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SUMMARY

Comprehensive analyses of lncRNAs in aging have been lacking because previous
studies have mainly focused on the protein-coding genes during aging. Here, we
describe a protocol for the organism-wide analysis of murine lncRNAs during ag-
ing. We provide step-by-step instructions to identify lncRNAs that contribute to
aging and to determine their underlying functions in each tissue. We further
describe methods to compare the lncRNA expression patterns and dynamic
changes among multiple tissues.
For complete details on the use and execution of this protocol, please refer to
Zhou et al. (2020).

BEFORE YOU BEGIN

Overview of the project

This project aims to study the dynamic regulation of lncRNAs and their functional implications across

multiple rodent tissues during aging. This study includes data collection, preprocessing (Figure 1A)

and data analysis composed of differential gene expression analysis, functional annotation, tissue

specificity analysis and dynamic network construction (Figure 1B).

For differential gene analysis, we make use of negative binomial model in DESeq package to identify

AR(aging-regulated) mRNAs/lncRNAs in multiple tissues.

For functional annotation, we first use Pearson correlation to identify co-expressed mRNAs of each

AR-mRNAs. Then we perform BP enrichment analysis to discover the role of those co-expressed

mRNAs during aging, so as to infer the potential functions of each AR-lncRNA.

For tissue specificity analysis, we define and calculate the tissue specificity score of each lncRNA,

which is used to compare the tissue specificity between AR-lncRNAs and ANR-lncRNAs/AR-

mRNAs.

For dynamic network analysis, we first use Pearson correlation to calculate the relationship between

each AR-mRNA and each AR-lncRNA at each age point and then make use of the Walktrap commu-

nity finding algorithm in igraph package to identify modules where AR-mRNAs and AR-lncRNAs are

connected.
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Data collection

In this protocol, we make use of RNA sequencing expression data to identify those lncRNAs func-

tioning in aging among different tissues. Since correlation between lncRNAs and mRNAs is used

to predict the regulatory roles of interested lncRNAs, the samples of interest should include RNA

sequencing reads of both mRNAs and lncRNAs from a series of tissues in a specific species. In order

to study the transcriptome alternations across the lifespan of a selected species, the samples should

come from different age points for each tissue.

Note: For example, we chose mouse as our focused species and considered 11 tissues in our

published study. From 8, 26, 60, 78, 104 weeks, 5 replicates of each tissue were collected.

That is, we had 5(replicates) 3 5(different time points) 3 11(different tissues)=275 samples

in total. The number of lncRNAs was 21,981 and the number of mRNAs was 12,533, which

were consistent in all samples.

Note: The background among replicates should be matched as closely as possible.

Data preprocessing

Timing: 3-4 days

Note: Use conda create command in conda to create an environment specific for RNA-seq

preprocessing.

Note: We begin with FASTQ files. If the raw files are in the form of SRA, fasterq-dump in sra-

toolkit can be used to transform data formats.

1. Quality control

a. Access the quality of data with fastqc (v0.11.9), which will generate two result files for each

sample in the form of zip and html (Andrews, 2010).

b. Merge the results from fastqc with multiqc (v1.9), which will result in a single quality control

report across all samples in the form of html (Ewels et al., 2016).

i. The report consists a series of items, showing data quality in multiple aspects. Mainly focus

on Basic Statistics, Per Base Sequence Quality and Adapter Content.

Figure 1. Overview of the project

(A)A flowchart of data preprocessing.

(B)A flowchart of data analysis of this lncRNA study.
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ii. If some of the samples failed to pass the above mentioned quality control items, using trim

galore (v0.6.5) to apply adapter and quality trimming to raw fastq files (Krueger, 2012).

c. Make sure all samples are of good quality by fastqc again.

Note: Step-c requires repeating step-a and step-b(i). Only samples passing the mentioned

items after adapter and quality trimming are considered as ‘‘of good quality’’ and used for

following analysis.

