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10000 Zagreb, Croatia; mrogosic@fkit.hr

3 CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro,
3810-193 Aveiro, Portugal; jcoutinho@ua.pt

* Correspondence: irredovnikovic@pbf.hr

Abstract: The aim of this work was to develop a simple and easy-to-apply model to predict the pH
values of deep eutectic solvents (DESs) over a wide range of pH values that can be used in daily
work. For this purpose, the pH values of 38 different DESs were measured (ranging from 0.36 to
9.31) and mathematically interpreted. To develop mathematical models, DESs were first numerically
described using σ profiles generated with the COSMOtherm software. After the DESs’ description,
the following models were used: (i) multiple linear regression (MLR), (ii) piecewise linear regression
(PLR), and (iii) artificial neural networks (ANNs) to link the experimental values with the descriptors.
Both PLR and ANN were found to be applicable to predict the pH values of DESs with a very high
goodness of fit (R2

independent validation > 0.8600). Due to the good mathematical correlation of the
experimental and predicted values, the σ profile generated with COSMOtherm could be used as a
DES molecular descriptor for the prediction of their pH values.

Keywords: artificial neural networks; COSMO-RS; deep eutectic solvents; multiple linear regression;
piecewise linear regression

1. Introduction

Green chemistry presents a way of creating and applying chemical products and
processes that reduce or eliminate the use or production of substances that are hazardous
to human health and the environment [1]. A growing area of research in green technology
development is devoted to the design of new, more environmentally friendly solvents
whose use would meet technological and economic requirements. Requirements for alter-
native solvents include a reasonable price, non-toxicity to humans and the environment,
non-flammability, biodegradability, and possibility of regeneration or recovery [2,3]. Cur-
rently, known green solvents are water, carbon dioxide, bio-solvents, ionic liquids, and
deep eutectic solvents. In the last decade, deep eutectic solvents (DESs) have received
enormous attention in the academic community and the number of articles published has
increased exponentially.

DESs were first described by Abbott et al. in 2003 as a mixture of a hydrogen bond
donor (HBD) with a hydrogen bond acceptor (HBA), which exhibited much lower melt-
ing points than the pure compounds due to the formation of hydrogen bonds between
constituent compounds [4–6]. Lately, DESs have shown great potential for industrial appli-
cation thanks to their acceptable costs, the versatility of their physicochemical properties,
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and simple preparation. They also often present low cytotoxicity and good biodegrad-
ability. The properties that have gained them the environmentally friendly label are low
volatility (reduced air pollution), nonflammability (process safety), and stability (potential
for recycling and reuse). The number of structural combinations encompassed by DESs is
tremendous; thus, it is possible to design DESs with unique physicochemical properties
for a particular purpose. The physicochemical properties, such as the viscosity, density,
and pH value, of DESs are crucial for industrial application of these solvents in terms of
equipment materials, mass transfer, filtration, or pumping [7].

The pH values of aqueous solutions affect the enzyme activity, extraction efficiency,
and stability of biologically active molecules. As such, the pH value is an important prop-
erty of a solvent and, especially for DES design, one of the critical parameters. Though
several papers have analyzed the pH behavior of DESs, there are still gaps in the under-
standing of how DES-forming compounds influence its pH value [8,9]. Despite this, some
general conclusions can be outlined. For example, DESs containing organic acids (i.e., malic
acid or oxalic acid) are, as expected, more acidic than those containing polyalcohols or
sugars. The role of the water content in DESs regarding the pH behavior is still not entirely
clear; however, it was observed that an increase in pH values with an increasing water
content was reported for DESs with extremely low pH values while the pH values of DESs
with pH in the higher range of values (lower acidity region) decreased with an increasing
water content [7].

So far, the search for an ideal DES for a particular system has been guided by an
empirical trial-and-error approach, with no systematic research into the structure–activity
of DESs. Therefore, the rational design of these solvents for specific purposes is still in
its infancy. Data collection on the application properties of DESs and the development
of mathematical methods as a tool for the design of novel solvents are imperative for the
industrial application of these solvents. The Conductor-like Screening Model for Real
Solvents (COSMO-RS) is an ab initio computational method that may be used for the
generation of the σ profile of a molecule. The σ profile shows the probability of finding
surface segments with σ polarity on the surface of the molecule and contains the most
relevant chemical information needed to predict the compound’s electrostatic, hydrogen
bonding, and dispersion interactions [10]. The distribution of the charge, the width, and
the height of the peaks in the σ profile vary with the nature of the molecules. Therefore,
any change in the molecular structure can be quantified. By coupling the σ profile of
DES-forming compounds with experimental data using model-generating methods such
as multiple linear regression (MLR), piecewise linear regression (PLR), or artificial neural
networks (ANNs), models for the description of DESs’ physicochemical properties can be
developed [11–14]. In most studies, good model fitting of the literature viscosity, density,
and pH values of the DESs was obtained [12,13]. The results showed that simple linear
models such as MLR and more complex ones such as ANN could be used efficiently to
predict the physical properties of specific DES groups (e.g., amine or sugar-based DESs),
whereas it was difficult to create a single model covering the whole range of possible DES
systems [11]. Commonly, simple mathematical models such as MLR were good enough
for viscosity and density prediction while in the case of the pH value, more complex ANN
models had to be used [11,13,15].

