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Bayesian Network analysis of piglet 
scours
Benjamin J. J. McCormick1, Lechelle K. Van Breda2 & Michael P. Ward2

Diarrhoeal disease (scours) in piglets, often associated with enterotoxigenic Escherichia coli (ETEC), 
is a substantial financial burden to the pig industry worldwide. Previous research has not explicitly 
examined the relationships between farm, pen and microbiological factors. Here we present a state 
of the art analysis to reveal empirical indirect – as well as direct – associations between management 
factors as putative risks for scours in pre- and post-weaned piglets. A Bayesian Network is constructed 
to identify the optimal structural model describing the relationships between risk factors. An additive 
model is then built to estimate more epidemiologically familiar odds ratios. Farm-level variance 
dominates the model, making many pen-level associations null. However, there is evidence that 
pre-weaning scours are less likely on farms with <400 sows (0.14, 0.03–0.50). Our results strongly 
suggest that smaller production units (piglets/pen) could reduce the incidence of scours in piglets. 
There is also some evidence that ownership of other livestock is a potential risk factor for pre-weaning 
scours, although this was observed only at one farm. Future research should be directed at better 
understanding the role of herd size and investigating the relationship between managing other 
livestock and the occurrence of scours in pig herds.

Pre- and post-weaning diarrhoea (scours) is a major production-limiting disease in Australian pig farms costing 
an estimated $AU7 million each year1. Outbreaks of scours are common and result in reduced growth rates, 
higher medication costs, increased morbidity and mortality2. Despite the importance of scours, the management 
practices that may contribute to or affect disease outbreaks are not well understood in Australian pig production 
systems.

As a syndromic disease, the causes of scours are many and varied. Stressors such as alterations to the qual-
ity, type or quantity of the diet, poor air quality and other environmental factors can contribute to scours3–6. 
Enterotoxigenic Escherichia coli (ETEC) have the ability to colonise the lower intestine via fimbrial adhesins 
(F4 (K88), F5 (K99), F6 (987P), F18 and F41)7 and the production of enterotoxins (heat-stable STa and STb, 
heat-labile LT, and Stx2e)8 results in dehydration and scouring. At weaning, maternal antibodies wane and with 
limited acquired immunity, piglets are susceptible to pathogenic bacterial species and more vulnerable to devel-
oping scours. Once piglets are placed in a pen following weaning, bacteria are shed in the faeces and this can 
then act as a source of infection to other piglets in the same pen or via shared housing. The survival and spread of 
bacteria is largely due to management practices once the pathogen is present on the farm.

More than three decades ago a pivotal study of weaning disorders in 89 French pig herds with contemporary 
conventional husbandry characterised disease onset as an eco-managerial problem9. Through examination of 
515 environmental variables, 10 primary risk factors for weaning disorders were identified5. This study crucially 
recognised that these risks were interlinked and context dependent. Later the predictive power of individual 
(putative risk) factors were shown to vary over time10.

Australian herd management strategies have evolved since the early studies of environmental drivers of 
scours. For example, housing has changed with weaner piglets generally housed in larger groups and raised in 
eco-shelters on deep litter11, 12. Similarly, sow stalls are being phased out in favour of grouped housing, there are 
improvements to diet and nutrition and management of diseases through enhanced biosecurity procedures, and 
increased vaccine availability13. These changes have increased productivity, but have not been matched by compa-
rable research into the drivers of diarrhoeal disease and whether key risk factors have changed14.

Here we use state of the art analytical techniques to explicitly examine the causation of scours in the con-
text of pig farm management. Using a survey of pig farms in southeastern Australia, we construct a Bayesian 
Network (BN) using structure discovery algorithms to reveal empirical relationships between production factors 
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and pre- and post-weaning scours15. Traditional analytic approaches reduce disease systems to a single outcome 
and ignore the relationships between risk factors that can lead to indirect risk pathways. When translating such 
results into applied tools, ignoring indirect pathways can overestimate the success of interventions; furthermore, 
understanding the whole disease system can lead to novel interventions through the control of highly influential 
factors that act as junctions of risk pathways15. To address multi-causal disease syndrome, traditional approaches 
to understand disease causation are inadequate.

Results
Characteristics of the farms included in the analysis are shown in Table 1. Herd size ranged from 45 to 20,000 
sows per farm (mean 721 sows). Most farms were observed to have either (or both) pre- and post-weaning scours 
(17% and 24%, respectively) at the time of sampling. Approximately 22% of pens had a history of diarrhoea, as 
reported in the questionnaire. The number of pens with <199 and ≥200 piglets (the median value) was similar, 
although the distribution was skewed by one herd with very large pens (1,000 piglets).