2. Alignment of sequencing reads

a. Use STAR (v2.7) to map sequence reads to a known genome according to the interested spe-

cies (Dobin et al., 2013). The reference genome sequence can be downloaded from GEN-

CODE (https://www.gencodegenes.org) (Frankish et al., 2019).

Note: For example, we perform alignment by mouse reference genome (Release M17 of Gen-

Code, GRCm38) with parameter of sjdbOverhang149 in our published study.

b. Use SAMtools (v1.11) to deal with file format (Li et al., 2009).

i. Transform SAM files, the output files of STAR, to BAM files by view command.

ii. Sort BAM files by sort command.

Note: BAM files are binary version of SAM files, which can increase the execution speed in

gene abundance quantification.

3. Quantification of gene abundance

a. Assign reads to genes and determine the abundance by featureCounts (v2.0.1) (Liao et al.,

2014).

i. Specific parameter -p counts fragments instead of reads. It is only applicable for pair-end

reads since single-end reads will always be counted as reads.

ii. Parameter -a should be followed by the name of the annotation file. (GTF file obtained in

step2-a)

iii. Parameter -o should be followed by the name of output file including read counts (txt

format). Another file including summary statistics of counting results will also be gener-

ated.

b. Use cut command to extract gene names and gene counts, from the output file (txt format) of

featureCounts.

Note: The 2nd to 6th columns include information of genes. Only gene names (the 1st column)

and gene counts of each sample (the 7th to (7 +(N– 1 ))th column, where N represents the total

number of samples) is necessary.

Note: This section will generate a G 3 N raw count matrix including samples from all of the

tissues, containing the expression of mRNAs and lncRNAs, where G is the total number of

mRNAs and lncRNAs and N is the total number of samples. To be specific, if there are M tis-

sues and Niði = 1;2;.;MÞ samples for each of the tissues, N =
P

Ni.

CRITICAL: All of the following analysis will be executed in R statistical environment

(v3.6.1).

Note: In the following parts, we give variable names to some R objects , shown in the form of

italics, to make our protocol more understandable. The names of R objects can be adjusted

according to the projects.

Note: In the following parts, R functions are in the form of ‘<functionname> command’.

ll
OPEN ACCESS

STAR Protocols 2, 100397, June 18, 2021 3

Protocol

https://www.gencodegenes.org


4. Normalization and filtering troubleshooting 1 and 2

a. Import raw read counts matrix as a dataframe raw.

b. Perform normalization of raw read counts by the method of Median of Ratio in DESeq2 pack-

age(Anders and Huber, 2010).

i. Use DESeqDataSetFromMatrix function to create a DESeqDataSet object dds_norm. The

only necessary input is the dataframe raw.

ii. Use estimateSizeFactors function with dds_norm to perform normalization. Then use

counts function with a parameter of normalized=TRUE to obtain a normalized matrix norm.

c. Carry out log transformation of matrix norm by the log1p function and only keep genes with

expression > 0 in at least 20% samples for each tissue.

d. Take the mean expression value for all the replicates at a specific time point for each tissue

separately.

Note: This section will generate a series of gi3niði = 1;2;.;MÞ normalized count matrix Tiði =

1;2;.;MÞfor each of the tissues containing the expression of mRNA and lncRNA, where M is

the total number of tissues, gi is the number of filtered genes and ni is the number of samples

in this tissue. ni is the number of different age points after taking the mean value of all the

replicates.

Note: It is recommended to use the list structure to store raw and processed counts (before

and after taking the mean value) for each tissue. Intermediate results in subsequent parts

can also be saved in this way.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq raw data are available
at NGDC (http://bigd.big.ac.cn/)
under the BioProject accession
number PRJCA002140