In this work, we report a model for the prediction of the pH values of acidic and basic
DESs. For this purpose, the experimental pH values of 38 different DESs were evaluated,
described, and mathematically interpreted. For the development of mathematical models,
DESs were firstly numerically described using σ profiles estimated by the COSMOtherm
software. After the description of DESs, the following models were used: (i) MLR, (ii) PLR,
and (iii) ANN to link the experimental values with the descriptors. In the end, the prepared
models were statistically verified.
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2. Results and Discussion
2.1. DES Characteristics: Experimental pH Values and σ Profiles

This work aimed to develop a simple and robust mathematical model for predicting
the pH values of DESs based on Si

mix descriptors. To develop a user-friendly model to
predict pH values in the wide range, we selected both acidic and basic DESs from our
database. We chose 38 DESs by carefully selecting and varying different HBA, HBD, and
water shares (Table 1). Selected HBAs and HBDs can be roughly classified as quaternary
ammonium salts (choline chloride, betaine), amino acids (proline), organic acids (citric and
malic acid), and sugars (fructose, glucose, sucrose, xylose). In comparison to HBA, there
are more HBD candidates from previously mentioned classes and it has been shown that
they have an immediate effect on pH values (Table 1). Overall, all synthesized DESs cover
a wide range of pH values from 0.36 for Ch:CA containing 30% water (w/w) to 9.31 for
Ch:U containing 10% water (w/w). Monitoring the pH values of the same HBA/HBD pair
while varying the DES water content shows that water influences the measured pH value.
However, this influence is a distinctive characteristic of an individual DES and cannot be
extended to all DESs studied in this work.

Table 1. Experimentally measured pH values.

DES Abbreviation Molar Ratio wH2O [%] pH (20 ◦C) ± st.dev.

Betaine:citric acid B:CA 1:1
30 2.46 ± 0.04

50 2.46 ± 0.02

Betaine:ethylene glycol B:EG 1:2 30 6.86 ± 0.00

Betaine:glucose B:Glc 1:1 10 6.64 ± 0.35

Betaine:glycerol B:Gly 1:2
30 6.77 ± 0.04

50 6.38 ± 0.07

Betaine:oxalic acid:glycerol B:OxA:Gly 1:2:1 30 2.91 ± 0.05

Betaine:malic acid B:Ma 1:1
30 2.98 ± 0.01

50 2.92 ± 0.01

Betaine:sucrose B:Suc 4:1 30 7.85 ± 0.11

Choline chloride:citric acid Ch:CA 2:1
30 0.34 ± 0.04

50 0.71 ± 0.00

Choline chloride:ethylene glycol ChCl:EG 1:2

10 6.19 ± 0.01

30 6.60 ± 0.57

50 4.58 ± 0.14

80 4.41 ± 0.00

Choline chloride:fructose ChCl:Fru 1:1
30 3.51 ± 0.05

50 3.35 ± 0.03

Choline chloride:glucose ChCl:Glc 1:1
30 4.83 ± 0.06

50 3.56 ± 0.01

Choline chloride:glycerol ChCl:Gly 1:2

30 3.71 ± 0.06

50 2.67 ± 0.11

80 3.06 ± 0.01

Choline chloride:malic acid ChCl:MA 1:1
30 0.63 ± 0.01

50 1.03 ± 0.00
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Table 1. Cont.

DES Abbreviation Molar Ratio wH2O [%] pH (20 ◦C) ± st.dev.