The identification of the BN structure assumed conditional probability tables for each node. In converting the 
model to an additive BN, it was necessary to remove intercept terms because in most cases these were collinear 
with other variables. Removal of the intercept terms made the model tractable. The model structure – averaged 
over the bootstrap samples – included 43 arcs with greater than 50% support (Fig. 1). Estimating odds ratios from 
the additive BN reduced the number of arcs with statistical support to 30. Up to 10% of data was missing due to 
producers declining to answer questions.

The risk of pre-weaning scours was a function of the number of sows kept, whereby ownership of <400 sows 
was protective against pre-weaning scours (median odds 0.14, and 95% credibility interval 0.03–0.50). The odds 
ratio of pre-weaning scours was perfectly predicted by ownership of other livestock because only one farm had 
neither other livestock nor pre-weaning scours. This arc was therefore removed after model fitting (a dashed line 
in the figure). Out of the 17 farms included in the final analysis, 14 (82%) had both ownership of other livestock 
and evidence of pre-weaning scours.

Pre-weaning scours were a risk factor for post-weaning scours (3.19, 1.99–5.34). There was strong evidence 
that the number of sows was associated with post-weaning scours; however, unlike pre-weaning scours, a smaller 
number of sows was a risk factor (1.97, 1.00–3.87). The odds of a history of diarrhoea, whilst related to the 
presence of bedding material, did not have any statistically supported associations once the additive BN was 
calculated.

Of note, there was no statistical support for associations between recent disease events (within the last twelve 
months) and either pre- or post-weaning scours. Also, an association between suspected beta haemolytic E. coli 
and either pre- or post-weaning scours was not supported by the data. Beta haemolytic E. coli identification was a 
statistical orphan node in the network (i.e. there was no statistical evidence to support associations between this 
and any other variable in the BN). Non-beta haemolytic E. coli was also an orphan variable, although it appeared 
(with weak evidence) to occupy a very different set of pathways.

The inclusion of farm-level random effects dramatically reduced the number of supported arcs (from 30 to 5, 
shown in Fig. 2). This is important because it suggests that many factors, perhaps unsurprisingly, co-occur based 
on management practices. Importantly, there was continued evidence for the associations between the number of 
sows and pre-weaning scours. This suggests that even after accounting for clustering within farms, there is strong 
evidence to support this association at the pen level. The association between livestock and pre-weaning scours 
was removed because it reflected a single farm and was therefore likely to be biased.

Curiously, the other arcs that were supported with the inclusion of farm-level random effects (i.e. the odds 
of suspecting >0% beta haemolytic E. coli) had not previously been supported by the credibility intervals of the 
additive BN. This is surprising because at the pen level, ignoring the clustering within farms, this factor was not 
statistically supported. However, the inclusion of farm clustering revealed stronger evidence that the odds of 
detecting beta haemolytic E. coli were reduced by weaning at >5 weeks of age (0.30, 0.08–0.97), which itself was 
reduced by the absence of litter. The odds of not having litter were strongly associated with not having intensive 
indoor production, suggesting that beta-haemolytic E. coli may be more likely to be seen in extensive production 
(although this association was not significant; χ2 = 0.88, p = 0.35, and hence no direct arc was supported in the 
BN).

Discussion
Scours in weaning pigs is an on-going challenge to pig production in Australia. Despite considerable invest-
ment in counter measures, little research has been done to untangle management factors that may reveal the 
eco-epidemiology of diarrhoeal diseases. Here we explicitly examine the relationships between farm and pen level 
factors that are putative risk factors for scours.

The risks of pre-weaning scours were robustly predicted by the number of sows. This implies a route of trans-
mission of enteropathogens that is worthy of further investigation. On larger farms – indicated by a higher num-
ber of sows (and the arc from post-weaning scours to the number of piglets per pen and pen size) – pre-weaning 
scours was more likely to be observed and these farms, at least some, were at risk of post-weaning scours. The 
latter association is, however, more likely to be a farm management issue than a piglet-pen risk. In particular, it is 
interesting that the presence of beta-haemolytic E. coli and the use of vaccination – in either sows or pre-weaned 
piglets – had no direct associations with pre- or post-weaning scours. Beta-haemolytic E. coli can be detected in 
the faeces of both healthy and diarrhoea piglets but studies have observed higher levels in diarrhoeal piglets6, 16; 
vaccination is a common practice in pig production14.

