finally, SNP

rs651821 was an eQTL-SNP hot spot of TAGLN, and the results of the meta-

analysis were b55.011 and p-value54.7610–9.

Discussion

In this study, we performed a GWAS of 10 biochemical traits using SNPs that

were preselected based on the eQTL-SNP lists of RegulomeDB and two recent

eQTL papers. The proportion of phenotypic variance that was explained by eQTL-

and non-eQTL-related SNPs showed that the eQTL SNPs were more likely to be

associated with the metabolic traits than were the non-eQTL SNPs. We identified

14 eQTL SNPs that were associated with metabolic traits in two Korean

populations (Ansung and Ansan), in which the p-values met our multiple

comparison criteria. The SNPs revealed novel candidate genes for FPG, GGT,

Tchol, LDLC, and TG.

SNP rs1535 was reported as being associated with decreased plasma

phospholipid levels by an European study [25], and with decreased HDLC by an

Table 2. Estimated genetic variance explained by eQTL SNPs and non-eQTL SNPs.

h2 Ref eQTLs (n525,658) Non-eQTL SNPs (n51.7 million)

Vg Vp Vg/Vp Vg Vp Vg/Vp

GLU0 0.52–0.65 [41] 1.71¡0.96 90.13¡1.50 1.9¡1.1 0.27¡3.08 90.72¡1.49 0.2¡3.4

ALB 0.48–0.82 [44] 0.00¡0.00 0.08¡0.00 0.0¡0.9 0.007¡0.003 0.081¡0.001 9.1¡3.5

BUN 0.27¡0.10 8.02¡0.13 3.4¡1.2 0.32¡0.28 8.02¡0.13 4.0¡3.4

GGT 30 [45] 0.46¡0.84 71.69¡1.28 0.6¡1.2 4.87¡2.87 71.69¡1.28 6.8¡4.0

AST 43 [45] 0.42¡0.29 27.24¡0.46 1.5¡1.0 0.83¡0.96 27.24¡0.46 3.1¡3.5

ALT 40 [45] 1.55¡0.94 85.15¡1.44 1.8¡1.1 7.54¡3.07 85.15¡1.46 8.9¡3.5

HDLC 0.68–0.86 [41] 1.04¡1.08 70.52¡1.47 1.5¡1.5 4.19¡3.88 70.52¡1.47 5.9¡5.5

LDLC 0.37 [42] 26.23¡9.22 673.72¡12.39 3.9¡1.4 99.13¡29.70 673.80¡12.39 15.7¡4.4

Tchol 0.26 [43] 19.19¡9.89 781.03¡14.19 2.5¡1.3 113.77¡33.40 781.06¡14.20 14.6¡4.2

TG 0.39–0.53 [41] 16.17¡16.48 1250.96¡24.29 1.3¡1.3 1.60¡57.07 1250.98¡24.28 0.1¡4.6

Note. H2: previously reported heritability of the trait, Vg: estimated genetic variance, Vp: estimated phenotypic variance, Vg/Vp: percent of estimated genetic
variance explained by SNPs for each trait.

doi:10.1371/journal.pone.0114128.t002
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Indian Asian study [26]. Although FADS1 has been studied extensively in lipid

metabolism, recent genetic association studies showed its association with glucose

metabolism [27]. Moreover, NXF1, a novel glucose-regulated protein, is elevated

under high-glucose conditions [28]. Therefore, the expression of both the FADS1

and NXF1 genes is influenced by the rs1535 genotypes, which might represent a

functional element for regulating both glucose and lipid metabolism.

SNP rs463302 has not been reported in association studies; however, our study

indicated that rs463302 may contribute to B3GALT4 expression levels. B3GALT4

encodes UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 4, which

is a member of the beta-1,3-galactosyltransferase protein family. Although

B3GALT4 mitigates ganglioside activity in neurodegenerative disorders, such as

Huntington disease [29], it was also reported that gangliosides are related to the

immunological pathophysiology of type 1 diabetes and to insulin resistance in

type 2 diabetes [30, 31]. SNP rs463302 lies 200 bp upstream of B3GALT4, to

which RNA polymerase 2A (POLR2A) binds, based on the ENCODE ChIP-seq

data. In addition, the ENCODE DNase-seq and histone modification data

indicated that the chromatin around this SNP is open and undergoes histone

modifications. Taken together, our results and in silico evidence suggest that the

rs463302 SNP may be a regulatory factor of B3GALT4 and a modifying factor of

fasting glucose level.

In our study, rs2251468 was significantly associated with GGT. The SNP was

recently reported to be associated with plasma homocystein levels [32]. Because

homocystein concentration is a risk factor for coronary artery disease [32] and is

significantly correlated with GGT [33], this SNP might be a novel candidate

marker for coronary artery disease.

Although rs12679834 has not been reported in association studies, a SNP that is

in high LD with rs12679834 (rs331, r250.771, D951.000) has been reported as

being associated with plasma lipoprotein concentration [34]. SNP rs12679834 was

an eQTL-SNP of LPL (lipoprotein lipase), which is a critical enzyme in lipid

metabolism that catalyzes the hydrolysis of TGs. Dysfunction of LPL induces

pathophysiological lipid-related disorders, including hyperlipidemia, dyslipidemia

[35], and hypertriglyceridemia [36].

Our study had two limitations. First, although the positions of the eQTL SNPs

have several evidences of the regulatory elements from ENCODE results, not all

eQTL SNPs were experimented in the cell types or tissues that are directly related

to the metabolic traits [37]. Thus, we assumed that the eQTL SNPs also played a

similar role in the metabolic-trait-related cell types or tissues. For example, the

B3GALT4 eQTL-SNP (rs463302) was experimented in cerebellum tissue; however,

it is located on several ENCODE regulatory elements, such as transcription factor

binding, open chromatin, and active histone modification markers, in metabolic-

trait-related cell types, such as the liver and pancreas. The other limitation was

that we used HapMap 2 imputed SNPs. Recently, many genome-wide association

studies used 1000 Genomes Project-based imputation [38]. Although we could not

use 1000 Genomes-based imputation in the current study, we will apply it in future

studies.
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Previous GWASs of complex traits have primarily examined DNA sequence

variants (DSVs) between individuals that contribute to the susceptibility to a

disease, clinical outcomes, and response to therapy [9]. However, the mechanisms

that govern the expression of a phenotype are embedded not only in the DSVs,

but also through their effects on various genomic components that regulate gene

expression, variants, and posttranslational modifications of the encoded proteins,

in conjunction with environmental factors. Thus, a complicated phenotype is the

consequence of complex interactions between many genetic and nongenetic

factors.

The results of eQTL-SNP GWAS might be novel targets for the design of future

experimental studies. As an example, rs12740374 was identified in European and

American GWAS for LDLC, and those studies reported the CELSR2 gene as a

candidate gene based on positional proximity [39]. However, further analysis

showed that the SNP is an eQTL of SORT1 [40]. Moreover, our approach using

eQTL SNPs provides the possibility of understanding the internal mechanism that

underlies the link from SNP to genes to phenotype. For example, in our study,

SNP rs1535 was an eQTL of NXF1, which is regulated by the blood glucose levels.

This result led us to speculate on the following internal link: the modulation of

NXF1 expression by blood glucose levels may be modified by eQTL SNPs.

In conclusion, the relationships between functional eQTL SNPs and 10

biological traits may be helpful for understanding the underlying mechanism that

connects genotype and phenotype. Because eQTL SNPs promote the under-

standing of gene expression and regulation, this approach might help identify

biomarkers of metabolic traits.
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S1 Figure. Population stratification of Ansung and Ansan. The PCA analysis by
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