Choline chloride:proline:malic acid ChCl:Pro:MA 1:1:1

10 3.23 ± 0.00

30 2.82 ± 0.01

50 2.63 ± 0.03

Choline chloride:sorbitol ChCl:Sol 1:1
50 4.92 ± 0.04

80 3.80 ± 0.08

Choline chloride:urea ChCl:U 1:2

10 9.26 ± 0.08

30 8.85 ± 0.06

50 8.23 ± 0.04

Choline chloride:urea:ethylene glycol ChCl:U:EG 1:2:2 10 8.29 ± 0.07

Choline chloride:urea:glycerol ChCl:U:Gly 1:2:2 10 8.72 ± 0.05

Choline chloride:xylose ChCl:Xyl 2:1

30 2.86 ± 0.04

50 3.32 ± 0.03

80 3.93 ± 0.01

Choline chloride:xylitol ChCl:Xyol 5:2

30 6.90 ± 0.06

50 6.50 ± 0.01

80 6.03 ± 0.06

Choline chloride:fructose ChCl:Fru 1:1
30 3.51 ± 0.05

50 3.35 ± 0.03

Citric acid:glucose CA:Glc 1:1 30 0.53 ± 0.04

Citric acid:sucrose CA:Suc 1:1 30 0.83 ± 0.00

Fructose:ethylene glycol Fru:EG 1:2 30 5.31 ± 0.09

Fructose:glucose:ethylene glycol Fru:Glc:EG 1:1:2 50 3.67 ± 0.06

Fructose:glucose:sucrose Fru:Glc:Suc 1:1:1
50 2.63 ± 0.03

80 2.99 ± 0.01

Fructose:glucose:urea Fru:Glc:U 1:1 30 8.22 ± 0.06

Glucose:ethylene glycol Glc:EG 1:2 50 4.03 ± 0.02

Glucose:glycerol Glc:Gly 1:2 50 4.33 ± 0.04

Malic acid:fructose MA:Fru 1:1 30 0.77 ± 0.01

Malic acid:fructose:glycerol MA:Fru:Gly 1:1 30 2.77 ± 0.01

Malic acid:glucose MA:Glc 1:1 30 0.83 ± 0.01

Malic acid:glucose:glycerol MA:Glc:Gly 1:1:1 10 0.92 ± 0.00

Malic acid:sucrose MA:Suc 2:1 30 0.66 ± 0.01

Proline:malic acid Pro:MA 1:1

10 2.63 ± 0.01

30 2.78 ± 0.02

50 2.73 ± 0.03

Sucrose:ethylene glycol Suc:EG 1:2 30 6.05 ± 0.06

Sucrose:glucose:urea Suc:Glc:U 1:1 30 8.14 ± 0.25

Xylose:ethylene glycol Xyl:EG 1:2 30 4.57 ± 0.06

Furthermore, DESs were mathematically described using the σ profile defined with
the COSMOtherm software. The HBA and HBD molecules were optimized in TmoleX,
both from an energy and geometry point of view. The generated COSMO files contain
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all information necessary for the calculation of the σ profile function and thus for the
calculation of the σ profile descriptors. For the preparation of the descriptor set, the DESs
were modeled as a molar mixture of HBA and HBD according to Table 1. The σ profile
curves for each HBA and HBD were divided into 10 regions, the area under each region was
calculated, and their numerical values were correlated with the experimental pH values
using mathematical models.

2.2. Multiple Linear Regression and Piecewise Linear Regression

The assessment of the MLR and PLR model applicability to predict the pH values of
DESs was based on the correlation coefficient values, R2, R2

adj, and RMSE. The obtained
model coefficient values and the basic statistical analysis are presented in Table 2 while a
comparison between the experimental and model-estimated pH values is given in Figure 1.

Table 2. MLR and PLR regression coefficients. Statistically significant coefficients are marked in bold.