Zhou et al., 2020 NGDC:PRJCA002140

Software and algorithms

Quality control of RNA-seq :
fastqc v0.11.9

Andrews, 2010 http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

Summarize the output of
fastqc : multiqc v1.9

Ewels et al., 2016 https://multiqc.info

Quality and adapter trimming to
fastq files : Trim Galore v0.6.5

Krueger, 2012 http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/

RNA-seq mapping : STAR v2.7 Dobin et al., 2013 https://github.com/alexdobin/STAR

Format transformation and sorting :
SAMtools v1.11

Li et al., 2009 http://samtools.sourceforge.net

Counting reads : featureCounts v2.0.1 Liao et al., 2014 http://subread.sourceforge.net/

R system : R v4.0.2 N/A https://cran.r-project.org/

Programming environment of R :
RStudio v1.3.1093

N/A https://rstudio.com/

Differential gene expression
analysis : DESeq2 v1.28.1

Anders and Huber, 2010 https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

Functional annotation :
clusterProfiler v3.16.1

Yu et al., 2012 https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

Gene expression interaction : Hmisc v4.4 Harrell, 2019 https://cran.r-project.org/web/
packages/Hmisc

Network cluster : igraph v1.2.4.2 Csardi and Nepusz, 2006 https://igraph.org/redirect.html

Data visualization: pheatmap v1.0.12 Kolde, 2019 https://github.com/raivokolde/pheatmap
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STEP-BY-STEP METHOD DETAILS

Differential gene expression

Timing: 2h

Note: Differential expression analysis is performed in each tissue.

Note: Raw counts are used in this part.

1. Perform pairwise differential gene expression of the youngest group with each aged group using

DESeq2 (v1.28.1) package (Anders and Huber, 2010). (Figure 2A)

a. Use DESeqDataSetFromMatrix function to create a DESeqDataSet object dds. The input argu-

ments include CountData, ColData and Design.

i. CountData is a matrix containing the raw read counts of selected groups. Filter the read counts

to keep the samegenes as the processed counts after data preprocessing. Each row represents

a gene. Each column represents a sample in the interested young and aged groups.

ii. ColData is a matrix containing sample information. Each row represents a sample, in the

order of columns of countData. Each column represents a type of group information,

including age and other covariates such as sex.

iii. Design is a formula representing how the gene counts rely on the variables in colData.

Include the interested variables or their interactions in this formula.

Note: For example, to examine which genes are differentially expressed during aging, only

need to use �age as the design (Figure 2A). If other covariates such as sex and sex:age inter-

actions are considered, �age + sex + age:sex(as their interaction) should be used for the for-

mula of design.

Figure 2. Detection of differentially expressed genes among multiple tissues

(A)A graphical instruction of DESeq2 package. Here is an example of countData and colData, serving as essential

input of constructing a DESeqDataSet object dds. For colData, we are only interested in the effect of aging here, as

starred in the figure, so we just input age for the formula of design. DESeq function performs intermediate

calculations. As seen in the sample outcomes, only gene A will be identified as DEG since it fulfills the criterion of

|log2FC| R 0.75 and FDR % 0.05, but not gene B(|log2FC|<0.75) and gene C(adjusted p-value>0.05).

(B)Illustration of pairwise comparison for differential gene expression. DEGs in 78-week samples and 104-week

samples are identified as AR-genes, as starred in the figure.

(C)Line plot demonstrating the differentially expressed lncRNA numbers of pairwise comparison in multiple tissues.
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Note: A DESeqDataSet object is used to store the input raw counts and intermediate results

during the analysis of differential gene expression. All operations are performed on the

DESeqDataSet object.

b. Using DESeq function with dds to conduct the analysis of differential gene expression. Out-

comes tables can be generated by results function. The tables contain log2FoldChange

and adjusted p-value(FDR) of each gene.

Note: DESeq function contains three steps for the analysis of differential gene expression (es-

timateSizeFactors function, estimateDispersions function, and nbinomWaldTest function). As

a substitute, you can also execute the three functions step-by-step.

c. For each of the aged group, the differentially expressed genes are identified with the criteria

of |log2FC| R 0.75 and FDR % 0.05.

2. Differentially expressed genes in the interested aged groups are identified as aging-regulated

(AR) genes.

