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A B S T R A C T   

Urban micromobility represents a significant shift towards sustainable cities, underscoring the 
paramount importance of its safety. With the surge in micromobility adoption, collisions 
involving micromobility devices, such as bicycles and e-scooters, have surged in recent years. The 
second most common crash type involving these vehicles is one that only involves a micro-
mobility vehicle (single micromobility crashes). This study analyzed 6030 single micromobility 
crashes that occurred in Spanish urban areas from 2016 to 2020. The Random Forest method-
ology was applied to create a classification model for the purpose of characterizing these crashes, 
predicting their injury severity, and identifying the primary influencing factors. To address the 
issue of imbalanced data, resulting from the relatively smaller dataset of fatal and seriously 
injured crashes compared to slightly injured ones, the Synthetic Minority Oversampling Tech-
nique (SMOTE) was applied. 

The results indicate that certain behaviors, such as not wearing a helmet, riding for leisure, and 
instances of speeding violations, have the potential to increase injury severity. Additionally, 
crashes occurring at intersections or at cycle lanes with bad pavement conditions are likely to 
result in more severe outcomes. Furthermore, the concurrent presence of various other factors 
also contributes to an escalation in crash injury severity. 

These findings have the potential to provide valuable insights to authorities, assisting them in 
the decision-making process to enhance micromobility safety and thereby promoting the creation 
of more equitable and sustainable urban environments.   

1. Introduction 

Urban mobility patterns have changed in recent years worldwide thanks to the strong rise of micromobility. Micromobility refers to 
the use of microvehicles, defined as vehicles with a mass not exceeding 350 kg and a design speed no greater than 45 km/h [1,2]. 
Micromobility vehicles (MMV) include bicycles and Personal Mobility Devices (PMDs), which encompass stand-up e-scooters 
(e-scooters), as well as other PMDs like Segways, electric- or e-skateboards and self-balancing motorized scooters (hoverboards). 
Among these micromobility vehicles, bicycles constitute the most widely utilized mode of transportation, followed by e-scooters, 
which have gained a lot of popularity in recent years [3,4]. These micromobility vehicles have a direct impact, particularly within 
urban area, where they may interact with both pedestrians and motor vehicles [5,6]. 
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The significant increase in micromobility vehicles use in recent years has also led to a growing in the number of crashes involving 
these vehicles [6–9]. According to the European Transport Safety Council [10], 53 % of all cyclist fatalities within the European Union 
result from collisions with passenger cars and 16 % of cyclists fatalities occur in single-bicycle crashes (SBCs). This last percentage is 
higher than the proportion of cyclist fatalities resulting from collisions with heavy goods vehicles (13 %), vans (7 %), buses (2 %), and 
other vehicles (6 %). Although most cyclist fatalities arise from crashes involving motor vehicles and bicycles, it is important to note 
that a significant number of emergency department attendances are from SBCs [11], which also constitute a major contributor to 
severe cyclist injuries [12]. Additionally, the crash frequency is expected to be even higher for SBCs, especially when considering the 
substantial underreporting of data in these incidents compared to cases involving motor vehicles [13]. Therefore, understanding the 
causes and factors influencing the occurrence and severity of such crashes is relevant to develop effective countermeasures. 

Several studies have focused on characterizing SBCs and identifying contributory factors. Two main types of SBCs have been 
identified: (i) falls from a bicycle and (ii) collisions between cyclists and objects [14]. The factors contributing to these incidents 
encompass the behavior or presence of other users, cyclist distraction and behavior, bicycle saddle height, and the width of the cycling 
facilities. However, the prevalence of these factors may depend on the region under study and the season. For instance, in Sweden [15, 
16] and Denmark [17], the most common type of crash was skidding on ice or snow, adding an environmental dimension to the 
contributing factors. Additionally, the slippery road conditions resulting from snow or ice emerge as an additional contributory factor 
in these crashes. Furthermore, engaging in cycling after the consumption of alcohol or drugs has been associated with a higher risk of 
SBCs [18]. 

Injuries stemming from crashes may vary depending on the crash type, with hip and upper leg, as well as shoulder and upper arm 
injuries, being the most frequently reported [15]. Moreover, several attributes may be related to injury severity [16], including the 
cyclist gender and age, the purpose of the trip, crash location, helmet usage, and whether the crash occurs on a weekday or weekend. 

Considering the distinctions between electric bicycles and traditional bicycles, an examination of their safety profiles has been 
conducted [19]. After adjusting for age, gender and bicycle usage frequency, electric vehicle users are found to have a slightly higher 
likelihood of being involved in crashes requiring treatment. These differences are small, especially where the speeds of electric bicycles 
and traditional bicycles are similar. Contributory factors to the occurrence of SBC are also quite similar across both types of bicycles 
[20]. 

Regarding single e-scooter crashes, the studies are more limited, and their safety is less-understood compared to other transport 
means [21]. Falls are the most common type of single e-scooter crash and account for the majority of associated injuries [5,8,9,22,23]. 
Moreover, falls are in more than 80 % of these crashes which reports injuries, following by collision with objects (11.0 %) and being hit 
by moving vehicles or objects (8.8 %) [9]. Head injuries are the most frequently observed consequence of single e-scooter crashes, 
accompanied by injuries to the upper and lower extremities of the body [5,6,8,9,22,24,25]. 