MLR PLR

Regression Coeff. ± st. Error p-Value Regression Coeff. ± st. Error p-Value

Break point 4.1246 ± 0.3292 0.0021

b0 −13.4623 ± 4.9782 0.0078 −1.9449 ± 0.1556 −80.4560 ± 10.6436 0.0001

b1 (S1
mix) 16.4623 ± 5.1388 0.0022 14.8847 ± 2.1908 −23.1982 ± 1.8558 0.0001

b2 (S2
mix) 9.1349 ± 2.4418 0.0003 10.2415 ± 2.3918

27.8095 ± 2.2247 0.0001

b3 (S3
mix) 9.7560 ± 2.5748 0.0002 9.1933 ± 1.7354

35.1992 ± 2.8159 <0.0001

b4 (S4
mix) 4.2440 ± 1.1602 0.0004 4.8581 ± 1.1221

11.2879 ± 1.1902 <0.0001

b5 (S5
mix) 2.2980 ± 0.6482 0.0006 2.5621 ± 0.1188

10.1747 ± 1.3976 <0.0001

b6 (S6
mix) −0.9176 ± 1.0696 0.3927 −2.4281 ± 0.8779 −14.7126 ± 1.1770 0.2666

b7 (S7
mix) −4.5381 ± 1.1435 0.0020 −4.1497 ± 0.6632

−9.6777 ± 0.7742 <0.0001

b8 (S8
mix) −8.9573 ± 1.9634 <0.0001 −9.2237 ± 1.6373 −25.6581 ± 2.0526 <0.0001

b9 (S9
mix) −10.0312 ± 2.8589 0.0006 −11.4736 ± 3.6473 −32.0013 ± 2.5601 0.0001

b10 (S10
mix) −12.9604 ± 3.6943 0.0006 −13.9250 ± 4.4560 −42.7492 ± 3.4199 0.0001

R2 0.7758 0.9654

R2
adj 0.7564 0.9624

RMSE 1.1865 0.6558

F value 39.8120 39.8120

p-value <0.0001 <0.0001
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As described in the literature, linear regression calculates an equation that minimizes
the distance between the fitted line and all data points. In general, a model fits the data
well if the discrepancies between the observed and predicted value are minimal and
unbiased. According to Cheng et al. (2014) [16], the coefficient of determination and
adjusted coefficient of determination can be considered as summary measures for the
goodness of fit of any linear regression model. Moreover, Le Mann et al. (2010) stated
that the model can be regarded as appropriate if the coefficient of determination is above
0.75 [17]. Based on this, it can be concluded that both the MLR (R2 = 0.7758) and PLR
(R2 = 0.9654) models developed in this work are applicable for the description of DESs’
pH values based on Si

mix descriptors but not with the same accuracy. When analyzing
RMSE errors, it is evident that the PLR model (Figure 1b) ensures significantly smaller data
dispersion (RMSE = 0.6558) in comparison to the MLR model (RMSE = 1.1865) (Figure 1a).
As previously described, a high-accuracy model is strongly desired. However, the increase
in the accuracy is usually accomplished by the increase in the complexity of the models by
increasing the number of model parameters. For practical application, a model with fewer
parameters is easier to interpret and, therefore, more suitable for the application.

A high R2 value alone does not guarantee that the model fits the data well, so the
model’s goodness of fit was further confirmed by residual analysis. The residuals from a
fitted model are the differences between the responses observed and the corresponding
prediction of the response computed using the regression function. If the model’s fit
to the data was correct, the residuals would approximate the random errors that make
the relationship between the explanatory variables and the response variable a statistical
relationship. Therefore, if the residuals appear to behave randomly, it would suggest
that the model fits the data well [18]. Analyzing the results presented in Figure 2, the
residuals for the MPLR and PLR models were found to be normally distributed (Figure 2a,b).
Furthermore, because the residual plots were gathered roughly along a straight line, the
normality condition was met. The bell-shaped histograms that display the measurement
distribution also verified the normal distribution of the residuals (Figure 2a,b). The residual
vs. predicted value plots (Figure 2a,b) reveal that the residuals have no pattern, implying
that the models match the experimental data well. Additionally, the residuals were found
to range around the central value (Figure 2a,b) without obvious outliers, which means that
the level of randomization was appropriate and that the sequence of testing had no effect
on the findings [19].

Analysis of the MLR and PLR model coefficients showed that all coefficients, except b6
(coefficient multiplying S6

mix), were statistically significant. It can also be noticed that for
both models, the coefficients from b1 to b5 have a positive influence on the output variable
while the coefficients from b6 to b10 have a negative influence on the analyzed model output.
The results are easily interpreted in terms of b1 to b5, which are associated with the negative
potential region and thus with hydrogen bond accepting and basicity properties on the
one hand, and b7 to b10, which are associated with the positive potential region and thus
with hydrogen bond donating and acidity properties on the other hand. b6 turns out to be
related to the neutral potential region insignificantly contributing to the pH value. As for
the other b coefficient values, the more distant the potential region is from the zero (neutral
value), the stronger its influence (whether positive or negative) on the pH value. Thus, the
model seems to have a clear and rather simple physical significance. Although statistical
analysis showed that the coefficient b6 was not significant, the variable S6 was not excluded
from the modeling. This result indicates that there is no correlation with the dependent
variable at the population level, but this could be changed if a different data set was used.
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Figure 2. Analysis of the residuals for the MLR model (a–d), PLR model (e–h), and ANN mode (i–l).
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The ANOVA revealed that the created MLR and PLR models were statistically sig-
nificant, with p values < 0.001. Moreover, higher F-test results (F value = 39.8120) and
lower p values, according to Greenland et al. (2016) [20], show the relative relevance of
the created models. Based on the presented results it can be concluded that the collected
findings demonstrate the dependability of the created models throughout the spectrum of
variables evaluated.