Recently a Canadian study assessing biosecurity practices and diseases in pigs found strong associations 
between proximity to other livestock and disease transmission17. Although Cox et al. targeted Porcine repro-
ductive and respiratory syndrome, Swine influenza, Mycoplasma pneumonia and Swine dysentery, and used a 
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proximity measure (whereas we asked specifically “Do you run other livestock on the same property?”), this 
suggests that by minimising such risk factors associated with E. coli scours producers could also minimise other 
diseases known to have dramatic impacts on pig production. We found that only one farm had neither ownership 
of other livestock nor pre-weaning scours, making it difficult to draw robust conclusions. However, ownership of 
other livestock could be an indicator of inadequate biosecurity, or might increase the risk of pathogenic strains of 
E. coli being introduced to a pig herd. This risk factor is worthy of further investigation. It is a common practice 
for Australian pig producers to raise other livestock on their farm (van Breda et al.14).

Though statistically biased (due to separation in the data), the majority of farms analysed had both other 
livestock on the same farm and pre-weaning scours. This is suggestive of transmission between animals18. Once 
within a pen, smaller management units tend to be less prone to post-weaning scours, however this depends on 
the management context of a production system19. It would be useful to examine alternative causes of scours 

Variable

Number of pens

No Yes

History of diarrhoea (y/n) 135 39

Suspected beta-haemolytic (>0%)a 61 113

Suspected non beta-haemolytic (<100%)a 159 15

Average weaning age (weeks) (≤5) 42 132

No litter (y/n) 150 24

Number of Sows (<400) 76 98

Indoor intensive production (y/n) 73 101

Number of buildings (≤5) 108 66

Other livestock (y/n) 27 147

Number of piglets/pen (<200) 92 82

Number of piglets/shed (<300) 88 86

Pre-weaning scours (y/n) 12 162

Post-weaning scours (y/n) 42 132

E. coli vaccination of Sows (y/n) 47 127

Pre-weaning E. coli vaccination (y/n) 153 21

Weaner feed additives/acids (y/n) 66 108

Antibiotics in water (y/n) 114 60

Recent disease (y/n) 83 91

Small or medium pen sizes (y/n) 53 121

Number of buildings (≤5) 114 60

Ventilation (y/n) 23 151

Controlled temperature weaner pens (y/n) 35 139

Anaerobic effluent disposal (y/n) 46 128

Proportion Beta-haemolytic E. coli Non-beta-haemolytic E. coli

0 74 (38.0%) Nil

0.1 2 (1.0%) Nil

0.2 22 (11.3%) Nil

0.3 4 (2.1%) Nil

0.4 14 (7.2%) Nil

0.5 5 (2.6%) Nil

0.6 12 (6.2%) 6 (3.1%)

0.7 3 (1.5%) 1 (0.5%)

0.8 15 (7.7%) 9 (4.6%)

0.9 2 (1.0%) 1 (0.5%)

1 42 (21.5%) 178 (91.3%)

Table 1.  Data from a questionnaire survey of 17 farms and sampling of 174 pens of piglets used as inputs to 
an additive Bayesian network following filtering of variables for missing data or significant associations with 
diarrhoea, pre- or post-scours. The two variables included in the model were: 1. beta haemolytic E. coli (>0%); 
and 2. non-beta haemolytic E. coli (<100%). These variables reflect the ‘unusual’ occurrence, as indicated by 
the bolding above. In the case of non-beta haemolytic E. coli, detection was near ubiquitous (91% positive). For 
beta-haemolytic E. coli the distribution was more complex, but polarised towards all (21.5%) or none (38%). 
Therefore rather than categorising beta-haemolytic E. coli based on 50% presence it was partitioned as some/
none with none used as the reference category i.e. the odds of at least some beta-haemolytic E. coli present in 
the pen. aE. coli detections were modelled based on the number of pens with a given proportion of 1. beta-
haemolytic E. coli and 2. non-beta haemolytic E. coli, as follows (data shown is prior to application of filtering 
procedures which reduced the number of pens from 195 to 174).



www.nature.com/scientificreports/

4Scientific REPorTs | 7: 6202 | DOI:10.1038/s41598-017-06399-2

given that vaccination in general, and for E. coli in particular, was only tangentially associated with diarrhoeal 
disease in piglets. Given the plethora of infectious causes of enteropathy it is possible that less ubiquitous species 
are transmitted between hosts.