Crash injury severity was analyzed in several studies using different methodologies. Statistical modeling, a conventional approach, 
has been applied in crash severity analysis for a considerable period due to its capability to provide reliable insights into crash 
likelihood with easily interpretable results [26]. However, statistical modeling requires certain assumptions about the underlying data 
distribution and predefined relationships between dependent and independent variables. In contrast, machine learning techniques do 
not rely on pre-assumed relationships between variables, contributing to their growing adoption in this research domain. Among these 
techniques, Random Forest, Support Vector Machine, and Decision Tree analytical methods presented have consistently demonstrated 
superior performance in multiple studies [26]. Moreover, in the comparative analysis of Random Forest and Classification and 
Regression Tree (CART) for identifying significant variables linked to injury severity categories and for classifying and predicting 
vehicle drivers’ injury severity, Random Forest achieved better accuracy compared to CART [27,28]. 

Although some researchers have analyzed SBCs and single e-scooter crashes and the injuries resulting from these incidents, there 
are still many unexplored aspects to comprehensively understand these crashes [13], especially considering that most of the studies are 
based on a limited sample of crashes. 

Therefore, in this research, an in-depth study of the factors that can influence the severity of injuries resulting from a single 
micromobility crash has been conducted. The study not only encompasses single bicycle crashes but also other single crashes involving 
a PMD, especially e-scooters. Factors related to rider, micromobility vehicle, crash, and infrastructure have been considered in the 
classification and predictive model developed using the Random Forest methodology. 

The rest of this paper is structured as follows: Section 2 introduces the crash database and outlines the methodology used for this 
research; Section 3 presents all the results and provides a discussion of the findings; and Section 4 offers the conclusions of this research 
and outlines directions for future works. 

2. Material and methods 

2.1. Crash data 

This study is based on crashes that occurred in Spanish urban areas from 2016 to 2020, involving only one micromobility user. 
These crashes records are included in the National Registry of Traffic Accidents victims provided by the Spanish General Directorate of 
Traffic (Dirección General de Tráfico, DGT). This database is derived from police records. 

The initial five-year database included 305,689 crashes that took place in urban areas during the analyzed period. Among these, 
29,913 incidents involve at least one micromobility user (bicycle, e-scooter, or other PMD). 

During this period, bicycles involved in crashes have remained relatively stable. However, the number of PMDs (mainly e-scooters) 
has significantly increased in recent years, particularly since 2018. Consequently, the number of micromobility crashes has also shown 
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a significant increase, as depicted in Fig. 1. 
Considering the study objective, collisions involving motor vehicles, multiple micromobility users, or pedestrians were excluded 

from the database. Among all the crashes involving at least one micromobility user, 6030 are categorized as single micromobility 
crashes. These crashes are defined as incidents where only one micromobility user is involved, with no interaction with motor vehicles, 
other micromobility vehicles (neither bicycle nor PMD), or pedestrians. The proportion of crashes involving only one micromobility 
vehicle has consistently increased, rising from 16.91 % in 2016 to 26.51 % in 2020, as illustrated in Fig. 2. 

More than half of all reported single micromobility crashes are attributed to falls (66.02 %), followed by overturning crashes 
(21.87 %), and a smaller proportion involving obstacle collisions (9.64 %). Other reported single micromobility crashes include 
collisions with animals, run-off crashes, and falling off cliffs (Fig. 3). Approximately 10 % of all these incidents result in severe injuries 
or fatalities. 

In this research, only crashes involving a single micromobility vehicle have been analyzed. While these crashes are less frequent 
and typically less severe than collisions between micromobility vehicles and motor vehicles (Fig. 2), they have significant implications 
for micromobility users. Furthermore, their frequency has increased in recent years, and there is still a lack of knowledge in the 
literature regarding this type of collision. 

The provided database includes information about the crashes, vehicles, and riders. Several variables were retrieved from the 
database and reorganized for inclusion in the developed model, as indicating in the following subsections. All variables have been 
categorized in a binary manner, whith 0 denoting the absence of the variable and 1 indicating its presence. The only variables where 
the values 0 and 1 denote something different from what was previously stated are WEEKEND, GENDER, and BICYCLE. Each of these 
variables will be described in detail in the following subsections, explaining the meaning of their values. 

Multicollinearity among all factors was analyzed using the Pearson correlation coefficient. High collinearity is considered to exist 
when this coefficient is, in absolute value, greater than 0.7 [29]. The highest correlation among all variables is − 0.67. Therefore, all 
identified correlations are lower, in absolute value, than 0.7, so all these variables were included in the model. Additionally, one of the 
advantages of the Random Forest methodology is that it is more robust to multicollinearity compared to other traditional statistical 
methodologies [30]. 

2.1.1. Crash information 
Data from the DGT crash database were extracted to define seven variables for inclusion in the model (Table 1). 
Crash injury severity (SEVERITY variable) was selected as the response variable and categorized into “slightly injured” (value 0) 

and “fatal and seriously injured” (value 1). The "slightly injured" category includes micromobility users who have sustained minor 
injuries due to collisions involving micromobility vehicles. In contrast, the "fatal and seriously injured" group refers to micromobility 
users who have suffered severe injuries, requiring hospitalization exceeding 24 h, or fatalities resulting from such collisions. 

The SEVERITY variable faces an issue of imbalance due to a significantly lower number of fatalities and serious injuries (598 
crashes) compared to minor injuries (5432 crashes). 

Regarding the date, the variable WEEKEND was defined based on the variables from the original database indicating the day, 
month, and year of the collision. The WEEKEND variable takes the value 0 if the crash occurred on a weekday and the value 1 for those 
occurred on weekends. 

Time information was used to define two variables: MORNING, covering crashes occurring from sunrise to 2 p.m., and AFTER-
NOON, from 3 p.m. to sunset. Both variables are assigned a value of 0 when the crash occurs at night. 

Finally, three variables were established to define the type of crash: OBSTACLE_COLLISION, FALL, and OVERTURNING. Other types 
of crashes (collisions with animals, run-off crashes, and falling off cliffs) are represented in the model when all three variables are set to 
0. 