Note: Up/Down-regulated AR-genes can be identified according to the positive/negative

log2FC values.

Note: ln most organs, the number of differentially expressed lncRNAs increases during aging

(Figure 2C). The differential expressed mRNA/lncRNA of 78 weeks or 104 weeks compared

with 8 weeks are classified as aging-regulatedmRNAs (AR-mRNAs)/Aging-regulated lncRNAs

(AR-lncRNAs) (Figure 2B).

Functional annotation

Timing: 4h

Note: Functional annotation is performed in each tissue.

Note: The mean value of processed counts of different replicates are used in this part.

Note: The clusterProfiler (v3.16.1) package requires the gene ID to be EntrezID for the func-

tional annotation. If the type of gene ID is already EntrezID, please skip step 3.

3. Transform gene ID to EntrezID for mRNAs using the bitr function in the clusterProfiler package (Yu

et al., 2012).

a. Find genome-wide annotation package for the species of your experimental model from

http://bioconductor.org/packages/release/BiocViews.html#___OrgDb.

Note: A series of org.Xx.eg.db packages including annotation for common species are

required when performing the transformation of gene ID type. For example, we chose org.M-

m.eg.db as our published study was conducted on mice.

b. Use bitr function to perform ID transformation. The parameters, including geneID, fromType,

toType and OrgDb, are used for the essential inputs.

i. Input your gene id for ‘geneID’.

ii. Use keytypes function to see the supported ID types for ‘fromType’ and ‘toType’.

iii. The name of selected org.Xx.eg.db package is used for ‘OrgDb’.

Note: The following GO analysis is performed for each set of co-expressed mRNAs of each

AR-lncRNA.
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Note: It is recommended to execute the following steps of functional annotation based on the

loop structure, since it is a great deal of work to conduct functional annotation for co-ex-

pressed mRNAs of each AR-lncRNA separately and integrate the results.

4. Identify the co-expressed mRNAs of each AR-lncRNA (Necsulea et al., 2014) (Figure 3A).

a. Perform Pearson correlation between AR-lncRNAs and mRNAs and calculate p-value using

rcorr function in Hmisc (v4.4) package. ((Harrell, 2019); (Schaum et al., 2019)) Take the absolute

value of correlation coefficient. Using p.adjust function in stat package to adjust p-value by the

method ‘fdr’.

b. For each AR-lncRNA, its co-expressed mRNAs were selected with a cutoff at absolute Pearson

correlation coefficient R 0.8 and FDR % 0.05 in each tissue.

5. Perform GO analysis by clusterProfiler package (Yu et al., 2012).

a. Use enrichGO function to perform BP(biological process) enrichment in GO analysis. Set ‘ont’

as ‘BP’ and ‘qvalueCutoff’ as 0.05. This step will return enrichment GO categories, go.

Note: The parameter ‘ont’ can be selected as ‘MF’ for molecular function, ‘BP’ for biological

process and ‘CC’ for cell component, or can be selected as ‘All’ to contain all of three. BP

enrichment is most widely used.

b. Use data.frame function to turn go into the form of data frame, go1. Filter go1 to remain col-

umns including ‘ID’, ‘Description’, ‘p.adjust’, ‘geneID’ and ‘Count’.

Note: The go1 data frame for each AR-IncRNA can be combined during each loop by rbind

function, which faciliates the following steps.

6. Analysis of the number of lncRNAs associated with each BP terms. (Figure 3B)

a. Calculate the total number of associated AR-lncRNAs for each of the significantly enriched BP

terms.

b. Rank the BP terms according to the decreasing order of associated AR-lncRNA numbers.

Tissue specificity analysis

Timing: 2h

Note: Tissue specificity analysis is performed at each time point.

Note: The mean values of processed counts of replicates are used in this part.