A key finding presented here is the dominance of farm-level variability. Transmission routes likely vary 
between farms, and given the associations at a pen level, are associated with pen and unit size. Fewer piglets per 
pen are likely to be associated with reduced risk of post-weaning scours. We hypothesise that this is related to the 
chance of identifying and responding to early signs of scours in a timely fashion, in addition to the differences in 
management between smaller and larger enterprises. For example, farms with fewer buildings (≤5) are less likely 
to have ventilation, and pens with ventilation are more likely to have fewer than 200 piglets per pen and to have 
bedding.

Figure 1.  Additive Bayesian Network showing odds ratios of observing each a given value of a node conditional 
on the network. The three diarrhoeal variables are highlighted in grey. In this figure, the network includes fixed 
effects only having identified the structure via non-parametric bootstrapping and a tabu modified greedy hill-
climbing search for the optimal structure. Red arcs indicate positive associations that do not include 0 in the 
95% credibility interval; blue arcs are negative associations that no not include 0 in the 95% credibility interval; 
the 95% credibility interval of grey arcs include 0.
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This study is the first to collect so much data on farm, pen and microbiologic aspects of scours from south 
eastern Australian pig production. As such is it uniquely positioned to explore the balance of management factors 
that may influence the risk of scours in weaning pigs. However, the dominance of farm-level variability in man-
agement factors limits extrapolation of findings to other farms that have different farm practices. The diversity 
of farm management systems necessitated some computational simplifications (such as binary categorisation of 
factors). The distribution of farm sizes reflects the breadth of production systems with 80% of pens containing 
fewer than 350 piglets, but the remaining 20% ranging up to 1000 piglets per pen.

The transient nature of scours makes identifying key risk factors difficult. Bayesian network analysis has been 
used previously to identify risk factors associated with pig diseases and climate20 and antimicrobial resistance 

Figure 2.  Additive Bayesian Network showing odds ratios of observing each a given value of a node conditional 
on the network. The three diarrhoeal variables are highlighted in grey. In this figure, the network includes 
both fixed effects and random effects for each farm. The model structure was identified via non-parametric 
bootstrapping and a tabu modified greedy hill-climbing search for the optimal structure. Red arcs indicate 
positive associations that do not include 0 in the 95% credibility interval; blue arcs are negative associations 
that no not include 0 in the 95% credibility interval; the 95% credibility interval of grey arcs include 0. The arc 
between ownership of other livestock and pre-weaning scours was manually removed because of separation in 
the data (at the farm level) (dashed line).
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in E. coli21. Bayesian network techniques are an invaluable modern tool to understand and map risk factors and 
disease. Future work on scours to examine on-farm biosecurity procedures and potential routes and causes of 
infection would be useful. The effectiveness of control strategies – and particularly the use of antibiotics – for 
scours in pig production could be explored using Bayesian network techniques.

Materials and Methods
Data.  Data on 58 variables were collected through a survey of 195 pig pens from 22 farms across southeast-
ern Australia (New South Wales [n = 9], South Australia [n = 3] and Victoria [n = 10]). This survey has been 
described in detail by Van Breda et al.14. The number of herds included in this study was based on the available 
funding and the practicalities of sampling a large geographical area. Farms recruited were identified by swine 
veterinarians using prior knowledge of E. coli outbreaks; farms were also recruited at the 2013 Bendigo Pig Fair, 
Victoria and by contacting farmers directly via industry membership. A preliminary telephone questionnaire 
was conducted to establish the owner/manager’s willingness to participate and the suitability of their herd to be 
included in the study. Herds with less than 40 sows were excluded due to the limited number of piglets available 
for sampling at the time of the herd visit.

A cross-sectional survey was conducted between September 2013 and May 2014 and faecal samples to identify 
E. coli were collected from each herd. Samples were stratified to capture piglets one week prior to weaning (10 

Variable Reason for removal

Number of production sites missing information

Land area missing information

Number of piglets weaned per week missing information

Pre-wean vaccination missing information

Town water supply missing information

Bore water supply missing information

Natural mating missing information

Artificial insemination missing information

Type of flooring missing information

Frequency of cleaning missing information

Cleaning using pressure hosing missing information

Disinfectant use missing information

Number pigs slaughtered per week missing information

Truck ownership missing information

Presence of sow faeces in pre-weaned samples no statistical relationship – all data