Fig. 1. Evolution of micromobility crashes and users in urban areas in Spain (2016–2020).  
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2.1.2. Rider information 
The socio-demographic characteristics of riders involved in crashes provide valuable insights for urban planners and healthcare 

systems, facilitating the identification of high-risk groups and the formulation of relevant policies [6]. Therefore, 14 variables con-
taining specific rider information were defined. These variables encompass information regarding the rider’s gender, age, helmet 
usage, trip purpose, pre-crash manoeuvre, as well as the identified rider state and any potential traffic offences (Table 2). 

The variable GENDER assumes the value 0 when the rider is female and 1 when it is male, as illustrated in Table 2. 
Regarding the age of the rider, the following variables have been considered: (i) YOUNG18, when the rider is under 18 years old; 

(ii) ADULT65, when the rider is between 18 and 65 years old; and (iii) OLDER, when the rider is over 65 years old. When all three of 
these variables are simultaneously 0, then the age of the rider is unknown. 

Fig. 2. Distribution of micromobility crashes in urban area in Spain according to users involved (2016–2020).  

Fig. 3. Single micromobility crash types in urban areas in Spain (2016–2020).  

Table 1 
Crash information variables.  

Variables Total (%) Micromobility crashes 

Fatal & Severe Minor 

WEEKEND 0 - Weekday 68,21 % 401 (6.65 %) 3712 (61.56 %) 
1- Weekend 31,79 % 197 (3.27 %) 1720 (28.52 %) 

Time of day MORNING 46,25 % 312 (5.17 %) 2477 (41.08 %) 
AFTERNOON 35,62 % 197 (3.27 %) 1951 (32.35 %) 
Otherwise (Night) 18,13 % 89 (1.48 %) 1004 (16.65 %) 

Crash type OBSTACLE COLLISION 8.61 % 68 (1.13 %) 451 (7.48 %) 
FALL 58.92 % 348 (5.77 %) 3205 (53.15 %) 
OVERTURNING 19,52 % 82 (1.36 %) 1095 (18.16 %) 
Otherwise 12,95 % 100 (1.66 %) 681 (11.29 %)  
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The variables LEISURE, COMMUTE, and PROFESSIONAL have been derived from the “Trip purpose” variable in the original 
database. When all three newly defined variables are equal to 0, it indicates that either the reason for travel is unknown (in 93.83 % of 
cases), or the travel is for another unspecified reason different from the ones mentioned (in 6.17 % of cases). 

Additionally, the variables EVASIVE MANEUVER and BRAKING have been defined based on the “Rider maneuver” variable in the 
original database. When both new variables have a value of 0, it means that either the rider is following a straight path (50.44 %), or 
they are performing a different maneuver from the ones mentioned (11.02 %), or the specific type of maneuver being executed is 
unknown (38.54 %). 

2.1.3. Vehicle information 
The Vehicle is one of the most critical concurrent factors typically examined in road safety assessments. Consequently, two related 

variables were included in the analysis: BICYCLE, indicating whether the rider was on a bicycle or a PMD, and VH_BADMAINTENANCE, 
which takes on a value of 1 when there is substantial evidence of the vehicle being in poor condition (Table 3). 

The variable BICYCLE was formulated using several vehicle-type data available from the DGT database. Micromobility vehicles 
were categorized as follows: (i) bicycle; (ii) e-scooters; (iii) other PMDs, including segways, skateboards, and electric wheelchairs; and 
(iv) unspecified PMD, covering personal mobility devices where data did not specify the type according to the available data. An 
analysis of crashes within category (iii) revealed that this category comprises only 0,065 % of the PMDs involved in crashes. Addi-
tionally, considering that e-scooters have been the predominant PMD in Spain in recent years, it is reasonable to assume that category 
(iv) primarily comprises e-scooters. Consequently, only two categories have been considered in this study: (i) bicycle (value 1) and (ii) 
PMDs (value 0), including the previous categories (ii), (iii), and (iv). 

Incorporating vehicle information is crucial because, despite bicycles and other PMDs (mainly e-scooters) being classified as 
micromobility vehicles, disparities in kinetic response and damage mechanisms may exist between these vehicles. Therefore, it is 
essential to assess whether the type of micromobility vehicle is a determinant of injury severity for users of these vehicles. 

2.1.4. Infrastructure information 
The analysis of crash locations plays a vital role in enhancing safety planning and engineering solutions. In single micromobility 

crashes, the role of infrastructure could be relevant. Therefore, with the aim of identifying whether infrastructure-related variables 
could influence the severity of micromobility users, these variables have been included in the analysis, as shown in Table 4. 

Nine infrastructure-related variables have been defined from the DGT database information, and they have been categorized into 
three categories: (i) crash location; (ii) rider location; and (iii) pavement condition. 

Crash location has been further categorized into three groups: (i) crashes occurring at intersections (INTERSECTION); (ii) crashes 

Table 2 
Rider information variables.  