7. Definition of tissue specificity score (Alvarez-Dominguez et al., 2015; Ding et al., 2018)

In the following equations, n represents the total number of tissues, Tij represents the average

expression of a given gene i in a given tissue j. (Figure 3A)

Tissue fractionij =
TijPn
j = 1Tij

Tissue specificity scorei = max
�
Tissue fractionij

�

Note: The highest tissue fraction of a lncRNA, which indicates that a given lncRNA is highest

expressed in a given tissue, is used as its tissue specific score. It can be used to compare the

expression of interested lncRNAs among different tissues.

8. Definition of tissue specific and control lncRNA
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a. Rank all lncRNAs according to tissue specificity scores in a decreasing order.

Note: Use order function with parameter ‘decreasing = T’ to sort your data decreasingly.

b. Define the top 20% lncRNAs as tissue specific lncRNAs and the bottom 20% as control

lncRNAs.

Dynamic interaction network construction

Timing: 6h

Note: Interaction network between AR-lncRNAs and AR-mRNAs is constructed in each tissue.

Note: Processed counts without taking the mean value of replicates are used in this part.

9. Identification of modules in dynamic interaction networks

a. Calculate the Z-score for the log-transformed normalized counts of each AR-lncRNA and AR-

mRNA at different age points, separately. In the following equation, m represents the mean

value, s represents the standard deviation.

Z � score=
x � m

s

Figure 3. Functional annotation of aging-regulated lncRNAs

(A) A graphical instruction of co-expressed mRNAs identification. Here is an example considering 3 AR-lncRNAs and 6

mRNAs. Their |correlation coefficient|(FDR) are displayed correspondly in the figure. Only mRNAs with |correlation

coefficient| R 0.8 and FDR % 0.05 with an AR-lncRNA are selected as co-expressed mRNAs of a specific AR-lncRNA,

shown as red lines. To be specific, mRNA1 is a co-expressed mRNA of AR-lncRNA2, but not of AR-lncRNA1 and AR-

lncRNA3.

(B) A graphical instruction of BP enrichment for AR-lncRNAs. Firstly, obtain significantly enriched BP terms of co-

expressed mRNAs for each AR-lncRNA. To be specific, GO term3 is both enriched in mRNA1 and mRNA3. mRNA1 is

co-expressed with AR-lncRNA1, and mRNA3 is co-expressed with AR-lncRNA1,2,3. As a result, GO term3 is associated

with all of the 3 AR-lncRNAs. Secondly, rank each BP term decreasingly according to the number of enriched AR-

lncRNAs.

(C) Comparison of top BPs in adipose tissues. Most of top BPs are associated with immune response.
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Note: Processed data points after Z-score normalization follows the standard normal distribu-

tion. Here, Z-score normalization enables us to compare expression data at different age

points on the same level.

b. Combine the samples from the neighbor age points into 4 stages (stage1: 008w&026w,

stage2: 026w&060w, stage3: 060w&078w, and stage4: 078w&104w).

Note: We performed the analysis for the combined samples as our sample size was relatively

small (n=5) and may not provide accurate outcomes. If you have R 10 samples for each age

points, you can skip this step.

c. For expression matrix in each stage, evaluate Pearson correlation for each AR-lncRNA and AR-

mRNA using rcorr function in Hmisc package ((Harrell, 2019); (Schaum et al., 2019)). Take the

absolute value of correlation coefficient and obtain four correlation matrixes cor1, cor2, cor3,

cor4. Use p.adjust function in stat package to adjust p-value by the method ‘fdr’.

Figure 4. Tissue specificity analysis of lncRNA expression

(A) A graphical instruction of tissue specific score calculation. Here is an example of tissue fraction matrix. The maximum tissue fraction for each lncRNA

is selected for its tissue specificity score.

(B) Proportion of tissue-specific lncRNAs in AR-lncRNAs and ANR-lncRNAs using different thresholds of tissue-specific score(0.25, 0.30, 0.35, 0.40, 0.45,

0.50) in eWAT. To be specific, if you choose 0.25 as the threshold, all lncRNAs with a tissue specific score R 0.25 will be identified as tissue-specific

lncRNAs, while the others are tissue-nonspecific lncRNAs.