2.3. Artificial Neural Network Modelling

The applicability of the artificial neural network models for predicting the DES pH
values based on the σ profiles was also studied. The best neural network was chosen based
on the following criteria: R2 and RMSE for training, test, and validation sets taking into
account the number of neurons in the hidden layer. The properties of the created networks
that were chosen are shown in Table 3. Based on the goodness of fit and validation error
and considering the number of neurons in the hidden layer, the MLP model 10-5-1 was
selected as optimal. Fewer neurons in the hidden layer make the ANN architecture simpler.
The selected ANN was characterized by 10 neurons in the input layer, 5 neurons in the
hidden layer, and 1 neuron in the output layer. The hidden activation function for the
selected ANN was Tanh while the output activation function was Logistic. The described
ANN provides a good agreement between the experimental data and the data predicted by
the model (R2

validation = 0.9797, RMSEvalidation = 0.0012). As presented in Figure 1c, it can
be observed that the data are distributed around the fitted function and that there are no
evident outliers. As for the MLP and PLR models, the residual analysis was also performed
for the ANN model (Figure 2c) and confirmed the ANN model’s goodness of fit through a
normal probability plot of the residuals (Figure 2c), residuals versus the predicted values
plot (Figure 2c), histogram of the residuals (Figure 2c), and residuals versus the order of
the data plot (Figure 2c).

Table 3. Architecture of the developed ANN (selected network is marked in bold). The numbers in
the network name denote the number of neurons in the input, hidden, and output layers, respectively.

Network Name Training Perf./
Training Error

Test Perf./
Test Error

Validation Perf./
Validation Error

Hidden
Activation Output Activation

MLP 10-13-1 0.9734, 0.0021 0.9751, 0.0031 0.9578, 0.0042 Logistic Logistic
MLP 10-11-1 0.9812, 0.0013 0.9802, 0.0018 0.9794, 0.0018 Tanh Exponential
MLP 10-10-1 0.9803, 0.0013 0.9827, 0.0016 0.9788, 0.0019 Tanh Tanh
MLP 10-10-1 0.9808, 0.0017 0.9806, 0.0021 0.9716, 0.0019 Tanh Logistic
MLP 10-5-1 0.9868, 0.0011 0.9799, 0.0012 0.9797, 0.0012 Tanh Logistic

Based on the presented results, it can be concluded that the σ profiles are good
molecular descriptors of DESs since the mathematical correlation of the experimental and
predicted values is high. Moreover, based on the obtained R2 values and the residual
analysis, it can be concluded that both the PLR and ANN model can be efficiently applied
for the prediction of the DES pH values based on the σ profiles. Due to the simplicity of the
PLR model, this model is proposed for the prediction of physicochemical properties.

2.4. MLR, PLR, and ANN Models’ Independent Validation

Validation of the MLR, PLR, and ANN models developed for the prediction of the
DES pH values based on the σ profiles was performed on the independent set of data. The
validation set included the σ profiles of 16 DESs. Comparisons between the experimental
data and model-predicted data are shown in Figure 2. The validation performance of the
developed models was estimated based on R2 and RMSE and the obtained values were as
follows: (i) for MLR R2 = 0.7097, RMSE = 1.1140; (ii) for PLR R2 = 0.8605, RMSE = 0.7652;
and (iii) for ANN R2 = 0.8885, RMSE = 0.82926.

It can be noticed that all three proposed models predict the pH value with high
accuracy. As expected, the highest R2 between the experiment and model-predicted data
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was obtained for ANN prediction of the analyzed DES pH values while the lowest R2

between the experiment and model-predicted data was obtained for the MLR model. These
findings demonstrate that σ profile ANN modeling is a useful and reliable method for
predicting DES pH values based on the σ profiles. Nevertheless, considering RMSE, it can
be noticed that the PLR model can efficiently be used for the prediction of pH values based
on the σ profiles. As described, the R2 values are scaled between 0 and 1, whereas the
RMSE is not scaled to a specific value and, therefore, provides explicit information about
how much the prediction deviates.

As stated before, it was relatively easy to link the parameters of the MLR and PLR
models to their physical significance. On the other hand, ANNs, by definition, belong to a
class of agnostic models and, thus, it is difficult, if not impossible, to reveal their physical
meaning. At the same time, this is the reason why they behave much better in interpolation
than in extrapolation. The independent validation presented here may be considered as
interpolation since the DES members of the independent validation dataset belong to the
same DES classes as those used for constructing the model. However, given the rather
simple and rather clear relation between the σ profile and pH as revealed by MLR, there
is no true reason to believe that the models would behave poorly in extrapolation, even
for ANN, i.e., for DES classes not involved in the development of the models. However,
this is yet to be checked, e.g., for DESs based on metal chlorides or DESs containing ionic
liquids, etc.