Variables Total (%) Micromobility crashes 

Fatal & Severe Minor 

Gender 0 - Female 23,20 % 104 (1.72 %) 1295 (21.48 %) 
1- Male 76,80 % 494 (8.19 %) 4137 (68.61 %) 

Rider age YOUNG18 9,24 % 58 (0.96 %) 499 (8.28 %) 
ADULT65 79,40 % 464 (7.69 %) 4324 (71.71 %) 
OLDER 6,78 % 63 (1.04 %) 346 (5.74 %) 
Otherwise (Unknown) 4,58 % 13 (0.22 %) 263 (4.36 %) 

Helmet use HELMET 31,19 % 219 (3.63 %) 1662 (27.56 %) 
Trip purpose LEISURE 25,89 % 196 (3.25 %) 1365 (22.64 %) 

COMMUTE 6,33 % 38 (0.63 %) 344 (5.70 %) 
PROFESSIONAL 0,30 % 1 (0.02 %) 17 (0.28 %) 
Otherwise 67,48 % 363 (6.02 %) 3706 (61.46 %) 

Rider maneuver EVASIVE MANEUVER 1,00 % 7 (0.12 %) 53 (0.88 %) 
BRAKING 1,49 % 3 (0.05 %) 87 (1.44 %) 
Otherwise 97,51 % 588 (9.75 %) 5292 (87.76 %) 

Rider state and offences ALCOHOL 0,90 % 3 (0.05 %) 51 (0.85 %) 
SPEED 3,67 % 38 (0.63 %) 183 (3.03 %) 
DISTRACTION 4,43 % 35 (0.58 %) 232 (3.85 %) 
SUDDEN ILLNESS 0,43 % 8 (0.13 %) 18 (0.30 %)  

Table 3 
Vehicle information variables.  

Variables Total (%) Micromobility crashes 

Fatal & Severe Minor 

Micromobility vehicle 0 - PMD 9.09 % 70 (1.16 %) 478 (7.93 %) 
1- Bicycle 90.91 % 528 (8.76 %) 4954 (82.16 %) 

Vehicle bad maintenance VH_BADMAINTENANCE 2.75 % 20 (0.33 %) 146 (2.42 %)  
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occurring at roundabouts (ROUNDABOUT); and (iii) crashes occurring at midblock (variables INTERSECTION and ROUNDABOUT with 
a value of 0). 

Rider location, referring to the infrastructure where the micromobility user was riding before the crash, has been defined with six 
categories: (i) VH_LANE, (ii) SHOULDER, (iii) SIDEWALK, (iv) BIKE SIDEWALK; (v) BIKE_LANE, and (vi) BUS_LANE. When all these 
variables have a value of 0, it signifies that either the rider was traveling in a different location from those mentioned, such as the tram 
lane or the median of the roadway (6.18 % of cases), or the database does not specify the location where the rider was traveling (93.82 
%). 

Finally, the variable BAD_PAVEMENT has been defined from the “pavement conditions” variable in the original database. The new 
variable takes the value 1 when the pavement is not dry or clean (e.g., the pavement is muddy, wet, icy, snowy, etc.), or when it has 
issues such as potholes. It takes the value 0 otherwise. 

2.2. Random Forest 

The mentioned variables were utilized in calibrating and validating a classification model employing the Random Forest meth-
odology, with SEVERITY as the dependent variable. The selection of the Random Forest approach is justified by its robust classification 
capabilities, particularly its superior performance in the context of road crash injury severity prediction [26]. 

As previously noted, an issue arises due to the imbalance in the SEVERITY variable, where the number of crashes resulting in 
fatalities and severe injuries (598) is significantly lower than those causing minor injuries (5,432). Such data imbalance can potentially 
introduce bias into classifiers since they tend to the majority class [31]. To mitigate the risk of bias and address the classification 
accuracy challenges in the Random Forest model, it is necessary to tackle the data imbalance issue [32]. This was achieved by applying 
the Synthetic Minority Oversampling Technique (SMOTE). 

The SMOTE technique stands out as one of the most influential and well-known data sampling and balancing algorithms in Machine 
Learning. It is an oversampling method specially designed to address imbalanced data [33]. This technique is based on creating new 
minority instances by generating random synthetic examples (new data). These newly generated instances result from interpolating 
between neighbouring minority class instances while preserving the original features [31–33]. To optimize model performance and 
mitigate any potential oversampling-related issues, critical hyperparameters were adjusted. These included parameters governing the 
oversampling rate of the minority class and the parameter dictating the number of nearest neighbours to consider during synthetic 
sample generation. A cross-validation process was conducted, involving multiple SMOTE executions employing different hyper-
parameter configurations. The objective was to comprehensively evaluate their impact on model performance and select the set of 
hyperparameters that yielded the best results. Once data had been successfully balanced through SMOTE, the Random Forest meth-
odology was applied. 

Random Forest is one of the most well-known and powerful Machine Learning supervised learning techniques for addressing 
classification or regression problems and making predictions [34]. It is typically applied to assess the discriminate power of all pre-
dictor variables in the model within the classification tree framework [35]. The model is constructed from a set of individual trees, each 
being trained on a bootstrap sample of the original data. Moreover, for each partition of the tree nodes, only one set of randomly 
selected independent variables is evaluated. Thus, the sample data is split into two child nodes to maximize the explained variance of 
the dependent variable [36–38]. Therefore, Random Forest involves a first random sample of the data and a second random sample of 
the predictor variables in each partition. This model-building process based on a set of independent trees helps to alleviate the 
overfitting issues identified in Classification and Regression Tree (CART) models, thereby improving classification accuracy [34,37, 
38]. 

The data that has not been included in the construction of each tree when selecting a bootstrap sample from the original data is 
termed Out of Bag (OOB) sample, and Random Forest makes predictions with these data to determine the accuracy of the model, 
calculating the OOB error [37]. 

Random Forest provides two different importance measures: mean decrease Gini (GINI) and Mean Decrease Accuracy (MDA), 
which can be used for ranking variables and for variable selection. GINI is the sum of all decreases in Gini impurity due to a given 

Table 4 
Infrastructure information variables.  