(C) The comparison of tissue specific score in AR-lncRNAs and ANR-lncRNAs in eWAT. * represents p < 0.05, using Mann-Whitney test.

(D) Cumulative density of |log2(old/young)| expression value of tissue-specific and control lncRNAs among multiple tissues. |log2(old/young)| is

selected as the maximum |log2FC| between 8-week samples and 78-week/104-week samples.
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d. When a pair of AR-lncRNA and AR-mRNA has the absolute correlation coefficient R 0.9 and

adjusted p-value % 0.05 in either or both of stage1 or stage4, keep the AR-lncRNA and AR-

mRNA pair in the subsequent dynamic network construction.

e. Identify modules for dynamic network construction using igraph (v1.2.4.2) package (Csardi

and Nepusz, 2006).

i. Construct a new dataframe exp to store higher correlation coefficient in stage1 and stage4

between each pair of filtered AR-lncRNA and AR-mRNA, where each line of the first and

second column represents pairs of AR-lncRNA and AR-mRNA, the third column represents

their correlation coefficient. (Figure 5A)

ii. Use graph_from_data_frame function to create an igraph graph g with the dataframe exp.

iii. Use cluster_walktrap function to identify modules of g with the parameter of steps=10,

which will return a community object wc. Use membership function to obtain the module

information for wc. Use a new dataframe mod to store these information.

Note: The step highly depends on computing resources.

Note: The cluster_walktrap function only keeps modules with gene number R 30.

Figure 5. Dynamic AR-lncRNA~AR-mRNA crosstalk during aging

(A) A graphical instruction of AR-genes filtering for module detection. Here is an example considering 3 AR-lncRNAs

and 6 AR-mRNAs. Their |correlation coefficient|(FDR) are displayed correspondly in the figure. Firstly, pick up edges

between an AR-lncRNA and an AR-mRNA with |correlation coefficient| R 0.9 and FDR % 0.05 in Stage1 and Stage4,

separately, shown as red lines. To be specific, the edge between AR-lncRNA2 and AR-mRNA1 is taken since it fulfills

both criterions. On the contrary, though AR-lncRNA3 and AR-mRNA1 has a |correlation coefficient| = 0.97 > 0.9, the

edge is not selected since its FDR = 0.18 > 0.05. Secondly, if an edge is chosen in either or both of Stage1 or Stage4,

include it for consequent steps. It can be clearly seen that AR-mRNA5 is not correlated with any AR-lncRNA. As a

result, remove AR-mRNA5 from network construction. For the remaining edges, use the higher value of |correlation

coefficient|of Stage1 and Stage4 for module detection. Take the edge between AR-lncRNA2 and AR-mRNA1 as an

example. It is picked both in Stage1 and Stage4 and remains in the network. Its |correlation coefficient| in stage1(0.92)

is higher than stage4(0.91), keep 0.92 rather than 0.91.

(B) Dynamic network showing the interaction of AR-lncRNAs and AR-mRNAs during the mouse lifespan in eWAT. Each

row represents an AR-lncRNA. Each column represents an AR-mRNA.
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10. Construction of the AR-lncRNA�AR-mRNA network

a. Rearrange the rows and columns of correlation coefficient matrix in each stage, which adjusts

the order of AR-lncRNAs and AR-mRNAs, in the order of module information (from module 1

to module n) of each AR-lncRNAs and AR-mRNAs in dataframe mod.

Note: The order of AR-lncRNAs and AR-mRNAs become exactly the same in four different

stages.

b. Use pheatmap function in pheatmap package (v1.0.12) to plot heatmap of cor1, cor2, cor3,

cor4. Set cluster_rows = F,cluster_cols = F.

EXPECTED OUTCOMES

The differential gene expression analysis will lead to a list of differential expressed mRNAs/lncRNAs

at different age points in each tissue (Figure 2C). The differentially expressed mRNAs/lncRNAs in

your interested aged groups, identified as AR-mRNAs/AR-lncRNAs, are critical for downstream

analysis.