Number of samples collected no statistical relationship – all data

Maximum beta-haemolytic growth (%) no statistical relationship – all data

Number of positive non-beta haemolytic samples no statistical relationship – all data

Type of shelter no statistical relationship – all data

Max number of piglets per pen no statistical relationship – all data

Infeed additive antibiotics no statistical relationship – all data

Infeed additive plasma no statistical relationship – all data

Infeed additive milk no statistical relationship – all data

Percentage of beta-haemolytic positive samples no statistical relationship – restricted data

Genetics sourced from PIC no statistical relationship – restricted data

Crops grown no statistical relationship – restricted data

Weaner house grouping no statistical relationship – restricted data

Farrowing pen type no statistical relationship – restricted data

Antibiotics administrated to post-weaned piglets no statistical relationship – restricted data

Age at weaning no statistical relationship – restricted data

Manure spreading no statistical relationship – restricted data

Number of positive beta-haemolytic samples overlapping interpretation

Age of piglets sampled overlapping interpretation

State overlapping interpretation

Vaccination of sows overlapping interpretation

Table 2.  Motivation for removing variables during analysis of a dataset describing scours in 195 pens of pigs 
on 22 farms in southeastern Australia: (1) due to a proportion of missing information >5% that would reduce 
the power of the Bayesian network model; (2) no statistical relationship a P ≤ 0.2 with either diarrhoea or pre- or 
post-weaning using all available data (i.e. some variables had missing observations); (3) no statistical association 
as before after removing any observation that lacked data for any variable; (4) removed because of overlapping 
interpretation with other variables retained.
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samples) and piglets that had most recently been weaned on the day of the herd visit (40 samples). Depending on 
the size of the pen, five samples were collected from pens of <20 piglets; and 10 samples were collected from pens 
of >20 piglets (an average 8.9 pens [range 1 to 14] were sampled per farm). A formal questionnaire, administered 
to the owner, manager or the leading farm hand, was conducted once at each farm. It included questions covering 
management, production and biosecurity practices. Details of the questionnaire, sample management and anal-
ysis is described elsewhere14. All animal sampling procedures and interactions were carried out in strict accord-
ance with the recommendations made by The University of Sydney Animal Ethics Committee. The protocol was 
approved by The University of Sydney Animal Ethics Committee (Approval number: N00/7-2013/3/6002).

Statistical Analyses.  BN analyses to address model structural uncertainty are computationally intensive. 
Therefore, to make the network tractable, all variables were screened to eliminate variables that would either 
reduce the sample size of the model or had no statistical evidence to justify inclusion in the network. First, the 
proportion of missing observations for each variable was counted. Fourteen variables with more than 5 per cent 
of observations missing were dropped from further analysis. This reduced the number of variables from 58 to 44. 
Second, the remaining variables were examined for univariate association with either pre- or post-weaning scours 
at the time of herd visit or with a history of diarrhoea using logistic regressions and an inclusive threshold of 
P ≤ 0.2. This was conducted with complete observations and, when the retained variables had also been screened 
for possible overlap, based on expert knowledge (e.g. the number of samples collected and the percentage E. coli 
positive). This resulted in 23 variables with some statistical evidence of association with scours that were retained 
for further analysis. To construct the BN, observations with missing data for any given variable were excluded, 
reducing the sample size from 195 to 174 pens and from 22 to 17 farms. The motivation for removing variables 
during analysis is summarised in Table 2.

A BN was constructed from the retained variables. Each variable was represented as a binary node and the 
structure identified using a modified (tabu) greedy hill-climbing search. Structural uncertainty was modelled 
with non-parametric bootstrapping (1000 samples) and only arcs with greater than 50% support were retained. 
The conditional-probability model was then translated into a system of mixed-effects logistic regressions. An 
additive BN has a more epidemiologically familiar interpretation (odds ratios)22 with clearer interpretation com-
pared to a BN (with probabilistic contingency tables) and allows the inclusion of random effects representing the 
17 farms included in analysis to account for clustering. The disadvantage of an additive BN is the computational 
limits on examining so many interconnected variables. The conditionally probabilistic model, though concep-
tually different, was computationally tractable to identify the model structure and allow parameter estimation. 
Random effects were fit with diffuse gamma distributions. The network structure was calculated by the R package 
bnlearn23 and the parameter estimates in JAGS 3.4.024.

Data availability.  Survey data is available at https://doi.org/10.1371/journal.pone.0172528.s002 and https://
doi.org/10.1371/journal.pone.0172528.s003.
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