Variables Total (%) Micromobility crashes 

Fatal & Severe Minor 

Crash location INTERSECTION 13.43 % 92 (1.53 %) 718 (11.91 %) 
ROUNDABOUT 3.90 % 23 (0.38 %) 212 (3.52 %) 
Otherwise 82.67 % 483 (8.01 %) 4502 (74.66 %) 

Rider location VH_LANE 27.88 % 189 (3.13 %) 1492 (24.74 %) 
SHOULDER 0.25 % 2 (0.03 %) 13 (0.22 %) 
SIDEWALK 2.35 % 12 (0.20 %) 130 (2.16 %) 
BIKE SIDEWALK 2.34 % 18 (0.30 %) 123 (2.04 %) 
BIKE LANE 8.36 % 52 (0.86 %) 452 (7.50 %) 
BUS LANE 0.28 % 2 (0.03 %) 15 (0.25 %) 
Otherwise 58.54 % 323 (5.36 %) 3207 (53.18 %) 

Bad pavement condition BAD_PAVEMENT 17.73 % 129 (2.14 %) 940 (15.59 %)  
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variable used to form a split in the Random Forest, normalized by the number of trees. MDA quantifies the importance of a variable 
based on the change in prediction accuracy (OOB error) when the values of the variable are randomly permuted compared to the 
original observations [39]. 

3. Results and discussion 

3.1. Random Forest model 

3.1.1. Model construction and validation 
Ramdom Forest is the methodology used to construct a model for analysing single micromobility crashes. This model explores the 

relationship between crash outcome (SEVERITY) and several attributes related to crashes, riders, vehicles, and infrastructure (inde-
pendent variables). 

To build and subsequently validate the model, cross validation has been conducted. Two distinct datasets have been created from 
the original data: a first training set, consisting of 70 % of the original data selected randomly, and a second validation set, consisting of 
the remaining 30 % of the data. The first dataset was used to adjust the model parameters and construct it, while validation was carried 
out using the second dataset. The 70:30 training-to-set data ratio has been shown to yield superior performance scores across various 
tree-based machine learning models and has become the most frequently recommended and widely adopted option in the field [40]. 

To construct the Random Forest model and generate the resulting variable importance plots, it is essential to adjust the key pa-
rameters of the model. The number of variables used for node splitting (mtry) is, by default and for classification problems, 

̅̅̅
x

√
, where x 

represents the number of variables. Additionally, the default number of trees (ntree) is 500. To optimize these model hyperparameters, 
Random Forest models have been built with varying values of mtry (ranging from 

̅̅̅
x

√
to 31) and ntree (from 50 to 500). The hyper-

parameters values that delivered the best model performance were determined to be mtry=15 and ntree=500. 
Fig. 4 illustrates the progression of the model OOB error as the value of ntree changes, along with the evolution of classification 

errors for fatal or seriously injured cases and for slightly injured ones. The OOB error curve, as well the classification error curves, 
demonstrate remarkable stability when ntree=500. The classification errors are more pronounced for slightly injured cases (25 %) than 
for fatal or seriously injured cases (10 %), with the model OOB error calculated at 18.04 %. 

The performance of the model was evaluated using the confusion matrix that compares the fitted results with the actual obser-
vations [41], as depicted in Fig. 5. The diagonal elements of this matrix represent the count of correctly classified crashes for each 
category of injury severity, while the off-diagonal elements represent the count of misclassified crashes. 

These results have been used to calculate the F-measure value, which approaches 1 when there is perfect precision and recall. The F- 
measure score is computed using the harmonic mean of precision and recall [42,43]. The following equations are employed to 
calculate precision, recall and F-measures for both fatal and seriously injured and slightly injured categories. 

Precision1 =
True positive

True positive + False positive
=

1, 379
1, 379 + 378

= 0.7849 (1)  

Recall1 =
True positive

True positive + False negative
=

1, 379
1, 379 + 232

= 0.856 (2) 

Fig. 4. OOB and classification Errors.  
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F1= 2 ⋅
precision ⋅ recall
precision + recall

= 2 ⋅
0.7849 ⋅ 0.856
0.7849 + 0.856

= 0.8189 (3)  

Precision2 =
True positive

True positive + False positive
=

1, 251
1, 251 + 232

= 0.8435 (4)  

Recall2 =
True positive

True positive + False negative
=

1, 251
1, 251 + 378

= 0.768 (5)  

F2= 2 ⋅
precision ⋅ recall
precision + recall

= 2 ⋅
0.8435 ⋅ 0.768
0.8435 + 0.768

= 0.8039 (6) 

The calculated F-measures are 0.8189 for fatal and seriously injured and 0.8039 for slightly injured. These values, which are very 
close to 1, also confirm the accuracy of the model. 

Furthermore, Fig. 6 shows the ROC curve for predicting the validation data using the Random Forest model (model classifier). For 
comparison, it also includes the ROC curves of the perfect classifier and the classifier without predictive value. The closer the model 
classifier is to the perfect classifier, the better the model performs. Additionally, AUC (Area Under the Curve) is a valuable metric for 
assessing the quality of class separation in classifiers [27,44]. The model performs well when the AUC is close to one. The AUC for the 
developed Random Forest model is 0.875, indicating a strong performance of the classification model. 

Fig. 5. Confusion matrix for Random Forest model using the validation set.  

Fig. 6. ROC curve for RF model.  
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The results confirm the performance and validation of the model while also providing information about its uncertainty. 
The developed and validated Random Forest model provides two variable importance plots, based on the mean decrease Gini 

(GINI) and Mean Decrease Accuracy (MDA) criteria. These rankings elucidate the importance of each variable in the classification 
model. The results from both rankings have been analyzed and compared. Notably, there is a high correlation (0.88) between the 
importance rankings established by both criteria, yielding similar results, as expected. Additionality, ten Random Forest models (with 
the same hyperparameters) were created to assess the robustness and stability of the model along with the variable importance criteria. 
The GINI index was found to provide more consistent results than the MDA, which aligns with findings from other studies [39]. 
Consequently, the variable importance ranking from Random Forest as determined by the GINI index, has been used (Fig. 7). 