The current literature data refer to the prediction of other physicochemical properties
(such as viscosity and density) and only a narrow range of values characteristic for limited
groups of structurally related DESs [11–14]. Based on our current knowledge, only one
study has investigated the development of a mathematical model for DES pH value predic-
tion [13]. In that study, the pH literature data of 41 DESs were processed in a similar way
using the COSMO-RS and mathematical models, MLR and ANN, also covering a variety
of cations, anions, and functional groups. The literature study [12] used literature data
and included different temperatures (with temperature as an input parameter) while our
study used our data obtained at a single temperature. The literature study also showed
the potential of MLR and ANN modeling for the prediction of the pH value, however,
with more complex models (models with more coefficients) than those developed in this
work. Taking into consideration the specific future application of the developed models, it
is recommended that they are as simple as possible and as robust as possible. Summing up
the presented results, it can be concluded that the PLR model developed in this research
can efficiently be used for the prediction of a wide range of DES pH values based on the
σ profiles.

3. Materials and Methods
3.1. Materials

Betaine, choline chloride, glucose, L-(−)-proline, oxalic acid, sucrose, sorbitol, and
xylitol were all purchased from Acros Organics, USA. Citric acid, D-fructose, D-(+)-xylose,
D,L-malic acid, ethylene glycol, glycerol, and urea were all purchased from Sigma-Aldrich,
USA. BIOVIA TmoleX19 version 2021 software (Dassault Systèmes, Vélizy-Villacoublay,
France) was used for geometry and energy optimization of the HBAs and HBDs used in
this study. BIOVIA COSMOtherm 2020 version 20.0.0. software (Dassault Systèmes) was
used for the σ profile calculations of the defined DESs.

3.2. Methods
3.2.1. DES Preparation

DESs were prepared by mixing defined molar ratios of HBA to HBD. The two or
more components were weighed in a specific ratio in a round-bottomed glass flask, adding
10–50% (w/w) of water. Then, the flasks were sealed, and the mixtures stirred and heated
to 50 ◦C for 2 h until homogeneous transparent colorless liquids formed. The DES abbrevi-
ations and corresponding molar ratios are given in Table 1.
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3.2.2. pH Value Measurement

The pH values for each DES were determined with a pH/ion meter S220 using an
InLab Viscous Pro-ISM pH-electrode (Mettler Toledo, Greifensee, Switzerland), all within
the pH measuring range 0.36–9.31 at room temperature. The instrument was calibrated
using standard pH buffer solutions. Additionally, the pH values were checked with litmus
paper (range 1–14). All measurements were carried out in duplicates and the results were
expressed as an average value ± standard deviation.

3.2.3. Calculation of DES Constituents’ σ Profiles and Descriptors

All molecules used for DES preparation: HBA, HBD, and water, were geometrically
and energetically optimized in the BIOVIA TmoleX19 version 2021 (Dassault Systèmes)
software. Quantum chemical calculations were performed by adopting DFT (density
functional theory) with the BP86 functional level of theory and def-TZVP basis set [10]. To
create a simplified and user-friendly database, for each molecule, the single most abundant
non-ionized conformer with the lowest energy was chosen and used for further calculations.
Molecules consisting of two or more ions (e.g., choline chloride) were treated as ion pairs
and their structures were optimized according to Abranches et al. (2019) [21]. Finally, the
software-generated COSMO file for each optimized molecule contained its σ profile curve
that provided a quantitative representation of the molecules’ polar surface screen charge
on the polarity scale. HBAs are characterized by peaks in the negative potential region,
HBDs by peaks in the positive potential region, and nonpolar molecules by peaks in the
potential region around zero.

To define the molecular descriptors for all DES constituents, the σ profile curve for
each HBA, HBD, and water was divided into 10 regions. The width of each region was
0.005 e/Å2, covering the range from−0.025 to +0.025 e/Å2. The areas under the curve were
integrated separately for each defined region. This was achieved by simple summation of
the tabulated σ profile data point ordinate values as presented by the BIOVIA COSMOtherm
2020 software. The ordinate values lying on the boundaries of the regions were split into
halves and each half was attributed to one of the neighboring regions. Thus, 10 S descriptors
(S1–S10) of the σ profiles were calculated exactly as the numerical values of these 10 areas
(Table A1).