The functional annotation identifies the BP terms that are associated with AR-lncRNAs. You can

also make comparisons of top BPs connected with AR-lncRNAs between different tissues

(Figure 3C).

The tissue specificity analysis calculates the tissue specificity scores for each lncRNA at different age

points. These score can be used to investigate the tissue specificity of AR-lncRNAs (Figures 4B and

4C). Comparision of aging-induced changes between tissue specific and non-specific lncRNAs indi-

cates that tissue-specific lncRNAs tend to be more regulated during aging (Figure 4D).

The dynamic interaction network construction can reveal the modules of highly correlated AR-

lncRNAs and AR-mRNAs for different tissues at different age stages. The growth of modules gener-

ally indicates the enhanced functional and regulatory relationship(Figure 5B). Functional annotation

can be performed within drastically growing modules in each tissue to infer the functional changes

during aging.

LIMITATIONS

The quality of raw data have a strong influence on the analysis, e.g., level of abundance, batch effect,

duplicate rate. A principal component analysis (PCA) can be performed by plotPCA function in DE-

Seq2 package on normalized counts. If the data are of good quality, transcriptomes are likely to be

grouped according to organ identity instead of age points.

TROUBLESHOOTING

Problem 1

Removing batch effect.

Potential solution

Batch effect results from a subset of experiments running on different days, by different technicians

or using different reagents, chips or instruments. Measurements with batch effect will have qualita-

tively different behaviours among conditions, which are uncorrelated with experimental variables in

a particular study.

If the sample are not from the same batches, the removeBatchEffect function in limma package can

help to solve this problem. Input the raw data and batch information and execute this function to

remove batch effect, which can ensure the robustness of following analysis.
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Problem 2

Selection of normalization methods.

Potential solution

Comparison of common normalization methods are listed below (Tables 1, 2, and 3).

To make the gene expression data more comparable within or between samples, normalization is

often a prerequisite. The main factors that normalization methods accounted for include sequencing

depth, gene length and RNA composition.

In practice of TMMmethod, which scaling to library size, the gene length is absorbed into the param-

eter of the number of transcripts. As a result, TMMmethod will not use gene length as an input (Rob-

inson and Oshlack, 2010). However, longer genes will have more read counts compared to shorter

ones at the same expression levels. Thus, intrasample comparison may not be accurate. We used

log2(FPKM) with a prior count of 0.5 to perform further normalization after TMM in our published

study.

In this protocol, we make a slight change here by using Median of ratios method in DESeq2 package

for normalization. It was reported that among all common normalization methods, only Median of

ratios and TMM performed well in both differential expressed genes detection and false positive

rate control (Dillies et al., 2012). So this change will not reduce the power of following analysis.

Table 3. Recommend usage of common types of normalization methods

Method
Within sample
comparison

Between sample
comparison

Differential
expression analysis

CPM 3 O 3

TPM O O 3

RPKM/FPKM O 3 3

Median of ratios 3 O O

TMM 3 O O

Table 1. Description of common types of normalization methods

Method R package Details

CPM edgeR Counts per million

TPM N/A Counts per length of transcript per million reads mapped

RPKM/FPKM edgeR

Median of ratios DESeq2 Counts divided by size factors determined by taking the median of the
ratios of observed counts

TMM edgeR Scaling to library size by size factors determined by using a weighted
trimmed mean of the log expression ratio between samples

Table 2. Accounted normalization factors of common types of normalization methods

Method Sequencing depth Gene length RNA composition

CPM O 3 3

TPM O O 3

RPKM/FPKM O O 3

Median of ratios O 3 O

TMM O 3 O
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr.Lei Sun (sun.lei@duke-nus.edu.sg).

Materials availability

This study did not generate new unique reagents.

Data and code availability

An example RNA-seq raw data is NGDC: PRJCA002140. An example code for this protocol is on

https://github.com/Xinyue-Lu.
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