In Random Forest, the GINI index provides insights into which features are the most crucial for accurately classifying data and, as a 
result, are more influential in the model decision-making. 

Based on the GINI index results, the primary factors influencing crash classification by injury severity, include the day of the week 
and whether the rider is wearing a helmet. Also significant are whether the rider is using motor vehicle lanes, riding at an intersection, 
the pavement condition, the timing of the crash (afternoon or not), and the purpose of the trip (leisure or non-leisure). 

Furthermore, although to a lesser extent, other factors contributing to data classification include whether the micromobility vehicle 
is in a bike lane, whether the crash resulted from a fall, the type of vehicle involved (bicycle or PMD, mainly e-scooters), the presence of 
collisions with obstacles, and certain rider-related attributes such as gender, age, and specific offences, particularly distractions and 
speeding. 

Other factors, such as alcohol consumption and whether the rider was on the sidewalk or in a bus lane, hold less significance in the 
classification process. 

3.1.2. Decision rules 
In the previous section, the most and least relevant variables for classifying crashes based on injury severity were individually 

identified. However, crashes, along with their consequences, typically result from the interaction of multiple factors. Therefore, it is 
crucial to determine the likely injury severity of a crash when several factors are concurrently present. This information is vital for 
authorities to make informed decisions regarding micromobility road safety and allocate available resources effectively to reduce the 
crash rate. Decision rules can be valuable in this regard, as emphasized by other researchers [28]. Out of the 62 decision rules 
generated by the Random Forest model, Tabla 5 displays the most significant rules that can assist planning, design, and management 
authorities in their decision-making process. 

After a comprehensive analysis of all decision rules generated by the model, the following conclusions can be drawn.  

• The likelihood of a crash being fatal or resulting in serious injuries increases when falls occur on a poorly conditioned pavement. All 
crashes with both of these factors have been classified as fatal or serious by the model (decision rule 10 and other rules not included 
in Table 5). If only one of these factors is present, the crash severity depends on the interaction with other factors (decision rule 19 
and other rules not listed in Table 5). Poor pavement conditions have previously been identified as a significant cause of e-cyclist 
crashes [20], but our study extends this finding to micromobility crashes in general, particularly those involving falls. 

Fig. 7. Variable importance plot (GINI).  
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• Micromobility crashes analyzed involving elderly riders (over 65 years) tend to be more serious than those not involving these 
riders (decision rules 9, 12, 17 and other rules not included in Table 5). This aligns with findings from other studies on single- 
vehicle crashes involving bicycles and e-bikes [16,20].  

• Micromobility crashes occurring on weekdays in the morning, outside of vehicle and bike lanes, and involving riders not travelled 
for leisure, but committing a speed offence, are much more likely to be classified as serious or fatal (decision rule 1).  

• An adult woman (aged 18 to 65) involved in a bicycle crash while riding for leisure without a helmet is more likely to be classified 
as seriously injured or fatal. However, if this woman rides a bicycle in the afternoon, without a helmet, and for a non-leisure 
purpose, her crash is more likely to be classified as slightly injured (decision rules 8 and 13). In general, traveling for leisure 
seems to increase the injury severity of crashes, especially when the rider is not wearing a helmet [16].  

• Micromobility crashes involving only one PMD (mainly e-scooter) appear to be more serious than those involving only one bicycle, 
especially at night (decision rules 3, 6, 14 and other rules not included in Table 5).  

• Falls involving males wearing helmets on weekdays are more likely to result in minor injuries. In general, helmet use has been 
observed to decrease the severity of crashes, as expected (decision rule 21 and other rules not listed in Table 5).  

• The likelihood of a crash being fatal or resulting in serious injuries increases for men involved in falls while commuting and riding 
outside of vehicle lanes (decision rule 11). This finding consistent with another study that identified using e-bike primarily for 
commuting to work or school as a risk factor in e-bicycle crashes, although it did not specify the infrastructure where the cyclist was 
riding [20]. 

Table 5 
The main decision rules identified by the RF model.  

Number Decision rules THEN Frequency 
(%) 

Error 
(%) 

1 IF (WEEKEND = 0) AND (MORNING = 1) AND (VH_LANE = 0) AND (BIKE_LANE = 0) AND 
(LEISURE = 0) AND (SPEED = 1) 

Fatal or seriously 
injured 

1.04 5.35 

2 IF (WEEKEND = 1) AND (MORNING = 0) AND (BICYCLE = 1) AND (BIKE_LANE = 0) AND 
(BIKE_SIDEWALK = 0) AND (LEISURE = 1) 

Slightly injured 1.06 11.40 

3 IF (ROUNDABOUT = 0) AND (BICYCLE = 0) AND (OVERTURNING = 0) AND (SIDEWALK = 0) 
AND (PROFESSIONAL = 0) AND (SPEED = 1) 

Fatal or seriously 
injured 

1.05 14.16 

4 IF (OBSTACLE_COLLISION = 0) AND (FALL = 0) AND (OVERTURNING = 0) AND (BIKE_LANE =
0) AND (HELMET = 1) AND (LEISURE = 0) 

Fatal or seriously 
injured 

2.64 16.14 

5 IF (MORNING = 1) AND (INTERSECTION = 1) AND (EVASIVE_MANEUVER = 0) AND (VH_LANE 
= 1) AND (GENDER = 1) AND (LEISURE = 1) 