3.2.4. Calculation of DES Descriptors

Any change in the DES composition can be described by a change in its σ profile
and the associated numerical value of its descriptors. To obtain a unique descriptor set
for each particular DES, the σ profiles of its constituents were processed in the following
manner. The descriptors of the studied DESs (Si

mix) were calculated from the HBA and
HBD component (and in some cases water) descriptors according to Equation (1) proposed
by Benguerba et al. (2019) [11]:

Si
mix =

NC

∑
j=1

XjSi
σ−profile,j (1)

where i denotes the descriptor number (1–10), j stands for the DES constituent number, Xj
is the molar fraction of HBA or HBD or some other constituent such as water if present in
the mixture, Si

σ-profile,j is the j-th constituent i-th descriptor, and NC is the total number of
constituents from which DES is prepared. All the experiments were performed at 20 ◦C.

3.2.5. Modeling of Correlation between pH and Descriptors

In further calculations, it was assumed that the measured DES pH value can be
described as a function of the σ profile of the mixture, expressed by a set of Simix descriptors
in Equation (2):

pH = f
(

S1
mix, S2

mix, S3
mix, S4

mix, S5
mix, S6

mix, S7
mix, S8

mix, S9
mix, S10

mix

)
(2)



Molecules 2022, 27, 4489 12 of 14

Multiple linear regression (MLR) with Equation (3), piecewise linear regression (PLR)
with Equation (4), and artificial neural network (ANN) models were attempted to describe
the relationship between the input and output variables. The dataset included 142 data
points (that included replicates), of which 126 were used for model development and 16
(randomly selected) for independent model validation:

pH = b0 + b1·S1
mix + b2·S2

mix + b3·S3
mix + b4·S4

mix + b5·S5
mix + b6·S6

mix + b7·S7
mix + b8·S8

mix + b9·S9
mix + b10·S10

mix (3)

pH =




b01 +
10
∑

i=1
bi1·Si

mix ∀(pH ≤ bn)

b02 +
10
∑

i=1
bi2·Si

mix ∀(pH > bn)


 (4)

The PLR technique is based on estimating the parameters of two linear regression
equations: one for dependent variable values (y) less than or equal to the breakpoint (bn)
and the other for dependent variable values (y) higher than the breakpoint.

The MLR parameters in Equation (3) were estimated using least square regression
while the PLR parameters in Equation (4) were estimated using the Levenberg–Marquardt
algorithm implemented in the software Statistica 13.0 (Tibco Software Inc, Palo Alto, Santa
Clara, CA, USA). The algorithm searches for optimal solutions in the function parameter
space using the least squares method. The calculations were performed in 50 repetitions
with a convergence parameter of 10–6 and a confidence interval of 95% [22].

In addition, multilayer perceptron (MLP) ANNs were used for the prediction of DES
pH values based on the Simix descriptors. The ANN models included an input layer,
hidden layer, and output layer. The input layer included 10 neurons representing the
Simix descriptors, the output layer had only one neuron, and the number of neurons in the
hidden layer varied between 4 and 13 and was randomly selected by the algorithm. The
hidden activation function and output activation function were selected randomly from
the following set: Identity, Logistic, Hyperbolic tangent, and Exponential. The dimension
of the data set for ANN modeling was 126 × 11 and was randomly divided into 70% for
network training, 15% for network testing, and 15% for model validation. Model training
was carried out using a back error propagation algorithm and the error function was a sum
of squares implemented in Statistica v.13.0 Automated Neural Networks. The developed
model’s performance was estimated by calculating the R2 and root mean squared error
(RMSE) values for the training, test, and validation sets.

Validation of the developed MLR, PLR, and ANN models was performed on an
independent data set, including the Simix descriptors for 16 randomly selected DESs. The
validation performance of the developed models was estimated based on the R2 and root
mean squared error (RMSE).

4. Conclusions

The applicability of MLR, PLR, and ANN to predict the pH values of DESs was
evaluated. The results indicate that although simple linear regression can be used for the
description and prediction, its effectiveness and applicability are limited. On the other
hand, PLR and ANN are applicable to predict the pH values of DESs with a very high
goodness of fit (R2 > 0.8600). The contribution of this work lies in the development of a
user-friendly model to predict pH values in a wide range (from 0.525 to 9.25), indicating
that the developed models are good for the prediction of the pH value of newly synthesized
DESs. However, due to the simplicity of the developed PLR model, it could be suggested
as a model of choice for use in daily work and screening purposes.

Nevertheless, this approach can also be extended to other physicochemical properties
since this study confirmed previous findings that showed how the σ profile generated in
COSMOtherm is a valuable DES molecular descriptor. It could be a good basis for the
evaluation of various mathematical models to develop a simple and applicable prediction
model for everyday laboratory or industrial applications.
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It is interesting to comment on the influence of the addition of water to a DES. In our
previous article [7], based on a limited set of data, it was noticed that the addition of water
to extremely acidic DESs increases their pH values, and the addition of water to highly
basic DESs decreases their pH values. Thus, it seemed that the addition of water somehow
mellowed the pH environments. On the other hand, on a larger set of data, as presented
here, this conclusion does not hold any more: there are difficult-to-predict exemptions to
the rule. On the other hand, the COSMO-RS calculation results in combination with the
non-presumptive numerical models, such as MLR, PLR, and ANN, are perfectly suitable to
tackle those difficult-to-predict systems.
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Appendix A

Table A1. S descriptors (S1–S10) of the σ profiles from compounds from which DESs were prepared.

Intervals B Betaine
ChCl

Choline
Chloride

Pro LD-
proline

CA
Citric Acid

MA
Malic Acid

OxA
Oxalic Acid U Urea H2O

σ
-p

ro
fil

e

[−0.025; −0.02] 1 0 0 0.506 4.861 3.5955 0 0 0
[−0.02; −0.015] 2 0 0 5.186 14.9695 10.5215 7.5105 6.35 6.35
[−0.015; −0.01] 3 11.869 16.1615 6.9485 13.5665 9.368 20.482 10.027 10.027
[−0.01; −0.005] 4 59.1185 66.196 17.199 29.212 28.535 9.0145 3.5195 3.5195

[−0.005; 0.0] 5 36.625 34.4875 60.605 29.3465 23.3925 7.9265 2.1635 2.1635
[0.0; 0.005] 6 4.5285 5.6435 21.7815 23.467 18.1455 13.051 2.8725 2.8725

[0.005; 0.01] 7 3.2405 6.6525 10.6 37.877 25.726 7.606 4.055 4.055
[0.01; 0.015] 8 7.719 18.3 17.614 38.933 30.6435 11.679 5.2285 5.2285
[0.015; 0.02] 9 22.3525 30.0465 5.2065 1.0135 2.3845 13.8265 8.2765 8.2765
[0.02; 0.025] 10 8.202 0.0525 1.3475 0 0 0 0.172 0.5775

Intervals
EG

ethylene
glycol

Sol
sorbitol

Gly
glycerol

Xyol
xylitol

Fru
Dfructose

Glc
Dglucose

Suc
sucrose

Xyl
Dxylose

σ
-p

ro
fil

e

[−0.025; −0.02] 1 0 0.1725 0.013 0.037 0.1655 0.213 0.108 0.037
[−0.02; −0.015] 2 3.8055 15.884 7.828 9.216 11.8325 23.022 11.1905 8.7015
[−0.015; −0.01] 3 7.638 20.8955 11.4065 15.941 16.9895 28.444 14.5935 12.9035
[−0.01; −0.005] 4 20.2675 41.5705 19.6085 43.0415 36.2095 61.232 35.406 34.6755

[−0.005; 0.0] 5 28.038 30.5525 34.6465 35.965 39.319 54.567 28.5165 45.0735
[0.0; 0.005] 6 9.973 18.7645 15.0725 19.083 19.565 29.1605 15.066 17.7475

[0.005; 0.01] 7 7.9725 21.5775 10.103 20.848 19.4555 26.6145 20.4555 17.2715
[0.01; 0.015] 8 10.5605 28.283 17.194 28.977 30.9465 47.3685 29.0795 23.517
[0.015; 0.02] 9 9.6155 20.752 10.7865 10.9745 11.901 26.0425 8.4485 12.688
[0.02; 0.025] 10 0.0035 0.15 0.0115 0 0 1.082 0 0.005
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Biotechnol. 2015, 90, 1631–1639. [CrossRef]
3. Lanza, V.; Vecchio, G. New Conjugates of Superoxide Dismutase/Catalase Mimetics with Cyclodestrins. J. Inorg. Biochem. 2009,

103, 381–388. [CrossRef] [PubMed]
4. Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures.

Chem. Commun. 2003, 10, 70–71. [CrossRef]
5. Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019,

48, 962–982. [CrossRef]
6. Paiva, A.; Matias, A.A.; Duarte, A.R.C. How Do We Drive Deep Eutectic Systems towards an Industrial Reality? Curr. Opin. Green

Sustain. Chem. 2018, 11, 81–85. [CrossRef]
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