Fatal or seriously 
injured 

1.22 16.67 

6 IF (BICYCLE = 0) AND (OBSTACLE_COLLISION = 0) AND (OVERTURNING = 0) AND (GENDER =
0) AND (HELMET = 0) AND (LEISURE = 1) 

Fatal or seriously 
injured 

1.17 16.67 

7 IF (WEEKEND = 1) AND (BICYCLE = 1) AND (VH_LANE = 1) AND (GENDER = 1) AND (LEISURE 
= 0) AND (SPEED = 0) 

Slightly injured 1.69 16.94 

8 IF (AFTERNOON = 1) AND (BICYCLE = 1) AND (ADULT65 = 1) AND (GENDER = 0) AND 
(HELMET = 0) AND (LEISURE = 0) 

Slightly injured 2.58 18.99 

9 IF (MORNING = 1) AND (OVERTURNING = 1) AND (BIKE_SIDEWALK = 0) AND (OLDER = 0) 
AND (GENDER = 0) AND (SPEED = 0) 

Slightly injured 1.33 22.22 

10 IF (MORNING = 1) AND (FALL = 1) AND (BAD_PAVEMENT = 1) AND (VH_LANE = 0) AND 
(GENDER = 1) AND (LEISURE = 1) 

Fatal or seriously 
injured 

1.61 22.99 

11 IF (FALL = 1) AND (OVERTURNING = 0) AND (VH_LANE = 0) AND (GENDER = 1) AND 
(LEISURE = 0) AND (COMMUTE = 1) 

Fatal or seriously 
injured 

1.47 23.27 

12 IF (MORNING = 1) AND (INTERSECTION = 0) AND (VH_LANE = 1) AND (OLDER = 1) AND 
(COMMUTE = 0) & (DISTRACTION = 0) 

Fatal or seriously 
injured 

1.95 24.64 

13 IF (BICYCLE = 1) AND (BAD_PAVEMENT = 0) AND (ADULT65 = 1) AND (GENDER = 0) AND 
(HELMET = 0) AND (LEISURE = 1) 

Fatal or seriously 
injured 

1.25 25.19 

14 IF (MORNING = 0) AND (AFTERNOON = 0) AND (BICYCLE = 0) AND (FALL = 0) AND (GENDER 
= 1) AND (SPEED = 0) 

Fatal or seriously 
injured 

1.04 26.79 

15 IF (INTERSECTION = 0) AND (BICYCLE = 0) AND (GENDER = 0) AND (LEISURE = 0) AND 
(SPEED = 0) AND (DISTRACTION = 0) 

Slightly injured 1.28 28.99 

16 IF (ROUNDABOUT = 0) AND (BICYCLE = 1) AND (BIKE_SIDEWALK = 0) AND (YOUNG18 = 0) 
AND (HELMET = 1) AND (SPEED = 1) 

Fatal or seriously 
injured 

1.17 29.37 

17 IF (MORNING = 0) AND (AFTERNOON = 0) AND (OVERTURNING = 0) AND (OLDER = 0) AND 
(HELMET = 1) AND (SPEED = 0) 

Slightly injured 1.24 28.36 

18 IF (WEEKEND = 1) AND (MORNING = 1) AND (ADULT65 = 0) AND (GENDER = 1) AND 
(LEISURE = 0) AND (SPEED = 0) 

Fatal or seriously 
injured 

1.16 28.80 

19 IF (BICYCLE = 1) AND (FALL = 1) AND (OVERTURNING = 0) AND (YOUNG18 = 0) AND 
(GENDER = 0) AND (COMMUTE = 0) 

Slightly injured 1.44 29.49 

20 IF (MORNING = 1) AND (INTERSECTION = 0) AND (FALL = 1) AND (OVERTURNING = 0) AND 
(GENDER = 0) AND (LEISURE = 0) 

Slightly injured 2.72 31.63 

21 IF (WEEKEND = 0) AND (FALL = 1) AND (OVERTURNING = 0) AND (BAD_PAVEMENT = 0) AND 
(GENDER = 1) AND (HELMET = 1) 

Slightly injured 3.36 37.74 

22 IF (MORNING = 1) AND (VH_BAD_MAINTENANCE = 1) AND (VH_LANE = 1) AND (GENDER = 1) 
AND (LEISURE = 1) & (SPEED = 0) 

Fatal or seriously 
injured 

3.23 38.11  
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• Bicycle crashes occurring on weekends, outside of the morning hours, and for leisure purposes are more likely to be classified as 
minor (decision rule 2).  

• The likelihood of a crash being fatal or resulting in serious injuries is higher in collisions with animals, run-off crashes, and falling 
off cliffs, even if the rider is wearing a helmet (decision rule 4 and other rules not included in Table 5).  

• In general, it has been observed that speed offences increase the severity of crashes (decision rules 1, 3, 16 and other rules not 
included in Table 5). This aligns with the findings of another study focused on e-cyclist [20]. 

• The likelihood of a crash being fatal or resulting in serious injuries is higher when it occurs at intersections compared to round-
abouts or other locations. The severity depends on the simultaneous occurrence of other factors (decision rule 5 and other rules not 
listed in Table 5). 

This study represents a significant contribution to the road safety field due to the extensive sample of analyzed crashes. It includes 
data from crashes reported by the police, encompassing all injury-related crashes that occurred in Spain. The use of this database, as 
opposed to relying on surveys [20] or hospital records, which may potentially underestimate data [9], enhances the accuracy of the 
results. 

Furthermore, this research encompasses all micromobility vehicles (including bicycles and PMDs) involved in single micromobility 
crashes. Additionally, it takes into account a comprehensive set of factors related to riders, micromobility vehicles, and the crashes 
themselves. In terms of crashes characteristics, the study not only considers the crash type and when it occurred, but also where it 
occurred. Some studies have suggested a potential link between e-scooter crashes severity and infrastructure [6], yet comprehensive 
studies in this regard have been limited [45]. Consequently, this study delves into infrastructure-related factors as well. 

However, it is important to acknowledge the study limitations, which could be addressed in future research. The database used does 
not include crashes that result in only property damage. Therefore, single micromobility crashes might be underrepresented, like what 
occurs with SBCs [13]. Additionally, despite the substantial growth in PMD demand, particularly e-scooters, in recent years, further 
expansion is expected. Consequently, a similar study should be carried out in a few years to analyze how these factors evolve in their 
influence on single micromobility crashes injuries. Furthermore, certain variables lack available information and have consequently 
not been considered. For example, detailed information regarding road design or traffic density is unavailable. The latter variable 
could be particularly relevant in crashes that occur within vehicle lanes. Therefore, future analyses should explore the impact of these 
variables as well. 

4. Conclusions 

The substantial increase in micromobility modes of transportation has changed mobility patterns and urban lifestyles worldwide. 
However, this surge in micromobility users has also led to a rise in crashes involving these vehicles. In 2020, 26.51 % of crashes 
involving micromobility users occurred without any interaction with other users (single micromobility crashes). This proportion has 
steadily increased from 16.91 % in 2016 to 26.51 % in 2020. These single micromobility crashes primarily fall into four categories: (i) 
fall; (ii) overturning; (iii) obstacle collision; and (iv) other, which includes collisions with animals, run-off crashes, and other crashes. 
Around 10 % of these crashes result in serious injuries or fatalities. Therefore, it is worthy to study the factors influencing these 
collisions and their impact on the crash severity. 

This study focused on crashes that occurred in Spanish urban areas from 2016 to 2020, using data from the National Registry of 
Traffic Accidents Victims. Specifically, it analyzes crashes involving only one micromobility user (cyclist, e-scooter rider, or other PMD 
rider) without any interaction with other users. 

To evaluate the influence of several factors – such as crash characteristics, socio-demographic characteristics and behavior of riders, 
type and maintenance of the vehicle, and infrastructure conditions –on crash severity, a model based on Random Forest has been 
developed, calibrated, and validated. Prior to model calibration, data were balanced using the SMOTE technique to mitigate biases 
stemming from differences in the sample sizes of slightly injured crashes versus serious and fatal crashes. 

According to the GINI index, among the ten most influential variables in classifying the severity of single micromobility crashes, 
three are related to the collision (WEEKEND, AFTERNOON, FALL), three to the rider (HELMET, LEISURE, ADULT65), and four to 
infrastructure (VH_LANE, BAD_PAVEMENT, INTERSECTION, BIKE_LANE). The variable distinguishing between bicycles and other 
micromobility vehicles occupies the 11th position in terms of importance. 

Moreover, decision rules have been obtained to study the combination of multiple factors. 
Considering micromobility vehicles, this study makes a clear distinction between bicycles and PMDs, with stand-up e-scooters as a 

prominent type within the PMD category. Of all the decision rules uncovered which involved the type of micromobility vehicle, bi-
cycles were featured in nearly 70 % of them, while PMDs constituted the remaining 30 %. 

For single-bicycle crashes, the severity tends to increase, especially for adult women on leisure trips without helmets and for adults 
who wear helmets but engage in excessive speed. In contrast, single PMD crashes tend to be more severe when excessive speed is 
involved, the trip is for leisure, and it occurs at night. Helmet use and leisure trips significantly influence the injury severity for users of 
both micromobility vehicles. However, it has been observed that single-crashes occurring at night have a worse outcome when the 
micromobility user is on a PMD compared to a bicycle. Furthermore, generally, it can be concluded that the proportion of decision rules 
resulting in severe or fatal collisions is higher for single PMD crashes compared to single-bicycle crashes. 

Without distinguishing between the type of micromobility vehicle, the decision rules reveal that, in general, collisions involving 
elderly riders (over 65 years of age) tend to result in fatal or severe injuries. In contrast, for younger people, the severity of the collision 
depends also on other factors. For instance, a rider aged 18 to 65 who has a single micromobility crash during a leisure trip is more 
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likely to sustain severe injuries than if the crash occurs when riders are traveling for other purposes. 
Regarding the gender, there is a considerable number of decision rules in which this variable appears, with a higher proportion of 

fatal or severe crashes for males than for females, particularly in the morning. 
Regarding the four types of single micromobility crashes, the category that encompasses collision with animals, run-off crashes, and 

falling off cliffs tends to result in more severe outcomes even when the rider is wearing a helmet. Falls tend to be serious when the 
pavement is muddy, wet, icy, or snowy, or when there are potholes. In contrast, overturning crashes tend to have slightly less severe 
consequences. These consequences are exacerbated when crashes occur in motor vehicle lanes rather than in bike lanes or bike paths. 

These findings can serve as a foundation for enhancing micromobility road safety, preventing single micromobility crashes, and 
mitigating their consequences. Authorities should prioritize dedicated infrastructure for micromobility users, separated from 
motorized vehicle traffic. These lanes should have well-maintained pavement and remain free of obstacles to minimize the severity of 
consequences in the event of a fall. Furthermore, campaigns promoting helmet use for these vehicles, discouraging distractions while 
riding, and especially enforcing speed limits should be intensified. By addressing both infrastructure and human factors in this manner, 
the occurrence of fatal or serious single micromobility crashes could be significantly decreased. 
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Finally, the authors would like to also thank to the Dirección General de Tráfico (DGT) for providing the databases. 
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